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Abstract  

The efficient method for aerodynamic shape 
profiling in supersonic flow is presented. The 
method combines Newton based optimization 
algorithm and flow modeling within the 
framework of Euler’s equations system. The 
various design problems are considered: two-
dimensional airfoils and axisymmetrical fore-
bodies realizing minimum of a wave drag, the 
supersonic part of an axisymmetrical nozzle 
with maximum thrust, the simplest shape 
deformation of a complex plane form wing that 
ensures reduction of drag due to lift, profiling of 
fuselage and wing of a supersonic aircraft with 
high lift to drag ratio and low sonic boom. The 
objective functions are minimized under 
geometric and aerodynamic constraints. 

1 General Introduction 
The present state of the art of computing and 
methods of mathematical modeling makes it 
possible to solve different problems concerning 
the choice of rational aerodynamic shapes. In 
[1-3] the classic research problems in 
supersonic flight were considered. Two-
dimensional profiles, axisymmetric fuselages 
and fore-bodies that have minimum pressure 
drag in supersonic flow subject to a set of 
geometric constraints were constructed. The 
results were obtained within the framework of 
the Euler model over a wide range of the 
relevant parameters, namely, the Mach number 
and the enclosed area/volume or the aspect 
ratio. The aerodynamic shape optimization 
problems are ill-conditioned one and the 
simplest versatile methods (such as cyclic 
coordinate wise descent or gradient descent) 

cannot ensure reliable solution. Even when 
relatively few parameters are varied, linear 
convergence (at the rate of a geometric 
progression) proves to be insufficient. The 
efficiency of direct optimization methods may 
be improved significantly by a proper choice of 
the system of geometrical parameters. 
Convergence acceleration is reached due to 
simplification of the variational problem 
statement [4]. A local analysis of the 
aerodynamic load distribution is used to study 
the aerodynamic functions behaviour allowing 
analytic formulation of the objective function 
and constraints. On the base of approximations 
to the true Hessian matrix and gradient vector 
the shape variations that enable the aerodynamic 
performance to be improved are established. 

Another line of optimization research is 
related with the foundation of analytical 
solutions for the problem and studying 
characteristic features of optimal configurations. 
In the Newton model, the generatrixes of the 
optimal fore-bodies of all possible aspect ratios 
are elements of a unique generatrix. The limit 
solution is the generatrix described by a power-
law dependence of the fore-body radius on the 
longitudinal coordinate, r~xn, with the exponent 
equal to ¾ [5]. Numerical parametric studies of 
the fore-bodies with power-law generatrix 
showed that the theoretical value of the 
exponent was overestimated. The extremal 
value increases with the Mach number but does 
not exceed n=0.71 [6]. A new reliable tool for 
solving optimization problems analytically is 
the method of small variations of the shape of 
bodies with a known distribution of the 
aerodynamic forces [7]. Assuming a local linear 
relationship between the pressure variation over 
a surface element and the increment of the 
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geometric parameters, the objective function can 
be approximated by a quadratic form. The 
conditions for the minimum of the objective 
function lead to the system of linear equations 
for determining the optimum geometric 
parameters. The method turned out to be 
effective for studying various design problems. 

2 Two-dimensional airfoils with minimum 
wave drag 
In local flow models the pressure at any point of 
the surface is related with the angle between the 
tangent to the body and the free-stream velocity. 
Thus, the variation of the gasdynamic functions 
with respect to the undisturbed conditions is 
evaluated. In order to increase the accuracy one 
can take the data obtained in the nonlinear 
formulation as the initial conditions. For 
example, the exact value of the pressure on a 
wedge can be determined in oblique shock 
theory. Prandtl-Meyer theory gives the pressure 
behind the break of the rhombus contour. These 
airfoils are used as the initial geometric shapes. 

The airfoil contour with a pointed vertex is 
represented by a set of N+1 segments (only the 
upper half of the airfoil is considered). The 
segments connect a sequence of points with 
coordinates x0=0 and y0=0, x1 and y1, ..., xN-1 and 
yN-1, xN=1 and yN, xN+1=1 and yN+1=0. The 
airfoil length is equal to xN –x0=1. The 
distribution of the segments is assumed to be 
uniform: xn=n/N, n=1…N. The last segment 
represents the base section and has zero length 
when the trailing edge is sharp. The wave drag 
coefficient can be represented by the sum 
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where pn is the pressure for the nth segment and 
0.5ρ∞V∞

2 is free-stream dynamic pressure.  
It is assumed that the airfoil is slender and 

the base pressure pN+1=pb is known and does not 
vary with variation of the airfoil shape. For 
weak waves and small deformations the relation 
between the pressure and the geometric 
parameters is given by the expression 
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where Mn is the Mach number for the nth 
segment, ∆pn, ∆yn and ∆yn-1 are the changes in 
the pressure and the ordinates of the endpoints 
of the nth segment, and γ is the specific heat 
ratio. 

Summation of the loading over the airfoil 
contour gives an approximation of the objective 
function (wave drag variation) as quadratic form 
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The problem becomes redundant without 
suitable constraint. The airfoil is constructed 
under condition of conservation of enclosed 
area S. Introducing the Lagrangian function 
F=∆CD+λ∆S with a multiplier λ and 
differentiating it with respect to the independent 
variables, we obtain the following system of 
N+1 linear equations for determining the 
optimum variation of the shape 
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After simple algebra we obtain the 
representations for the Lagrangian multiplier 
and the ordinate variations in terms of the first 
point ordinate variation ∆y1. 
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Extremum value of ∆y1 is determined from the 
condition of enclosed area conservation. 

In order to find the analytic solution of the 
problem and construct the airfoils with and 
without end face, the wedge with the half angle 
δw=arctg(S) and the rhombus with the half angle 
δr=arctg(2S) are taken as the initial airfoils.  

At first case the following relations hold: 
yn=xntgδ, pn=ps, Mn=Ms, where ps and Ms are the 
pressure and the Mach number behind the 

2 



 DIRECT OPTIMIZATION METHOD AND AERODYNAMIC SHAPE 
DESIGN AT SUPERSONIC FLIGHT CONDITIONS

oblique shock. The extremum variation of the 
nth ordinate is expressed as  
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On passing to the limit as N→∞, we go 
over to the continuous dependence 
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Thus, the optimum variation of the wedge 
contour is a parabola with vertex at x=1/3 which 
intersects the X axis at the points x=0 and x=2/3. 

At the second case for the first N/2 
segments of the rhombus the pressure ps and the 
Mach number Ms correspond to the conditions 
behind the oblique shock. For the remaining N/2 
segments located behind the contour break the 
pressure pv and the Mach number Mv are 
determined from the Prandtl-Meyer theory. The 
pressure variation on the nth segment is 
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The contour of the optimum airfoil with 
sharp edges is formed by two parabolic 
segments 
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Setting rs=rv gives the well-known 
parabolic airfoil symmetric about the middle of 
the chord. This solution is the limiting one as 
S→0. For nonzero values of enclosed area the 
thickness of the optimum airfoil is greater than 
thickness of the airfoil obtained, assuming a 
linearized flow model. The enclosed area is 
redistributed farther from the vertex. The 
rhombus, parabolic and optimal airfoils at Mach 
number M=3 and S=0.192 are compared in 
fig.1. 

The optimal airfoils are slightly different 
for different Mach numbers. The nonlinear 
optimization reduces the magnitude of the 
leading edge shock. As compared with the 
parabolic airfoils, the optimal airfoils give a 

gain in the wave drag greater than 30% at M=12 
(fig. 2). 
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 Fig. 1. Airfoils (M=3, S=0.192) 
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Fig. 2. Wave drag coefficient (S=0.192) 

3 Axisymmetric fore-bodies with minimum 
wave drag 
In the case of axisymmetric fore-bodies with a 
given aspect ratio, the flow fields behind the 
attached shocks on cones are known and the 
solution is constructed as an improving 
variation to the conical shape. It is shown that 
the near-optimal fore-bodies have a flat forward 
face and a power-law generatrix with the 
exponent equal to ⅔. The only parameter 
dependent on the free stream Mach number and 
the fore-body aspect ratio λ=L/2R (L – the fore-
body length, R – the base radius) is the forward 
face radius r1. For the fore-body generatrix the 
following dependence of the radius on the 
longitudinal coordinate is proposed 
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By varying r1 one can solve the extremum 
problem for the function of the single variable 
and thus find the truncated power-law fore-body 
of minimum wave drag. The ratio of the forward 
face radius to that of the base decreases with 
increase of the aspect ratio and Mach number. 

The limiting solution for λ→∞ is the 
power-law fore-body r/R=(x/L)⅔. The exponent 
⅔ differs from well known result of Newton’s 
model – ¾. The aerodynamic drag of Newton’s 
theory fore-body increases on longitudinal 
coordinate as a linear function, in the frame 
work of the accepted simplified model the 
derivative dCD/dx=const. This result is not 
correct for the optimum fore-bodies. The 
aerodynamic drag increases in much the same 
way to a linear function of the radial coordinate 
– dCD/dr≈const. Common characteristic feature 
of the optimum fore-bodies is demonstrated in 
fig. 3. 

 
The wave drags of various fore-bodies are 

compared in fig. 4. The first near to optimum 
shapes, found by Newton, are characterized by 
the presence of a front face. A solution of the 
problem within the framework of slender body 

theory was obtained by Karman. When the 
aspect ratio is increased the optimum size of the 
front face rapidly decreases. As result the front 
face contribution to the total wave drag is 
reduced and near to optimum pointed nose 
shapes could be constructed [3]. The proposed 
truncated power-law fore-bodies are slightly 
different from the optimal fore-bodies [1] that 
give a gain in drag not greater than 3% at M=2 
and not greater than 1% at M=4. The greatest 
discrepancy is observed at small (λ=1) and large 
(λ=8) aspect ratios.  
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It should be noted that optimal fore-body 

shapes differ significantly from the shapes 
defined on the base of Newton pressure 
equation (fig. 5). On values of the wave drag 
relative difference exceeds 25% for noses of 
small aspect ratio. The radius of the front face 
of Newton fore-body is twice smaller. With 
increase of Mach number the reliability of 
Newton theory grows. But geometrical 
parameters are still different significantly. 

Fig. 4. Comparison of drag coefficient 
CD/CD min at M=2, λ=2 (a); M=4, λ=4 (b) 
1 – optimum fore-body [1]; 2 – cone; 3 –
parabolic fore-body; 4 – von Karman ogive; 5 –
Newton’s theory fore-body; 6 – power-law fore-
body [6]; 7 – pointed optimum fore-body [3]; 8 
– truncated power-law fore-body 
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Fig. 3. Wave drag rise on radial coordinate 
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4 Supersonic nozzles with maximum exhaust 
thrust 
The nozzle shape is profiled to realize 
maximum exhaust thrust under given 
restrictions on the overall dimensions. As 
distinct from the problems of external 
aerodynamics, in this case simplified flow 
models based on local relations between the 
geometric and gasdynamic parameters have not 
found wide application. On the one hand, this is 
due to the restricted possibilities of local 
approaches. In particular, the Newton formula 
for the pressure is applicable only to windward 
surfaces. On the other hand, the modern state of 
computer technology makes it possible to solve 
optimization problems on the basis of the most 
accurate flow models [8]. 

At the same time, the study of the 
characteristic features of optimal configurations 
remains topical. On the base of the method of 
small variations of the geometrical parameters it 
is determined near to optimal nozzle generatrix 
represented by a power-law dependence of the 
radius on the longitudinal coordinate [9]. 

The solution is a power-law function of the 
form r=(A+Bx)2/3. The coefficients A and B are 
determined from the boundary conditions. The 
first boundary condition is imposed in one of 

the sections in the vicinity of the entry section 
of the nozzle or directly in that section, 
depending on the presence or absence of a 
constraint on the nozzle contour curvature. In 
the latter case we have r=1 at x=0 (the entry 
section radius is taken as the scale length) and, 
therefore, A=1. In the former case we find the 
section in which a smooth junction between the 
circle and the power-law generatrix is ensured. 
One of the form parameters remains free. It is 
required to compare the thrust characteristics of 
nozzles differing in exit section diameter (the 
only independent parameter) and to choose the 
optimal configuration. 0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

r/R 

Three optimal nozzles are found for next 
conditions: length L=20 and curvature radius at 
the entry section R=0.5. The first nozzle has a 
linear generatrix and the second has a power-
law generatrix. In both cases the optimum is 
determined by varying a single parameter, 
namely, the nozzle exit section diameter. The 
third nozzle was obtained using the direct 
optimization method. 

x/L 
Fig. 5. Generatrixes of the optimum fore-
bodies (M=1.5, λ=1) 
____Euler flow model    ____Newton flow model 

The nozzle with a linear generatrix has the 
greatest area ratio; its exit section area is about 
15% greater than that of the nozzle designed 
using numerical optimization. Despite this, the 
conical surface gives the least increase in 
exhaust thrust. The power-law nozzles are 
intermediate with respect to both the geometric 
and the force characteristics. 

The optimal nozzles are compared in fig. 6. 
The internal flowfields are presented in the form 
of Mach number contours. The contours are 
plotted with a step ∆M=0.5, the contour nearest 
to the initial section corresponding to the Mach 
number 1.5. The flows in the nozzles with 
curvilinear generatrix have a similar structure. 
In the central part of the flow an extended low-
pressure region is located. In the conical nozzle 
the flow parameters are distributed more 
uniformly in the radial direction. 

The power-law nozzles rank below the 
optimally designed nozzles by not more than 
0.26% in thrust (or 1% in the aerodynamic force 
on the nozzle surface). Going over from conical 
nozzles to nozzles with curvilinear generatrixes 
leads to a considerable (up to 1.4%) increase in 
the thrust. In this case, more than 75% of the 
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greatest possible thrust increase is achieved 
using power-law nozzles. 

 

 

5 Supersonic aircraft 
The aircraft designed for cruise flight at Mach 
number М=1.8, altitude H=16 kilometers is 
considered. Aircraft weight is W=50 000 
kilograms. The fuselage length is L=40 meters. 
Plane view wing area is S=160 square meters. 
The fuselage interior volume is V=120 cubic 
meters. Wing is performed with cranked 
leading-edge and trailing-edge (fig. 7). 
 

 

Aerodynamic drag and sonic boom 
signature parameters are used as the objective 
functions minimized under geometric and 
aerodynamic constraints. Flow field near the 
aircraft is modeled within the framework of 
Euler equations. A gas-dynamic properties jump 
on a head shock wave is allocated strictly. 
Inside shock waves and other flow 
discontinuities are treated without tracking their 
spatial location. The computation mesh is 
constructed by the multi-zone approach. The 
surface friction drag is determined by a 
semiempirical calculation method for a 
turbulent boundary layer. 

r 
(a) 

(b) 

The opportunity of reduction of lift induced 
drag by means of the simplest deformations 
established earlier for delta wing [10] is 
investigated for complex plane form wing. The 
wing median surface is represented by four flat 
elements joined along lines passing trough the 
wing top. Near to conic deformation of the wing 
provides up to 90% of total decrease of drag due 
to lift. It confirms importance of researches on 
definition of the simple deformations in 
problems of aerodynamic forms optimization. 

(c) 

4 

x 16 0 8 

Fig. 6. Mach number contours (∆M=0.5) 
in nozzles with linear (a), power-law (b), 
and numerically optimized (c) generatrix 

Sonic boom pressure signatures for given 
cruise Mach number, altitude, and aircraft 
geometry parameters are computed according to 
geometric acoustic theory with nonlinear effects 
accounted. Sonic boom propagation in a 
horizontally stratified atmosphere is modeled. 
The case of steady flight and no winds is 
studied. Sonic boom waveforms are found 
directly below the aircraft flight path. 

The problem is solved through two stages. 
At the first stage, F-function is determined. Lift 
contribution to sonic boom is taken into account 
on the base of supersonic area rule theory. 
Equivalent area derivatives are related with 
disturbances of velocity [11]. Asymptotic 
dependence of pressure on time (or on 
longitudinal coordinate) and corresponding F-
function are obtained on the base of flow 
parameters in a narrow vicinity of the aircraft. 
At the second stage, pressure signatures far 
away from the aircraft at a desired distance from 
the ground or on the ground are determined 
using reliable acoustic methods [12, 13]. 

Fig. 7. Supersonic aircraft Optimization is performed without 
restriction on rear shock. Fore part of pressure 
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signature with initial shock is analyzed. The 
initial shock intensity as the primary value of 
the pressure signature is minimized. 
Overpressure levels are allowed to rise 
following the initial shock. The rate of rise in 
this signature is controlled and equals the rate of 
decrease after maximal overpressure in absolute 
value. Sonic boom minimizing equivalent area 
distribution is determined by three parameter 
power law [14]. 

During optimization the fuselage of round 
cross section is modified by means of internal 
volume redistribution in longitudinal direction 
and by cambering of fuselage axis. Starting 
fuselage is constructed in accordance with 
Sears-Haack body. 

The wing is assumed to have the constant 
shape in the plane view. The flat wing with 
symmetrical profiles is taken as a starting one. 
The relative thickness of the wing profiles is 
3%. It is allowed to redistribute interior volume 
in longitudinal direction only. For the wing 21 
longitudinal sections are allocated, each of 
which is partitioned into 20 segments. The 
nodal points define the apexes of triangular 
elements forming the upper and lower wing 
surfaces. Geometrical parameters are stated as 
displacements of nodal points in the normal 
direction to the base plane. 

Theoretical analysis shows opportunity of 
significant mitigation of sonic boom. The initial 
shock intensity is 67 Pa for the starting aircraft  

 

 

and 25 Pa for optimum equivalent body of 
revolution. Ground reflection factor equals 2. 

The optimal wing forms are found for 
different problem statements. At the first 
statement aerodynamic drag is used as the 
objective function (wing 1). At the second 
statement the objective function is defined as 
displacement between F-function (or derivatives 
of equivalent cross section area) distributions 
for the aircraft and the optimal equivalent body 
of revolution (wing 2). At all cases the aircraft 
has equal fuselage corresponding to the second 
problem statement. 

Geometric parameters of the fuselage are 
shown in fig. 8. Dependences of fuselage radius 
R on longitudinal coordinate reveal thickening 
of the fuselage nose. Fore-half of the fuselage is 
inclined downwards. 
Geometric parameters of the wings are rather 
different. Wing 1 is characterized by negative 
values of twist angle. In absolute value twist 
angle increases from root chord to tip chord. 
Twist angle of wing 2 is positive and decreases 
along span of inboard part. After leading edge 
kink twist angle increases. Near the tip edge 
sections have maximal twist. Median lines of 
the wings are represented in fig.9 for three 
longitudinal sections. Span of the half wing is 
adopted as reference value. Root section of 
wing 2 has windward camber. The console part 
of the wing is convex in the lee side. 
Displacement of the trailing edge provides 
positive dihedral angle. 
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 _____wing 1    _____ wing 2 Fig. 8. Fuselage radius R and centerline Y 
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Results of sonic boom modeling for the 
aircrafts with optimal wings and for the optimal 
equivalent body of revolution are represented in 
fig. 10. Deformation of the wing (problem 
statement 2) aligns distributions of F-function. 
As result pressure disturbance signature on the 
ground consists of a number of successive weak 
shocks. Intensity of initial shock is 28 Pa. In 
case of wing 1 pressure jump increase up to 53 
Pa. At the same time, the wing optimization at 
the problem statement 1 allows increasing of 
aircraft lift-to-drag ratio L/D at 12%. 
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