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Abstract  

Analytical expressions are presented for the 
radiation of noise from single- and contra-
rotating propellers. These expressions can be 
used to assess which design and operational 
parameters have the largest effect on the noise 
radiation efficiency of such propulsion systems. 
An analysis of the directivity of the individual 
noise components is given. Furthermore, it is 
shown how the mathematical model enables an 
exact extrapolation of near-field noise data to 
the far field. 

1  Introduction 

Because of the growing concern on CO2 
emissions, and because of the expectation that 
fuel prices will increase considerably in the long 
term, the aircraft industry is diligently searching 
for high efficiency propulsion systems for the 
next generation short-to-medium haul aircraft. 
A propulsion system that offers the prospect of 
being much more efficient than todays turbofan 
engines, is the contra-rotating open rotor (or 
contra-rotating propeller). Preliminary estimates 
amount to a reduction in fuel consumption of 20 
to 25%. An example of such a propulsion 
system is General Electric’s Unducted Fan, 
which was tested in the late 1980’s, see fig.1. 

 

 

Fig. 1. GE’s Unducted Fan 

However, because the rotor is not shielded 
from the ambient air by a nacelle, the noise 
radiated by an open rotor is considered as a 
potential problem, which may be an obstacle to 
achieve the aviation industry’s equally 
challenging targets on noise reduction. 

Therefore, it is necessary to assess the 
noise generation during the design of contra-
rotating propellers. A final assessment will in 
practice be done by acoustic wind tunnel tests 
on a model and, eventually, by flight-testing of 
a prototype, but these tests are obviously too 
expensive to be carried out for parametric 
studies during initial designs. In principle, the 
noise can be computed for a given geometry by 
using CFD and CAA tools, but such 
computations are also quite expensive and time 
consuming. Besides, the application of such 
tools to contra-rotating propellers is not a 
proven technology yet. To date, no experimental 
validation of these tools has been published yet. 

Thus the need exists for analytical tools, 
which can be used for an early optimization of 
propeller designs, and for the analysis and 
extrapolation of data obtained from earlier test 
activities on similar systems. 
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2  Mathematical model  

2.1 Single-rotating propeller  

In the following analysis we consider a single 
rotating propeller with B blades, rotating with 
angular speed Ω, in a uniform flow parallel to 
the propeller axis, for which we take the x-axis. 
In that case the equation for the acoustic 
pressure can be written as: 
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velocity.  
The source Q depends on the aerodynamic 

forces on the propeller blades, and is not 
specified any further. We do know however that 
Q is periodical in θ with period 2π/B, and is 
limited to the propeller disc: 
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where R is the propeller radius. The periodicity 
allows us to write: 
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As the resulting pressure field has the same 
periodicity, we write the solution as: 
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The n-th component of the equation becomes: 
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with M = U/c0. We now define: 
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and similar for Q, and take the Fourier 
transform of eq.(5): 
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A Green’s function satisfying the following 
equation is given by Schulten [1]: 
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This Green’s function is expressed in Bessel 
functions: 
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with: 
 2 2 2( ) , Im 0k Mγ α α γ= + − ≤           (10) 
 
See [1] on the selection of branch cuts in the 
complex α-plane. We thus find for r > R: 
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with rh the hub radius and γ determined by 
eq.(10) and k = -nBΩ/c0. Thus: 
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This expression completes the analysis for a 
single-rotating propeller. 
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2.2 Contra-rotating propeller 

In this section we consider a counter rotating 
propeller, with BF front blades, rotating with  
angular speed ΩF, and BR rear blades, rotating 
with angular speed ΩR, ΩF and ΩR having 
opposite sign. We will restrict the analysis to 
tones generated by the impingement of the wake 
of the front propeller on the aft blades. In 
practice, the noise generated by the viscous part 
of wakes of the front blades dominates the 
interaction tones. 

The wakes of the front blades can be 
decomposed in Fourier modes, with the θ and t 
dependence given by: 
 ( )F FinB te θ− −Ω  (13) 
with n an integer. 

The angular position of the j-th rear blade 
is given by θ = ΩRt – 2πj/BR and the equation 
for the acoustic pressure can be written as: 
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Again, the only knowledge of the source used is 
its symmetry properties. By writing Qn as a 
Fourier series we find that the source term can 
be written as: 
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We thus find that the source and the 

solution can be written as a sum over n and m, 
the terms of which have frequency 
nBFΩF - mBRΩR and a symmetry pattern with 
|nBF - mBR| lobes. This symmetry pattern rotates 

with an angular frequency of F F R R
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We now find for the complex amplitude of the 
corresponding tones: 
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with γ determined by eq.(10) and  
k = -(nBFΩF –mBRΩR )/c0. Note that for m = 0 or 
n = 0 we find the expression for the tones of the 
isolated front or rear rotor, see eq. (12). 

In the next sections expression (16) will be 
used to analyse some general properties of 
contra-rotating propeller noise. 

3 Applications  

In the following examples a reference configu-
ration is defined by: 
BF = 11 
BR =  9 

ΩF = 55 rad/s 
ΩR = -60 rad/s 
M = 0.25 
R = 2 m , both front and rear rotor 
rh = 0.6 m 
c0 = 340 m/s 
r = 10 m, sideline observer distance 
Examples will be given for this configuration 
and variations on the specified parameters. 

3.1 Which tones can be expected 

It is a well-known property of Bessel functions, 
that their value is small if the argument is much 
smaller than the order. Here we obtain high 
orders if n and m have opposite sign. For this 
situation the frequency of the interaction tone is 
a difference frequency, and will be relatively 
low. As the maximum value of γ can be shown 
to be proportional to the frequency, it can be 
expected from eq. (16) that these tones will not 
radiate efficiently. Indeed, in experiments only 
sum tones (i.e. n and m having equal sign) are 
observed, see e.g. [2]. 

3.2 Effect of spanwise source distribution 

Firstly, the effect of the spanwise source 
distribution in the case of a single-rotating 
propeller is investigated. To this end the 
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quantity ρJnB(γmρ) is plotted in Figure 2 for 
n = 1 and various values of B. 2

mγ is the 

maximum of γ2. The values are normalized by 
the value at the tip. 
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Fig. 2. Absolute value of ρρρρJB(γγγγmρρρρ) 
(normalized) for various blade numbers. 

From this figure it can be seen that the higher 
the blade number, the more the tip region is 
dominating, assuming that there are no very 
large variations in the source distribution. This 
conclusion was derived earlier by Parry and 
Crighton [3].  

Secondly the interaction tones for a contra-
rotating propeller will be investigated. For the 
reference case described above, the absolute 
value of ρJj(γmρ) is plotted in Figure 3, with 
j = nBF - mBR. Here the values are normalized to 
the maximum value of each curve. 
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Fig. 3. Absolute value of ρρρρJj(γγγγmρρρρ) 
(normalized) for various blade numbers, 
interaction tones. 
 
For lower values of j the source values over the 
whole blade span will contribute. For the higher 
values of j it can be shown [4] that the region 
around r = z*R will dominate, where z* is a 
called the ‘Mach radius’. For n = 1, m = 2 this 

radius is smaller than the tip radius, for n = 2, m 
= 1 and n = 2, m = 1, z* is larger than the tip 
radius. In the latter cases the tip region is 
dominating. 

 3.3 Directivity 

In this section a constant source will be 
assumed: , ( , ) 1n mQ α ρ =ɶ , which amounts to a 

δ-function in x direction (only sources in the 
rotor plane) and a constant distribution in 
spanwise direction. In Figure 4 the values are 
shown for the rear rotor BPF tone (n = 0, m = 1) 
and the first interaction tone (n = 1, m = 1), 
normalized to their maximum value. 
 

 

Fig. 4. Directivity of rear rotor BPF tone 
(red) and first interaction tone (blue). 

This shape of the rotor alone tone directivity 
may be expected to be quite similar to that of 
the actual propeller: as shown above, this tone is 
dominated by the blade tip region and details of 
the source distribution are relatively unimpor-
tant. Somewhat more differences may be 
expected for the interaction tone directivity, in 
particular will the symmetry of pattern be 
broken if a realistic source distribution would be 
used. Nevertheless, a general difference 
between rotor alone tones and interaction tones 
is clearly illustrated by Figure 4: the radiation of 
rotor alone tones is restricted to the angles near 
the propeller plane, while the interaction tones 
radiate in the forward and rearward arc. 

Note that this interaction tone does not 
radiate on the axis itself. In fact it can be shown 
mathematically that radiation on the axis itself is 
only possible if the order of the Bessel funcion 
is zero. For the reference case the lowest values 
of n and m for which this occurs are n = 9 and 
m = 11. However, it is unlikely that these high 
Fourier modes are excited very much. Instead, 
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the directivity of the n = 1, m = 1 tone is 
compared to that of the same case with 11 
blades in the rear rotor, instead of 9, see 
Figure 5. 

 

 

Fig. 5. Directivity of the n = 1, m = 1 
interaction tone for BF = 11 and BR = 9 (blue) 
and 11 (red) respectively. 

In the latter case the directivity is extremely 
concentrated on the x-axis. The nBF - mBR = 0 
case thus generates a pressure field that is axi-
symmetrically radiating along the axis, like that 
of a piston moving back and forth. 

3.4  Extrapolation from near- to far-field 

One of the most useful applications of the 
theory presented here, is the possibility to 
extrapolate far-field from near field-data. 

Acoustic data from experiments are often 
obtained in an acoustically treated wind tunnel. 
Measurements at low speed can be carried out 
in a large test section, where microphones can 
be placed in the far-field. In high-speed wind 
tunnels, however, microphones are necessarily 
mounted close to the source, see e.g. [2]. 
Experimental acoustic data for cruise conditions 
are thus often only available in the near-field.  

Data from computations, obtained from 
Computational Fluid Dynamics, are also 
restricted to the near-field, simply because it 
requires too much computation time and 
computer memory, if the computational domain 
is extended to the far-field.  

The second line of the right hand side of 
eq. (16) contains all the information on the 
source, but no reference to the observer distance 
r. This enables us to write: 
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where r0 is arbitrary, but larger than R. If the 
complex pressure amplitude of a tone is known 
on a near-field sideline in sufficient detail, such 
that its Fourier transform in axial direction can 
be taken, the pressure amplitude can be 
computed at any other distance outside the 
propeller disk. Note that in eq. (17) no  
assumptions have been made on the source. 

Unfortunately no contra-rotating noise data 
are available in the public domain to 
demonstrate this extrapolation procedure. 
However, at NLR data are available of the 
single-rotating, 6-bladed, Fokker 50 propeller, 
which was tested in the DNW-LLF wind tunnel. 
In Figure 6 the measured noise levels of the 
BPF tone is plotted as a function of axial 
coordinate, at two sideline distances: r = 1.32R 
and r = 3.9R. The data at 1.32R were used as 
input, and extrapolated to 3.9R, presented as the 
solid line. 
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Fig. 6. Application of the extrapolation 
method to noise data of the Fokker 50 
propeller. 

The agreement is typically within 1 dB. Note 
that if simply proportionality with distance 
would have been assumed, as may be done in 
the far field, the peak level would decrease by 
only 9.4 dB, instead of 18 dB shown here. 

 
Eq. (17) can also be used in principle to 

obtain near-field results from far-field data, 
similar to the technique of acoustic holography. 
However, some care should be taken regarding 
the numerical implementation. With M < 1, we 
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find that the radial wavenumber γ only assumes 
real values for a finite part of the α-domain, i.e. 
in the interval: 
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For the remaining part of the α-domain γ has a 
negative imaginary value, which corresponds to 
evanescent waves, which decay exponentially 
with increasing r. However, using eq.(17) to 
compute near-field acoustic pressures from far-
field data, numerical or experimental 
inaccuracies will excite spurious evanescent 
waves which grow exponentially in the 
direction towards the source, and the method 
will yield unphysically high values for the near 
field pressure perturbation. Therefore, in the 
numerical implementation of eq.(17), the 
integration over α should be restricted to the 
interval given by eq. (18), i.e. incorporating 
only propagating waves, which means that part 
of the near-field pressure will not be recovered. 

4 Conclusions 

Analytical expressions have been derived for 
the radiation of noise from single- and contra-
rotating propellers. These expressions are 
independent of a detailed source description. 

It is shown that these expressions can be 
used to  
- assess which tones can be expected to 

appear in a measured noise spectrum, 
- assess the effect of spanwise source 

distribution, 
- analyze the directivity of the individual 

noise components. 
Furthermore, it is shown how the mathematical 
model enables an exact extrapolation of near-
field noise data to the far field.  
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