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Abstract

This contribution studies the problem of measur-
ing the subjective perception of complexity cre-
ated by non regular intersecting flows of aircraft.
By constructing networks connecting aircraft and
following their evolution, a Spatial Complexity
metric is estimated: comparisons between this
metric and a standard one are reported for virtual
traffic scenarios.

1 Introduction

Although airspace complexity is an important re-
search field inside the aeronautical world, espe-
cially within the actual need for a higher capac-
ity and improved security, little effort has been
devoted to measure the subjective perception of
complexity introduced by non regular intersect-
ing flows of aircraft. In other words, the assump-
tion behind this contribution is that a situation
with aircraft flying following two perpendicular
routes is creating less workload than a scenario
with the same number of aircraft, but moving in
random, non-trivial trajectories (for example, in
a 4D SESAR scenario). The standard approach
to estimate the complexity of a sector includes
two main contributions: (i) the traffic density, as
the number of flights crossing a sector in a given
time, and (ii) the traffic complexity [1]. The sec-
ond part is usually approximated by some metrics
like minimum distance between aircraft, number
of predicted conflicts, or number of intersecting
flight paths. An example of a metric which em-
braces both aspects is the Dynamic Density, de-
veloped in 1998 by the United States National
Aeronautics and Space Administration [2].

Those last metrics fail to fully account for the
complexity of the flows created by airplanes, at
least to account for the subjective complexity de-
fined at the beginning of this contribution. For
example, it is not difficult to imagine a situa-
tion with several flights crossing a sector, none
of them in conflict with others, but in a config-
uration which requires the continuous attention
of the controller to forecast their future positions.
More generally speaking, the aim of this paper
is to highlight the importance of this kind of
complexity, and to develop a first metric to mea-
sure the geometrical complexity of aircraft flows:
using a fluid dynamics metaphor, to distinguish
laminar from chaotic scenarios.

2 Flows complexity

The metric proposed in this contribution is built
around the concept of spatial complexity, intro-
duced by the author within the field of Complex
Networks [3]. Complex Networks are generic
mathematical objects which have been exten-
sively used to model interactions between ele-
ments of a system [4]. Those elements are rep-
resented by nodes, and relations between them
by links: some examples span from social net-
works, technological networks, power distribu-
tion networks, up to yeast networks, only to cite a
few [5]. Thanks to Complex Networks, structures
and dynamics of so heterogeneous sources can
be easily expressed in terms of standard metrics,
and commons characteristics have been found in
many natural and man-made systems [6]. In the
following, a short description of the spatial com-
plexity is given, and how this measure can be ap-
plied to sector complexity is explained.

1



MASSIMILIANO ZANIN

2.1 An overview of spatial complexity

Approaches to calculate the disorder of a com-
plex network have focused on the analysis of de-
gree heterogeneity, that is, on the existence of a
few highly connected nodes, usually called Hubs.
This heterogeneity is strongly related with the re-
silience of the network to random or targeted at-
tacks, and therefore has been widely applied to
study critical infrastructures [7]. The problem
presented here is different, as intuitively the po-
sition of nodes (each node will represent an air-
craft) is of utmost importance in understand the
complexity of the system. Most of the works
dealing with spatial networks usually disregard
the spatial information; nevertheless, when con-
sidering aircraft’s trajectories, this information
has to be taken into account, as two airplanes fly-
ing far away do not represent the same situation
as two aircraft passing a hundred meters from
each other.

In Fig. 1 three different spatial networks are
represented. The second and third networks are
evolutions of the preceding one, where nodes
have been moved according to the arrows (note
that the structure of connections has not been
changed). Standard metrics are not useful to un-
derstand this evolution, as they are not modified
when the movement is applied; for instance, the
mean distance between two nodes is constant,
the number of connections of each node has not
changed at all, nor other structural metrics like
the number of triangles in the network (i.e., the
clustering). In spite of the above, clearly the
three graphs are not equivalent, and the reader
may agree that the third one is more complex (or
more disordered) than the first.

In Ref. [3] this problem is solved by mea-

Fig. 1 Example Of Three Spatial Networks With
Very Different Complexities.

suring the quantity of information needed by
an agent to go from one node to another node
through the path of minimal length. Suppose
that the agent has only local information about
the topology of the network, thus is moving at
each step to the node which appears closer to the
destination: the result in a disorder graph will be
a path longer than the optimal one. The differ-
ence between both paths is therefore measured as
the quantity of information that the agent would
need, from an external supervisor, to update its
representation of the network, and be able to find
the shortest path.

The reader may check this idea with an ex-
ample using networks in Fig. 1. Suppose that the
agent wants to go from node D to node A, using
local information only. In the simple network of
the left, the agent (standing in node D), would see
two connections: one to node C, and the second
to node E; as this last node is closer to the desti-
nation (just looking at the Euclidean distance, not
at the topology), the agent would move here. In
the next step, the destination is on sight, so the
trip is completed. Note that, in this ordered net-
work, the chosen path has been also the shortest
possible. If we make the same process for the
network on the right, results are completely dif-
ferent. At the beginning, the agent will still see
connections to nodes C and E, but now the closer
to the destination is C; the resulting path will be
C, E and A, which is longer than the optimal one.

An interesting feature is that this spatial com-
plexity can be normalized according to the size of
the network and to the number of connections in
it, which allows comparisons between very het-
erogeneous graphs. In order to perform such nor-
malization, it is necessary to create multiple ref-
erence graphs. Those new networks are created
by leaving the nodes of the network to be normal-
ized in the same position, and by creating connec-
tions between them at random - the same number
of links that were present in the original graph.
In other words, we are applying a process of ran-
dom rewiring: the mean value of the complexities
of these networks are a reference to understand
if we are facing a ordered or disordered system.
For example, if we compute the spatial complex-
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Fig. 2 Calculation Of The Spatial Complexity.

ity for a given configuration of nodes, and we get
a value higher than the one obtained with the nor-
malization, we can infer that our system is more
disordered that what would be expected in a ran-
dom situation - which, in turn, can be explained
by the presence of some non-trivial structure in-
side the topology of nodes.

2.2 Application to sector complexity

After this introduction about how to calculate the
spatial complexity of a network, here is intro-
duced how to apply this metric to the problem of
airspace complexity. Two steps are needed (see
Fig. 2): (i) creating a neutral network at time t,
and (ii) calculating the Spatial Complexity of the
same network at time t +δt.

In the first step, an initial network (with a
given number of connections) is created using the
position of aircraft. This network should have a
zero complexity - i.e. as regular as possible; this
can be accomplished by casting six links from
each aircraft in the six spatial directions, up to
the closer aircraft. In Fig. 2 Left a simple bi-
dimensional example is shown: each aircraft is
connected to the one on its left - top - right - bot-
tom part.

As time goes by, aircraft update their posi-
tions: as links are attached to nodes, the network
previously created is also changed. The claim of
this contribution is that the Spatial Complexity of
the new network (after being normalized) is re-
lated with the complexity of aircraft trajectories
inside the sector.

As can be inferred from Fig. 2, in order to
obtain a Spatial Complexity greater than zero the
network must be twisted: in other words, air-

Fig. 3 First Sector Complexity Example.

craft’s trajectories should cross and point to op-
posite directions. On the other side, that is, in a
situation where many aircraft are flying in par-
allel (or almost parallel) routes, the network at
time t + δt will be similar to the initial network:
as overall translation is neglected, the resulting
complexity is null.

From all the above, it is clear that the pro-
posed complexity metric refers to the structure
of flight paths. Of course, this is just one of the
possible complexities that an air traffic controller
has to manage: for example, although two flights
may have parallel routes, they can be in a prox-
imity conflict; or both flights may be re-routed to
dodge a bad weather area; or one of them may
have declared emergency, and is performing a
drift-down. Therefore this kind of metric should
be seen as one ingredient of a higher level com-
plexity mix.

3 Analyzing some examples

In order to better understand the characteristics of
a complexity metric based on Spatial Complex-
ity, a couple of virtual examples are reported.

The first of them is drawn in Fig. 3. In this
example, there is a regular movement of 9 air-
craft going straight from the left to the right side
of the sector, following the 9 parallel and hori-
zontal lines (note that just one of these aircraft
is represented), while at the same time a tenth
plane is crossing from right to left, top to bot-
tom, intersecting the other trajectories. In sake
of simplicity, we suppose all movements in a 2D
plane, although all calculations can be extended
to any 3D space. If distance between aircraft is
high enough, there will be no conflicts: therefore
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Fig. 4 Second Sector Complexity Example.

any metric based on the number of such events
will return a zero complexity - see the solid black
line of Fig. 3 Bottom. On the other side, the
Spatial Complexity senses the changes in the net-
work structure all over the time, and especially
in the middle part (when flights really cross) -
dashed blue line in Fig. 3 Right.

As a second example, 40 random flights (that
is, entering and exiting the airspace sector from
random points) have been created, in order to
simulate a highly congested airspace: the evolu-
tion of both metrics - a standard one based on
the number of forecasted conflicts, and the Spa-
tial Complexity - are shown in Fig. 4. It is in-
teresting to note as the global trend of both series
is similar (see the peaks around t = 27), although
they differ at some points (for example, at t = 20
and t = 45). Another example is shown in Fig.

Fig. 5 Third Sector Complexity Example.

5. Other 40 random flights are simulated, but in
this case the air sector is ten times bigger than
the previous case: therefore proximity alerts are
not so frequent, and cannot be used as a metric of
complexity.

Summing up, in this scenarios it can be seen
that the Spatial Complexity is indeed sensing
some kind of complexity of the traffic inside a
sector. The complexity which is measured is also
different from standard metrics actually used, as
is related with the workload generated by non-
trivial intersecting trajectories.

4 Computational cost

From Section 2, it may be expected that the com-
putational cost of calculating a complexity mea-
sure based on Spatial Complexity is much higher
than other standard metrics, like for example the
number of aircraft in a sector, or the number of
conflicts. Therefore, the computational cost of
calculating one step of the algorithm, i.e. the evo-
lution from time t to t +δt, has been estimated as
a function of the number of aircraft in the sec-
tor; results are represented in Fig. 6. Simulations
have been performed in Matlab R2008, and ran
in a Intel Core Duo 2 at 1.67GHz

The more aircraft are crossing the airspace,
the higher is the time needed to calculate its com-
plexity - the computational complexity has the
form of Θ(n2). Nevertheless, even for scenarios
with 40 airplanes, the calculation does not exceed
0.5 seconds: this solution is suitable to be imple-

Fig. 6 Computational Cost of the Algorithm.
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mented in real time applications. Moreover, the
proposed algorithm can easily be adapted for par-
allel computation, as the most time-consuming
part is the normalization: for example, n random
networks can be generated in n independent pro-
cessors, instead of having only one computer cal-
culating sequentially the n different networks.

5 Discussion

In this contribution a new type of sector complex-
ity is introduced, namely the geometrical com-
plexity of aircraft flows: with it, a first approx-
imation is proposed, i.e. the Spatial Complex-
ity. Through several virtual examples, it has
been shown that this metric is coherent with more
classical complexity metrics; but, at the same
time, it can identify chaotic aircraft flows, and
therefore add a new dimension in forecasting the
controller workload. This seems specially in-
teresting within the future 4D Trajectories op-
erations, where aircraft will be no more routed
through ordered airways, but can cross randomly
the airspace. Moreover, this metric is an example
of cross-disciplinary contribution: an example of
a concept developed in the physical field, and ap-
plied to an ATM problem.

Next developments will be focused on valida-
tion processes, with real data about the workload
of controllers in real situations, as well as better
integration with standard complexity measures.
Moreover, decision making strategies for aircraft
collisions avoidance based on the proposed defi-
nition of complexity will be explored.
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