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Abstract 

Two-dimensional direct numerical 
simulations (DNS) of receptivity and stability of 
a supersonic boundary layer over a flat plate, 
cone, compression corner and wavy wall are 
carried out for the cases of solid and porous 
wall. It is shown that proper designed porous 
coating and wavy surface can lead to 
decreasing of disturbances in the boundary 
layer that may increase laminar run 
substantially. 

1  Introduction 
Prediction of laminar-turbulent transition is 
important for aerothermal design and drag 
calculations of high-speed vehicles. Premature 
transition may be critical because it reduces 
propulsion system efficiency, increases viscous 
drag (that can be more than 30% of the total 
drag), as well as degrades aerodynamic control 
surfaces and reaction control system 
performance. Because of these issues, strategies 
for achieving economically viable aerospace 
systems require laminar flow control (LFC) 
concepts that substantially delay transition. 

In the two-dimensional high-speed 
boundary layer, the first and second modes [1] 
are dominant instabilities at sufficiently small 
pressure gradients (when cross-flow and Görtler 
vortices are stable). First mode is associated 
with Tollmien–Schlichting waves, while the 
second mode is one of the modes related to 
trapped acoustic waves [1]. The first mode can 
be stabilized by the wall cooling, suction, and 
favorable pressure gradient [2]. The second 
mode begins to dominate in the boundary layer 
at sufficiently high local Mach numbers 

(approximately M>4). As contrasted to the first 
mode, the wall cooling destabilizes the second 
mode. Since the surface temperature of typical 
high-speed vehicles is essentially lower than the 
adiabatic wall temperature, the first-mode 
instability is suppressed naturally while the 
second mode grows faster and can lead to early 
laminar-turbulent transition. This indicates that 
high-speed laminar-flow-control concepts 
should address the second-mode instability. 

Because the second mode represents high 
frequency (ultrasonic) acoustic waves, Fedorov 
et al. [3] assumed that a passive ultrasonically 
absorptive coating (UAC) may stabilize the 
second mode and, at the same time, be 
aerodynamically smooth. This hypothesis was 
confirmed by theoretical studies based on the 
linear stability theory (LST) and experiments in 
ITAM (Novosibirsk, Russia) [4]. 
Herein this concept is investigated by means of 
DNS method described in [5]. Numerical 
solutions are obtained using the implicit second-
order finite-volume TVD (total variation 
diminishing) method. At first, the steady-state 
solution of Navier-Stokes equations, which 
satisfies the undisturbed free-stream boundary 
conditions, is calculated to provide the mean 
laminar flow. For investigation of the boundary-
layer receptivity and stability, initial 
disturbances are induced by the boundary 
condition. The following geometries are 
considered: flat plate, sharp cone, compression 
corner, flat plate with wavy wall. 

2  Problem Formulation 
Viscous unsteady compressible flows are 
governed by Navier-Stokes equations. For two-
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dimensional flows, these equations are written 
in the conservative nondimensional form 
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The fluid is a perfect gas with the specific 
heat ratio 1.4   and Prandtl number 
Pr 0.72 . The system of equations is closed by 

state equation  2Mp T

  

  



. The viscosity-

temperature dependence is approximated by the 

power law . Hereafter 

asterisks denote dimensional variables. The 
second viscosity is assumed to be zero. 

 0.7
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 

Numerical studies are carried out for 
supersonic flow at the free-stream Mach number 
M  and the Reynolds number 

Re U L   
    , where 

  – free-stream 

density, U 
  – free-stream velocity, L  – 

characteristic length. Flow variables are made 
nondimensional using the steady-state free-
stream parameters as ( ,u v) ( ,u v U) /  

 , 
* 2/ ( )p p U 

  , /   
 , * /T T T 
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nondimensional coordinates and time are 
( , ) ( , ) /x y x y  L * /t t U L ,  



6Re 2 10  

. 

Details on the problem formulation and 
governing equations are given in [5]. The 
problem is solved numerically using the implicit 
second-order finite-volume method described in 
[5]. Two-dimensional Navier-Stokes equations 
are approximated by TVD shock-capturing 
scheme. The shock-capturing scheme allows for 
modeling of the disturbance dynamics in the 
complex flows with different shock waves. 
Nevertheless this computational scheme damps 
physical waves, especially near the peaks and 
valleys. The numerical dissipation can be 
suppressed using sufficiently fine computational 
grids. DNS of disturbances generated by a local 
periodic suction-blowing in the boundary layer 
on a flat plate was carried out in [5] and it was 
shown that this method is appropriate for 
modeling of the boundary-layer instability. 
Namely, the calculated second-mode growth 
rate agreed well with that predicted by LST. 

3  Porous coatings 

3.1 Flat plate 
Calculations are carried out for supersonic flow 
over a flat plate with sharp leading edge at the 
free-stream Mach number  and 

Reynolds number  (based on the 

plate length ). The computational domain is a 
rectangle with its bottom side corresponding to 
the plate surface. For the solid wall case, the no-
slip boundary conditions are imposed on the 
plate surface. The wall temperature corresponds 
to the adiabatic condition for the steady-state 
solution. On the outflow boundary, the flow 
variables are extrapolated using the linear 
approximation. On the inflow and upper 
boundaries, the boundary conditions correspond 
to the free stream quantities. The computational 
grid has  nodes. The grid nodes are 
clustered in the boundary layer and in the 
leading-edge region. 

M 6 

L

2001 301

For modeling of the boundary-layer 
instability, initial disturbances are induced by a 
local periodic suction-blowing in the leading-

edge vicinity. The mass flow on the plate 
surface is given by 
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where   is forcing amplitude; 1 0.0358x  , 

2x 0.0495  are boundaries of the local suction-

blowing region; the angular velocity 
 corresponds to high-

frequency disturbances including unstable 
second-mode waves. The amplitude 

/  260
 L U 

46 10    
was chosen small enough to ensure validity of 
the linear approximation and compare DNS 
results with LST. In the unsteady problem, the 
wall temperature corresponds to adiabatic wall, 

   ad x,wT x Tt  ; i.e., the temperature 

disturbances on the wall are zero. 
For modeling of the UAC effect, the 

boundary condition on the porous wall is 
formulated using the analytical relation of [6] 
that couples the vertical velocity disturbance 
with the pressure disturbance. In terms of real 
variables, this relation is written as 
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where     , ,w w w ,0p x t p x t p x  

yA

 ,w

 is pressure 

disturbance on the plate surface,  is complex 

quantity characterizing the UAC admittance. 
For numerical integration, the time derivative of 
pressure disturbance p x t

yA

 in (2) is 

approximated with the second order. The 
admittance  is expressed as 

 1
0 tanhyA Z h    

where   is porosity; 0Z ,  and  are 

characteristic impedance, propagation constant 
and depth of an isolated pore, respectively. 

 h
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Herein the porous coating comprises 
equally spaced vertical cylindrical blind micro-
holes as shown in figure 1. The nondimensional 
pore radius is , and the porous 

layer thickness is .  and  are 

made nondimensional using plate length 

3
0 0.333 10r  

25.5 10h   0r h

L . For 
this coating, 0Z  and   are calculated using the 

formulas derived in [6]. The UAC boundary 
condition (1) is imposed in the region . 
Calculations are carried out for porosity 

0.3x 

/ 16  , which corresponds to the pore 

spacing . The UAC parameters are 

chosen so that the number of pores per the 
disturbance wavelength is approximately 15. 
Note that the second-mode disturbance 
wavelength is 

0r

0.02

4s 

   at the frequency 
260  . It is assumed that the porous surface is 

aerodynamically smooth and the pore end 
effects are neglected. 

 

Fig. 2. Pressure disturbances on solid wall; thin line– 
DNS, bold – LST. 

The pressure-disturbance distributions 
along the solid (figure 2) and porous (figure 3) 
walls agree satisfactory with LST in the region 
where the second mode dominates. The porous 
coating leads to significant decreasing of the 
disturbance amplification. In the region 

, which is upstream from the instability 
onset point, the UAC weakly affects the 
boundary-layer disturbances. The maximum 
effect is observed in the unstable region, where 
the porous coating suppresses the second-mode growth rate. 

0.45x 
 

Fig. 3. Pressure disturbances on porous wall; thin line– 
DNS, bold – LST. 

3.2 Sharp cone 

 

Fig. 1. Porous coating of regular microstructure. 

DNS of disturbances in the supersonic boundary 
layer over a sharp cone with apex half-angle  
is carried out for the flow parameters relevant to 
the experiments in the ITAM T-326 wind tunnel 
[6]: 

7

5.95M  ,  is calculated 

using the cone length mm, 

6Re 4.2 10  

350L  6.wT 626  

( K, 0T  390 w 00.82T T  T 
 ),  К. The 

angle of attack is zero. 

48.26

The computational domain is a rectangle 
with its bottom side being the cone surface. The 
computational grid has  nodes with 
clustering in the boundary-layer and leading-
edge regions. 

4001 151
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Fig. 6. Relative difference between disturbance 
amplitudes for solid and porous walls:1 – experiment, 2 – 

DNS. 
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Fig. 4. The wall-pressure disturbance on a sharp cone. 

Local periodic suction-blowing was 
introduced into the flow via the boundary 
condition (1). The amplitude 45 10  

727.75

 is 
small enough to meet the LST restriction, 

, , 1 0.1971x  2 0.2108x   

275f  

 

corresponds to the frequency  kHz 
actuated in the experiments [6]. Disturbances of 
this frequency are relevant to the second-mode 
instability. 

For , the boundary-layer mode 
starts to grow downstream. This is illustrated by 
the wall pressure disturbance shown in figure 4 
at a fixed time instant. 

0.55x 

To evaluate the UAC effect on the 
disturbance field, the porous wall boundary 
condition (2) is imposed in the region  
(corresponds to  mm in the 
experiments [6]). Calculations are performed for 
the UAC parameters relevant to the 

experimental conditions: 

0.52x 
182x 

5
0 7.14 10r   , 

31.286 10h   , 04s r , . 

For this set of parameters, the pore radius is 
comparable with the molecular mean free path 

2 2
0 / /r s   
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Fig. 5. Pressure disturbance on the cone surface with 
UAC. 

16

l  and the Knudsen number  is 

not small. Therefore, the characteristic 
impedance 

0/ 0.4l r  Kn

0Z  and the propagation constant   

in (2) are calculated with the help of method [6] 
accounting for the rarified gas effect. Figure 5 
shows that the pressure disturbance amplitude 
on the porous wall is essentially smaller than 
that on the solid wall (figure 4). 

Figure 6 compares the data in terms of the 
relative difference of disturbance amplitude 

  /s por sA A A  

0.8x 

A

x 

, where the subscript “s” 

(“por”) corresponds to the solid (porous) 
surface. The DNS distribution of this quantity 
agrees satisfactory with the experiment in the 
region . For , where the second 
mode is not distinguished, the experimental data 
have a large scatter. 

0.7

3.3 Compression corner 
Consider laminar flow over a compression 
corner with the inclination angle 5 5     
(figure 7). Flow variables are made 
nondimensional using the same procedure as in 
the previous cases with  being a distance L

5  
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from the leading edge to the corner point. 
Calculations are carried out for the flow 
parameters: , , 

. The wall temperature is 

 ( ). Dynamic viscosity 

M 5 373  

K

300 KwT  

6Re 5 667 10   
* 74.194T 

4.043wT    

is approximated using the Sutherland formula. 
Computational domain is shown in figure 7. The 
computational grid has  nodes (each 
20th gridline is shown in figure 7). The grid is 
obtained by conformal mapping of the upper 
half plane to the computational domain. The 
grid nodes were clustered in the boundary-layer 
and leading-edge regions. 

2801



221

310
1 0.0358x 

 

Fig. 8. Streamlines in the separation region; bold line – 
zero streamline, dashed line – mixing layer boundary. 

In the corner region, there are compression 
waves that interact with the boundary layer and 
induce a recirculation zone (separation bubble). 
The upper boundary of this zone is 
approximately a straight line that is typical for 
supersonic separation (see also figure 8). 
Downstream from the reattachment point, the 
boundary layer is thinner than in the upstream 
vicinity of separation point. Streamlines of the 
steady-state flow in the separation region are 
presented in figure 8. 

A local periodic suction-blowing is 
introduced into the flow using the boundary 
condition (1) with , , 

 and 


4502 0 0521x     . An instantaneous 

distribution of the wall-pressure disturbance is 
presented in figure 9. In the region 

, this disturbance corresponds to 
the second mode wave. Its wavelength is 
approximately equal to the doubled boundary-
layer thickness. The separation bubble affects 
the disturbance evolution dramatically. Its 
amplitude abruptly decreases showing that 
separation stabilizes the disturbance of 
considered frequency despite an unfavorable 

pressure gradient. Downstream from the 
reattachment point, the disturbance grows 
rapidly. This amplification is associated with the 
second-mode instability. 

0.6 0 85x  

For modeling of the UAC effect, the 
boundary condition (2) is imposed on the 
inclined surface corresponding to 1x 

310

. 
Calculations are performed for the UAC shown 
in figure 1 with the parameters: pore radius 

, pore depth -4
0 1.5 10r   010 1.5h r     , 

porosity / 16   corresponds to the pore 

spacing 0r4s  . There are approximately 20 

 

Fig. 9. Pressure disturbance on the solid wall of 
compression corner. 

 

Fig. 10. Pressure disturbance on the porous wall of 
compression corner. 

 

Fig. 7. Computational domain and grid for the case of 
compression corner. 
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pores per the disturbance wavelength 
0.012  . Figure 10 shows the wall-pressure 

disturbance distribution for the case of porous 
wall (porosity /16  ). Comparing this 
distribution with that on the solid wall (figure 9) 
we conclude that the UAC weakly affects the 
disturbance in the separation region 1  
and strongly suppresses the second-mode 
instability downstream from the reattachment 
point. The porous coating leads to decreasing of 
the amplitude maximum by a factor of 9. 

1.2x 

 

Fig. 11. Density field of steady flow over concave wavy 
wall. 

4  Wavy wall 
It was shown in previous section that the 
amplitude of high-frequency second-mode wave 
decreases in a separated mixing layer. However 
there is effective excitation of disturbances 
downstream from the reattachment point. In this 
section we discuss results of DNS of 
disturbances in the near-wall flow over wavy 
wall with sequence of local separation bubbles. 
It is expected that this configuration allows us to 
stabilize the second mode and, at the same time, 
to minimize growth of disturbances in relatively 
short regions of the reattached flow. 

Calculations are carried out for the flow 
parameters: , , 

. The wall temperature is 

M 5 9   6Re 1 435 10   

6.8wT* 43.08KT    

( ). Dynamic viscosity 293KwT     is 

approximated using the Sutherland formula. 
Computations are carried out for flow over 

a wavy wall with 9 cavities. The surface shape 
is shown in figure 11 and given by the formula 

  
0, 0.4 1.2

( ) cos 0.4 / 0.1 1 ,

0.4 1.2

x x

y x h x

x



  


 
  

  

where the groove depth, , 
approximately equals to the doubled boundary-
layer thickness (

0.015h 

2 ). For the considered flow 
parameters 0.008   at the station 0.5x   
located on the flat plate region. 

Computational domain is shown in figure 
11. The grid of  nodes is obtained by 
conformal mapping of the upper half plane to 

the computational domain. The grid nodes were 
clustered in the boundary-layer. 

2501 241

Density field of the mean flow is shown in 
figure 11. Wavy surface produces a mixing 
layer which bridges the cavities and resembles a 
free shear layer that is almost parallel. It is 
assumed that such a mixing layer could stabilize 
the boundary layer disturbances without 
detrimental effects. 

A local periodic suction-blowing is 
introduced into the flow upstream from the 
grooved region using the boundary condition (1) 
with 310  , 1 0.05x  ,  and 2 0 087x     

varying from 100 to 190. 
An instantaneous distribution of the wall-

pressure disturbances for the flat plate case and 
considered free-stream conditions is presented 
in figure 12 ( 168  ). In the region , 
these disturbances correspond to the second 
mode waves. For the disturbance of fixed 
frequency 

0 5x  

168  , the second mode amplifies 
and reaches its maximum amplitude at 0.93x  . 

 disturbance on the wavy wall is shown 
in figure 13. Upstream from the first separation 
bubble the disturbance behaves like in the flat-
plate case. Then it is stabilized over the grooved 
surface, which transforms the boundary layer 
flow to the mixing layer bridging neighboring 
cavities. Further downstream from the last 
reattachment point, the boundary-layer 
disturbance behaves as in the flat-plate case. 

Comparison o

Pressure

f the pressure disturbance 
amplitude at the station 0.9x   for different 
frequencies (figure 14) sh hat the wavy 
wall produces stabilization effect in rather wide 
frequency band 140 190

ows t

  . DNS shows that 
the amplitude of high-frequency second mode 
disturbances can be reduced by the wavy wall 

7  
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Fig. 14. Pressure disturbance amplitude on the flat plate 
(black line) and wavy wall (blue line) for different 

frequencies 

producing a relatively stable free shear layer at 
sufficiently high free-stream Mach numbers. 

5  Conclusions 
Two-dimensional direct numerical simulation of 
supersonic boundary layer stability was carried 
out for a flat plate with solid and porous walls. 
A porous coating of regular porosity (equally 
spaced cylindrical blind micro-holes) effectively 
diminishes the second-mode growth rate. 
Particularly the second-mode amplitude 
decreases twice on the surface covered by the 
UAC of 20% porosity. 

DNS of disturbances on a sharp cone at 
zero angle of attack was carried out for the cases 

with and without UAC. It was shown that UAC 
diminishes the disturbance amplitude up to four 
times that agrees with the experimental data. 
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Fig. 12. Pressure disturbance on the flat plate.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-0.0008

-0.0004

0.0000

0.0004

0.0008

p'
w

x  

Fig. 13. Pressure disturbance on the wavy wall. 

DNS modeling of disturbance evolution 
was also performed in a supersonic compression 
corner flow that comprises a laminar separation 
bubble. In the solid wall case, high-frequency 
disturbances associated with the second mode 
instability are naturally stabilized in the 
separation region and intensively grow in the 
reattached boundary layer. The DNS showed 
that the UAC of regular porosity strongly 
suppresses the second-mode instability in the 
reattached boundary layer. 

Stability of a separated supersonic near-
wall flow over the grooved plate is investigated 
numerically. DNS shows that the amplitude of 
high-frequency second mode disturbances can 
be reduced by the wavy wall producing a 
relatively stable free shear layer at sufficiently 
high free-stream Mach numbers. 
 
This work is supported by Federal goal-oriented 
program “Scientific and scientific-pedagogical 
personnel of innovative Russia” (state contract 
No 02.740.11.0154). 
 

References 
[1] Mack L.M. Boundary layer stability theory. Part B. 

Doc. 900-277. JPL, Pasadena, California, 1969. 
[2] Gaponov S.A., Maslov A.A. Disturbances Evolution 

in the Compressible Flows. Nauka, Novosibirsk, 
1980. (in Russian). 

[3] Malmuth N.D., Fedorov A.V., Shalaev V.I., Cole J., 
Khokhlov A.P., Hites M., Williams D. Problems in 

8 



 

9  

NUMERICAL SIMULATION OF RECEPTIVITY AND STABILITY OF
A SUPERSONIC BOUNDARY LAYER

high speed flow prediction relevant to control. AIAA 
Paper 98-2695, 1998. 

[4] Fedorov A.V., Shiplyuk A.N., Maslov A.A., Burov 
E.V., Malmuth N.D. Stabilization of a hypersonic 
boundary layer using an ultrasonically absorptive 
coating. J. Fluid Mech. Vol. 479, pp 99–124, 2003. 

[5] Egorov I.V., Fedorov A.V., Soudakov V.G. Direct 
numerical simulation of disturbances generated by 
periodic suction-blowing in a hypersonic boundary 
layer. Theoret. Comput. Fluid Dynamics. Vol. 20, 
No. 1, pp 41-54, 2006. 

[6] Fedorov A.V., Kozlov V.F., Shiplyuk A.N., Maslov 
A.A., Sidorenko A.A., Burov E.V., Malmuth N.D. 
Stability of hypersonic boundary layer on porous wall 
with regular microstructure. AIAA Paper 2003-4147, 
2003. 

6  Contact Author Email Address 
vit_soudakov@mail.ru 

Copyright Statement 
The authors confirm that they, and/or their company or 
organization, hold copyright on all of the original material 
included in this paper. The authors also confirm that they 
have obtained permission, from the copyright holder of 
any third party material included in this paper, to publish 
it as part of their paper. The authors confirm that they 
give permission, or have obtained permission from the 
copyright holder of this paper, for the publication and 
distribution of this paper as part of the ICAS2010 
proceedings or as individual off-prints from the 
proceedings. 
 

mailto:vit_soudakov@mail.ru

