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Abstract  

The improved Kriging-model-based 
optimization design method which is combined 
with design of experiment of Latin hypercube 
sampling, Kriging model and genetic 
optimization algorithm  is develo ped in this 
paper. By simultaneousl y adding the sample 
point with maximum EI (Expected Improvement) 
and  the optimal point from optimization of the 
initial samples, a  new Kriging mo del of high er 
accuracy is formed gradually, with above  
measure the optimization of given objective  can 
be  realized.  
The fitting accuracy of Kriging model based on 
EI method is investigated and validated through 
the tests of a one- dime nsional function and an 
aerodynamic problem, which show that the 
developed Kriging mo del can  be effectively  
used in objectiv e evalu ations in o ptimization 
problems.  
For construction of the improved Kriging model 
of the aerodynamic problems, the aerodynamic 
performances of sample  points are evaluated 
using a Reynolds Averaged Navier-Stokes 
(RANS)  Solver. A drag reduction optimization 
design of R AE2822 airfoil is carried out for 
examining the validity and efficien cy of presen t 
method. The drag coefficient of RAE2822 airfoil 
is reduced by 33.6%. It s hows that this method  
can gradually improve the fitting a ccuracy of 
Kriging m odel, finally achieve the great  
improvement of aerodynamic performance for 
the airfoil. 
 
 

1  Introduction  

With the development of the computational 
fluid dynamics (CFD) and the growth in 
computer’s performance, CFD has been used  
more and more widely in aerodynamic 
optimization design. The optimization methods 
usually used today can be classified into  two 
kinds: the gradient-based methods and the non-
gradient-methods such as genetic algorithm. 
The gradient-based optimization methods 
require the objective function be derivable, and 
since they need the calculations of the gradients 
of the objective function with respect to design 
variables, they call for a large amount of 
computations when the number of design 
variables is large, moreover, they have 
difficulties in finding the global optimum 
solutions for problems with high nonlinearity, 
such as aerodynamic problems. Non-gradient- 
methods such as genetic algorithm have the 
advantage of  being able to find the global 
optimum point of  optimization problems, but 
the computaion cost is  very huge because of the 
wide searching space of practical aerodynamic 
problems, hence the applications of this kind of 
methods in aerodunamic problemes are   limited. 

In recent years, optimization methods 
using approximation models gained more and 
more attention because of their high efficiency 
and utility. These methods use the approximate 
models to replace the complex and time 
consuming experiments or numerical simulation 
of the opitimization problems. For problems of 
aerodynamic optimization based on Reynolds 
Averaged Navier-Stokes (RANS)  Solver,  the 
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biggest advantage of this kind of method is that 
the number of the flow solver calling can be 
greatly decreased via using approximate models. 
The approximate models which are usually used 
are response surface model, Kriging model, and 
radial basis function model and so on. 
Nowadays these models have been broadly 
investigated. Because of the high nonlinearity of 
aerodynamic optimization problem, the 
precision of the final optimal results greatly rely 
on the  accuracy of the approximate models. In 
recent yeas, Kriging model has been widely 
used in aerodynamic optimization design due to 
its ability to approximate highly nonlinear or 
multi-extremum problems. Many investigations 
in aerodynamic optimization design using 
Kriging model have been studied: Shinkyu J 
etc[1] developed an aerodynamic optimization 
design method combining the Kriging model 
and genetic algorithm, which was applied to a 
two-dimensional airfoil design and the 
prediction of flap’s  position in a multi-element 
airfoil; Mashiro K etc[2] used the Kriging 
model in multi-objective optimization design on 
the elements’ settings of the high-lift airfoil; M 
Sekishiro etc[6] proposed an expected 
improvement (EI)-based method and obtained 
good results in searching the extremums of 
some testing functions, in this method, the 
sample points derived from EI and optimization 
algorithm are both added to the initial sample 
points, then a new model is reconstructed to 
improve the precision of the Kriging model. In 
this paper this method is applied to aerodynamic 
optimization design of airfoils, after particular 
investigation of the precision of the Kriging 
model, an improved Kriging-model-based 
optimization design frame which is combined 
with the Latin hypercube sampling (LHS), 
Kriging model and optimization method is 
developed. A one-dimensional function and an 
aerodynamic problem are tested to validate the 
fitting accuracy of the improved Kriging model, 
the results show the developed Kriging model 
fit the problems well. By using the RANS  
Solver as the tool of evaluation sample airfoils’ 
aerodynamic pefermance, a drag reduction 
optimization design of RAE2822 airfoil is 
carried out for examining the validity and 
efficiency of present method. 

2  Latin hypercube sampling[5] 

Before constructing the Kriging model, a 
certain amount of sample points should be 
selected in the design space by certain method 
of design of experiments (DOE). The methods 
of DOE which have been usually used are 
orthogonal arrays, uniform design method and 
Latin Hypercube Sampling (LHS) etc. LHS, 
which is a popular modern space-filling method 
and has been widely utilized, is used to select 
the sample points in this paper.  

The distribution of the sample points using 
LHS method for two variables (n=2) is shown in 
the figure 1. Here the range of the variables is [-
1, 1], the number of sample points is k. The 
design space shown in figure 1 is divided into 

 bins (k is the number of sample points, n is 
the number of variables), and each sample 
locates in the center of a bin, for all one-
dimensional projections of the k samples and 
bins, there will be one and only one sample in 
each bin, this fully satisfy the criterion of LHS. 
This also demonstrates that LHS adopted in this 
paper is correct and can describe the physical 
feature of design space. 

nk

 
                                  n=2    k=40 

Fig. 1. The distribution of sample points using LHS method 
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3 Kriging model  

The Kriging model expresses the relation 
between response of the system and variables as  

( ) ( ) ( )y x f x z x 
  

                  (1) 

Where  is the unknown Kriging model, ( )y x

( )f x  is the known function dependent on x , it 
provides a global model.  is stochastic 
process, whose average is zero but variance is 
not,  representing the local deviation from the 
global model. The covariance of z x

( )z x

( )


 is 
expressed as 

( ), ( )i jCov Z x Z x   
  2 R ( , )i jR x x  

 
    (2) 

where R denotes the correlation matrix, 
( , )i jR x x 

 expresses the correlation function 
between any two sample points ix and jx . 
There are a number of correlation functions, 
such as exponential function, Gaussian function 
and spline function. The Gaussian function was 
applied in this paper, which is expressed as  

2

1

( , ) exp[ ]
n

i j i j
k k k

k
R x x x x



   
     (3) 

where ( 1,... )k k n   denotes the unknown 
correlation parameters, i

kx  and j
kx are the kth 

components of ix and jx respectively. A 
constant global model is denoted, then 
equation (1) becomes  

( ) ( )y x z x 
 

         (4) 
The predictor of the approximate model 

could be written as 
1ˆˆ( ) ( ) ( )T

sy x r x Y f ˆ   R
  

   (5) 

Where sY  is the response matrix of samples, f


 
is a column vector whose elements are all 1, R 
denotes the correlation matrix 

1 1 1

1

( , ) ( , )

( , ) ( , )

n

n n

R x x R x x

nR x x R x x

 
 

  
 
 

R

   
  
   

    (6) 

( )r x   denotes the correlation vector between the 
sample point and the predicting point, which is 

1 2( ) [ ( , ), ( , ),... ( , )]n Tr x R x x R x x R x x
       

 

The unknown constant   in Eq.(4) can be 
obtained using the least square method 

1 1 1ˆ ( )T T
sf f f Y    R R

  
             (7) 

The variance can be obtained as follows: 
1

2
ˆ ˆ( ) (

ˆ
T

s sY f Y f
N

) 
 


R

 
            (8) 

The parameter 


 in Eq.(3) can be 
estimated by maximizing the following 
maximum likelihood function 

2ˆln( ) ln
( )  ( 0)

2

N
MaxF


 


  

R
     (9) 

For each 

, we can got an interpolation 

model, the final Kriging model is obtained 
through finding the optimum 


 at which the 

likelihood function is maximum. 
The accuracy of the predictor ˆ( )y x  

depends on the distance from the prediction 
point x  to the sample points, the closer point x  
to the sample points, the less error of ŷ x( )


 is. 

The root mean square error (RMSE) is 
expressed as follow: 

1 2
2 2 1

1

(1 1 )
ˆ( ) 1

1 1

T
T

T

r
s s x r r







   

 
 
 

R
R

R

 
          (10) 

4  EI method--- for improving the accuracy 
of kriging model 

As mentioned in the reference [1], though 
the Kriging model is constructed, there is the 
possibility of missing the global optimum in the 
searching space if we rely only on the Kriging 
model in the process of optimization design, 
because the model itself includes uncertainty at 
the prediction point. This will bring great error 
if the model is not accurate enough, hence we 
apply the EI method mentioned in the reference 
[1] and [6] to improve the accuracy of the model. 
For minimization problems, EI is computed as 
follows 

min min
min

ˆ ˆ
ˆ[ ( )] ( ) ( ) ( )

f y fE I x f y s
s s

 
   

y
 

Where is the minimum true objective 
function value we found, y is the Kriging 
prediction at 

minf
ˆ

x , s  is the RMSE of the Kriging 
model,   and   are the standard normal 
distribution function and normal probability 
density function respectively. The predicting 
accuracy of the Kriging model can be improved 
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efficiently by adding the point with maximum 
EI value to the sample points. 

5 Accuracy validation 

Once the sample points are selected by 
LHS method, we can gain the objective value of 
the sample points using the true function, then 
the optimum parameters can be obtained by 
certain optimization algorithm, ultimately, the 
final Kriging model can be obtained. Figure 2 
shows the flowchart of constructing the Kriging 
model. To test the accuracy of the model, a one-
dimensional function is utilized for illustration. 
Furthermore, an aerodynamic problem is tested 
to validate the developed kriging model’s fitting 
accuracy. 

 

 
Fig. 2. The flowchart of constructing Kriging model 

5.1 Function testing 

Figure 3 shows the fitting result of Kriging 
model for one-dimensional function 
( ( ) sin( )xf x e x  ). The Kriging prediction, 
true function, sample points and RMSE of the 
prediction points is given for the number of 
sample points N equals 6 and 10 respectively. It 
demonstrates that if the sample points are few 
(N=6), the approximate model differs clearly 
from the true function, while the approximation 
model coincides with the true function quite 
well if the sample points increase to 10. This 

means the accuracy of Kriging model is related 
greatly to the number of samples, that is, the 
more samples there are, the more accurate the 
Kriging model is. This can be seen from the 
RMSE curve likewise. When the sample points 
are few (N=6), the RMSE at each prediction 
point is large. We observe that the RMSE at 
each sample point is zero, just because the 
Kriging model is the interpolating model, the 
model passes each sample point precisely. 
When the number of sample points increases to 
10, RMSE at each prediction point approaches 
zero, this suggests the Kriging model is quite 
coincident with the true function, so the 
approximate model is quite accurate. 
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Computing the value of 
sample points utilizing 

the true function 
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parmeter (a)  N=6 
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Outputting model 

(b) N=10 

Fig. 3. Schematics of fitting function using Kriging model 

Figure 4 shows the process of fitting 
function using Kriging model after bringing in 
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EI method ( ( ) sin( )xf x e x  ). Five samples are 
selected initially, we see that the Kriging model 
differs greatly from the true function, RMSE is 
large except at the sample points. However, the 
error of the model could be decreased rapidly 
through adding a point (the point added can be 
seen in figure 4(b)) with the maximum EI value , 
the RMSE is decreased correspondingly, and the 
accuracy of the Kriging model is increased 
greatly. With the increase of the sample number, 
the fitting accuracy of the model is increased 
correspondingly. When the convergences 
criterion is achieved, the number of samples  
reaches 8 (3 samples added, in figure 4(c)), the 
Kriging model is almost identical with the true 
function, the RMSE everywhere approaches 
zero. These illustrate that the model completely 
satisfies the accuracy requirement. From the 
results we can conclude: by using the EI-added 
Kriging model, that is, adding the point at which 
the EI value is maximum  to the former sample 
points, then reconstructing a new approximate 
model, we can improve the accuracy of the 
model remarkably. 
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(c)  N=8 

Fig. 4. The process of constructing Kriging model by 

bringing in EI method 

5.2 Aerodynamic problem testing 

To validate the predicting power of the 
Kriging model for aerodynamic problem, an 
aerodynamic problem is tested. We utilize the 
RAE2822 airfoil as baseline airfoil, and the 
Hicks-Henne shape function is adopted to 
describe the airfoils’ geometry perturbation. 
Firstly, initial samples are selected (N=100) by 
LHS method, then Kriging model is constructed 
as before, finally another 50 sample points are 
selected randomly, and the aerodynamic 
performance of the airfoil is calculated at each 
sample point with Kriging model and the RANS 
Solver (the true value) respectively. The 
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computing results of lift coefficient, drag 
coefficient and moment coefficient are 
compared in figure 5 (a)-(c). 

In figure 5 (a)-(c), the solid line denotes 
that the true values are equal to the predicting 
values, while the points denote predicting values 
and the true values, the nearer the point to the 
solid line, the smaller  the prediction error is. 
Figure 5 (a)-(c) show that the lift coefficient, 
drag coefficient and moment coefficient at most 
sample points predicted by Kriging model 
coincide well with the results got by RANS 
Solver except for some rare points. The 
effectivness of  the constructed Kriging model 
for aerodynamic problem is validated. 
Furthermore, we find that the points with large 
error in the figure 5(a)-(c) are far from the 
optimum point, so they almost won’t affect the 
final results of optimization. Consequently, we 
can conclude that the Kriging model can replace 
the high fidelity CFD analysis solver to 
accomplish the process of aerodynamic 
optimization design.  
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(a)  Lift coefficient 
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(c)  Moment coefficient 

Fig. 5. Comparison of lift coefficient, drag coefficient, 

moment coefficient computing from RANS Solver and 

Kriging model in every sample point 

6  Airfoil optimization design 

6.1 Framework of Improved Kriging- based 
optimization design algorithm 

The process of the Kriging-model-based 
optimization design method is described as 
follows: firstly a number of sample points are 
generated by method of design of experiments, 
then the response value at each sample is 
obtained and the Kriging model is constructed, 
finally optimization method is used to search the 
optimum solution. In the searching process, the 
Kriging model is utilized to calculate the 
objective function value until the global 
optimum is obtained. In this paper, the EI 
method is added to the initial Kriging based 
optimization design algorithm. According to the 
reference [6], the optimum point obtained by 
optimization algorithm is also added to the 
initial sample points, hence two points are 
added at a time, then the Kriging model is 
reconstructed. Figure 6 shows the framework of 
the improved Kriging-model-based optimization 
design algorithm. 
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Fig. 6. Framework of the improved Kriging-model-based 
optimization design algorithm. 

6.2  Drag reduction optimization design of 
RAE2822 airfoil 

The Hicks-Henne shape function is 
adopted to describe the airfoils’ geometry 
perturbation. 10 design variables are chosen 
with  5 for upper surface and 5 for lower surface 
of airfoil respectively.  100 initial sample points 
are selected. The aerodynamic performance of 
sample airfoils are evaluated by RANS Solver. 
For the solution of RANS euquations, the 
central scheme for spatial discretization and a 
fully implicit time-stepping method are utilized; 
for turbulence simulation B-L turbulence model 
is used. Schematics of computational grid of C 
type for RAE2822 airfoil is showed in the figure 
7. The genetic algorithm is applied to searching 
the optimum point.  

 

Start 

Constructing
Kriging model

Fig. 7. Schematics of computational grid for RAE2822 
airfoil(grid cell：344×96) 

The above mentioned improved Kriging-
model-based optimization design technique is 
applied to the drag reduction optimization 
design for the airfoil. The test problem is 
minimizing the drag coefficient of an airfoil, at 
an angle of attack 2.7 , 0.73 freestream Mach 
number and 6.5 Reynolds number. The 
constraints are airfoil’s cross-section area and 
lift coefficient, the baseline airfoil is RAE2822. 
In mathematical form the constraints can be 
expressed as follows: 


610

Constraints:    (1) 
0

0.995 0
A
A

   

                       (2) 
0

1.0l

l

C
C

  

Figure 8 and figure 9 show the comparison 
of pressure and geometry between the optimal 
and baseline airfoil. It can be seen that the 
surface pressure distribution of the optimal 
airfoil is smooth, and shock wave is completely 
eliminated, the drag coefficient is greatly 
decreased, that is, aerodynamic performance of 
the airfoil improved greatly. Table 1 gives lift 
coefficient, drag coefficient, moment coefficient 
and cross-section area for baseline airfoil and 
optimal airfoil. After the optimization design, 
the drag coefficient is decreased from 0.018767 
to 0.012447, i.e. decreased by 33.6%, while the 
lift coefficient changes less than 1% and the 

Optimizing the 
problem using 
genetic algorithm

Calculating the objective 
function value for two points 

End 

Adding 
new point 
to data 
N=N+2

Producing a number of 
sample points 

Searching  the 
maximum EI point 
in the data 

Converge? 
No 

Yes
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cross-section area of the optimal airfoil is 
almost the same as the baseline airfoil. 

When the number of EI cycle reachs nine 
in the airfoil optimization process, the 
convergence criterion is achieved, the number 
of samples increases from 100 to 118. The 
surface pressure coefficients of the airfoil in 
different EI cycle are showed in figure 10. The 
shock wave on the upper surface of the airfoil 
weakens gradually with EI cycle increasing, and 
the optimization result is improved gradually. 
Figure 11 shows the change of fitting error of 
Kriging model on EI cycle. It indicates that the 
accuracy of the Kriging model improved largely 
with more and more samples added to the 
sample set, the fitting error is decreased from 
10.6% to 0.094%. 
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Fig. 8. Comparison of pressure distribution between the 
optimal and initial airfoil 
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Fig. 9. Comparison of geometry between the optimal and 

baseline airfoil  

Table 1 Optimization results of Kriging model 

Parameters 
Basis 
airfoil 

Optimum 
airfoil 

(Kriging) 

Optimum 
airfoil (N-S) 

Change Error 

lC


 0.8650 0.8564 0.8573 0.00088 0.1% 
2( 10 )dC 

C

 1.8767 1.2447 1.2459 0.00117 0.094%

m

A 

 -0.10126 -0.09340 -0.09354 -0.00015 0.16% 

0.077723 0.077989  0.000266  
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 Fig. 10. Comparison of pressure distribution in different 

EI cycle 
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Fig. 11. The change of fitting error of Kriging model on 

EI cycle 

7  Conclusion 

 With the combination of Latin hypercube 
sampling, improved Kriging model and genetic 
optimization algorithm,  an improved Kriging-
model-based optimization design method is 
developed. Once the initial samples are formed 
by Latin hypercube sampling, by 
simultaneously adding the sample point with 
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maximum EI (Expected Improvement) and  the 
optimal point from the optimization of initial 
samples, the improved Kriging-model of higher 
accuracy can be formed gradually, and the final 
optimization of given objective  can be  realized 
with several cycle of addition of the sample 
point with maximum EI and optimum point of 
the former samples.  

The fitting accuracy of the improved 
Kriging model is validated through the tests of  
a one-dimensional function and an aerodynamic 
problem, which shows that the improved 
Kriging model can replace the high fidelity CFD 
analysis solver to accomplish the process of 
aerodynamic optimization design.  

The results of drag reduction optimization 
design of RAE2822 airfoil indicate that the 
fitting accuracy of Kriging model can be 
gradually improved by the method developed in 
this paper, and aerodynamic performance of the 
final optimum airfoil can be improved greatly, 
which shows that the method developed in this 
paper can be applied to aerodynamic 
optimization design. 
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