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Abstract  

Fatigue durability and inspection planning have 
long been important issues in the design and 
scheduled inspection of the aero-engines. 
Usually, the turbine disk acting as one of the 
most important structures of the aero-engine 
has to be designed for a finite life with an 
accepted probability of failure based on the S-N 
approach. Hence, cracks may propagate and 
become critical during the predicted “safe-life”, 
unless discovered in time and repaired. The 
crack growth life of turbine disks at elevated 
temperatures is governed by the modes of 
degradation and failure including low cycle 
fatigue (LCF) failure and creep failure. 
Meanwhile, uncertainties related to the 
operating environment (speed, temperature, etc.) 
as well as in the structural properties (material 
properties, geometries, boundary conditions 
etc.), can result in considerable statistical 
scatter in the turbine disk life. The need for 
cost-effective designs has resulted in the 
development of probabilistic analysis to 
quantify the effects of these uncertainties to 
improve the components’ reliability. Thus the 
purpose of this paper is to carry out a 
probabilistic analysis on crack growth life of 
turbine disk under LCF-creep based on 
experimental results. 

First, an experimental system to achieve 
real-time fatigue-creep crack growth(FCCG) 
detection at high temperature is established by 
introducing a long-distance microscope with 
high magnification and resolution from 
distances of 15cm to 35cm. This setup consists 
of a dynamic testing machine, a machine 

controller, a temperature controlled box, a 
long-distance microscope and a high 
temperature furnace from room temperature to 
1000 .℃   

Then the FCCG rate tests on 30 compact 
tension (CT) specimens made of GH4133B 
material at 600  are carried out. T℃ he tests are 
conducted on a 100KN capacity servo-hydraulic 
closed-loop machine employed trapezoidal load 
with hold time at upon peak load. Experiments 
on the fatigue crack growth have shown great 
dispersancy. The deterministic model for FCCG 
rate fitted by SINH model, which considers the 
parameters including temperature, hold time is 
established through experimental data. And the 
stochastic FCCG model for GH4133B is 
proposed and the probability of random time to 
reach a specified crack size can be obtained as 
well as the distribution function of crack size at 
the service time. Through comparison between 
the analytical and experimental results, it’s 
found that the probabilistic FCCG model can fit 
the experimental data well. Once the stochastic 
FCCG model is established, it can be used for 
the probabilistic damage tolerance analysis and 
design of the turbine components made of 
GH4133B material. 

At last, considering random characteristics 
of material parameters and load including 
rotational speed and temperature, a failure 
function is established based on the stochastic 
FCCG model. Then the centroidal Voronoi 
tessellation (CVT) sampling is used to improve 
the efficiency. The probabilistic methods of 
response simulation and Monte Carlo method 
are employed to carry out the probabilistic 
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analysis on crack growth life of turbine disk 
under fatigue-creep. 

1 Introduction  
The turbine disk is one of the most vital 
components of modern aero-engines. The 
typical loading spectrum experienced by an 
engine disk is characterized by low-frequency 
stress cycling resulting primarily from 
centrifugal forces, superposing dwell at peak 
load at high temperatures during aircraft’s 
taking off and climbing. Crack growth can be 
significant problem in the design of turbine disk 
under LCF-creep. In turbine disks, nickel-base 
superalloys are widely used at high temperature 
in order to improve engine performances. For 
certain severe applications, superalloys are 
manufactured using powder metallurgy 
processes so as to obtain a superior mechanical 
property. However, considerable scatter in crack 
growth behavior usually is apparent even under 
carefully controlled experimental conditions due 
to material uncertainty and other unknown 
factors. As a result, probabilistic methods for 
the fatigue crack growth have received great 
attention in recent years. Many research projects 
[1-11] have investigated the stochastic fatigue 
crack growth models to depict the scattering of 
the crack growth process. Furthermore, there 
rarely is any degree of certainty regarding the 
load cycles and environment (e.g. corrosive 
environment) in field situations especially in the 
turbine disk. Uncertainties in these factors can 
amplify the scatter in crack growth life. Thus, it 
is necessary to perform probabilistic analysis on 
the crack growth life of turbine disk by 
considering the uncertainties related to material 
properties and loads so as to provide a 
quantitative description of the uncertainty in 
fatigue damage growth.  

2 Experiments on Fatigue-Creep Crack 
Growth 
To justify the applicability of the probabilistic 
models, fatigue crack growth data are needed. 
However, it is rather time-consuming to perform 
the experiments to obtain a set of statistical 
meaningful fatigue crack growth data. Up to 

now, there are only several data sets available 
for researchers including the ones released by 
Virkler et al.[12], Ghonem et al.[13], Yang et 
al.[14], Wu and Ni[15], Liao and Yang [16]. 
However, most of these studies were devoted to 
the material at room temperature. In contrast, 
the effort attached to the development of 
probabilistic crack growth model under fatigue-
creep conditions remains more limited, due the 
difficulty in establishing crack growth rate 
function considering the creep effect and 
measuring crack size under fatigue-creep. 
Therefore, we carried out the crack growth 
experiments on 30 specimens made of nickel-
base superalloy GH4133B at 600˚C under 
fatigue-creep in our laboratory in order to 
establish a probabilistic fatigue-crack growth 
model of GH4133B considering material 
uncertainty. 

The material investigated in this study is 
GH4133B, a nickel-base superalloy for turbine 
disks. The chemical composition of the alloy is 
given as follows (in wt%):C 0.06, Cr 19-22, Al 
0.75-1.15, Ti 2.3-3.0, Nb 1.3-1.7, Mg 0.001-
0.01, Zr 0.01-0.1, and the balance nickel. The 
applied heat treatment consists of 1080˚C±

10˚C/8h, air cool + 750˚C±10˚C/16h, air cool. 
Fatigue-creep crack growth test following the 
ASTM recommendations [17] were carried out 
on compact tension (CT) specimen cut from the 
turbine disk of a certain aero-engine. The 
dimensions of the specimen shown in Fig.1 are 
40mm wide (counting from the loading line to 
the back face of the specimen) and 5mm thick.  

 
Fig. 1 CT specimen 

The tests were conducted on a 100KN 
capacity servo-hydraulic closed-loop testing 
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system equipped with a heating furnace in load 
control mode and interfaced with an MTS 
controller at 600˚C. Trapezoidal loading 
waveforms were applied with hold time at 
maximum load. For all tests, load rise and fall 
times were 5s and hold time values of 10s were 
used to obtain the fatigue-creep crack growth 
(FCCG) data. All tests are run to fracture. The 
constant amplitude FCCG experiments on 30 
CT specimens were performed. 

2.1 Experimental results 
The experimental FCCG curves under constant 
amplitude loading are shown in Fig.2. It should 
be noted that due to the uncertainty in material 
properties there is a considerable degree of 
scatter of the FCCG behavior. This means that 
both the crack size at a specified load cycle and 
the number of load cycles at a given crack 
length have great statistical dispersion. 
Therefore, it is necessary to perform the 
probabilistic analysis on the FCCG behavior of 
alloy GH4133B. 
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Fig.2 Experimental FCCG curves for GH4133B 
The typical crack growth curve has a 

sigmoidal shape. The curve describing the 
relationship between crack growth rate, da/dN, 
and the stress intensity factor ΔK usually 
roughly divided into three regions. Since Paris 
law can only be used to model regionⅡ, a 
hyperbolic sine model (SINH) [18] is employed 
in this study, which has the advantages to model 
the crack growth rate for a variety range of 
stress intensity factor. Besides this, the 
environmental parameters such as the effect of 
temperature, loading, creep can be incorporated 

in the crack growth model.  The median FCCG 
model for GH4133B at 600˚C is expressed as 

( ) ( )( )1 2 3 4log sinh logda dN C C K C C= ⋅ ⋅ Δ + +      (1) 
where C1=0.5, C2=8.788, C3=-1.888, C4= -2.486 
with the R-squared value is 0.92298, as shown 
in Fig.3. 
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 Fig.3 Median FCCG curve 

2.2 Stochastic FCCG model 
The time-dependent uncertainty in FCCG under 
constant amplitude load cycling is modeled by a 
non-negative stationary random process, 

t
TX Δ reflecting the uncertainty of material at 

fatigue-creep failure referred to Yang’s model 
[11, 13], 

( ) ( )t
Tda dt X t L aΔ=                                               (2) 

where a is the crack size and L(a) is the function 
describing the deterministic FCCG (see  
Equation(1)). Since crack growth increments 
must be non-negative, the noise X(t) generally is 
non-Gaussian, with mean value μX and standard 
deviation σX. To facilitate the analysis of this 
stochastic differential equation, an auxiliary 
zero-mean stationary Gaussian process Δt

TZ , is 
introduced by the transformation,  

( ) log ( )t t
T TZ t X tΔ Δ=                                             (3) 

where the standard deviation can be obtained 
from 

( )2ln 1 V ln10Z Xσ = +                                          (4) 

where VX is the coefficient of variation of X(t). 
Then by the transformation, it satisfies,  

( )2ln10
exp

2
Z

X

σ
μ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
                                   (5) 
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( ) ( )
2

2ln10
exp ln10 1

2
expZ

X Z

σ
σ σ

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
      (6) 

A general auto-covariance function of the 
following form is assumed for the random 
process X(t) based on the correlation stripe  
from the microcosmic observations [19] 

[ ] ( ) 2
1 2 2 1cov ( ), ( ) exp XX t X t t tς σ= − −              (7) 

where ζ-1 indicates the correlation time for X(t). 
When the correlation time ζ-1 approaches to 
zero, it indicates that X(t) is a lognormal white 
noise random process. When ζ-1 approaches to 
infinite, random process X(t) is simplified as a 
lognormal random variable X. 

From Equation (2), it can be gotten that 

( ) ( ) ( )
0 0

a t t
Ta

da X d W t
L a

τ τΔ= =∫ ∫                         (8) 

where random process W(t) is the integration of  
X(t). Thus, the distribution function of crack 
size F(a) at a specified service time t may be 
derived and expressed as 

( ) ( ) ( )( ) [ ( )] [ ( )]a t W t W tF x F y x F t x= =                   (9) 

where 
( )0

( ) ( )
x

a

day x t x
L a

= =∫ , ( )t x is the median 

service time for a crack to growth from initial 
crack size a0 to x. To calculate Equation (9), the 
mean value and standard deviation of W(t) 
should be obtained. From Equation (8), we can 
know 

[ ]
0

( ) ( )
t t

W T XE W t E X d tμ τ τ μΔ⎡ ⎤= = =⎣ ⎦∫         (10) 

( )

[ ]

22

1 2 1 20 0

( )

cov ( ), ( )

W W

t t

E W t

X t X t dt dt

σ μ⎡ ⎤= −⎣ ⎦

= ∫ ∫
                        (11) 

Substituting Equation (7) into Equation 
(11), we have 

( )2 1tX
W e tςσσ ς

ς
−= + −                                 (12) 

( ) ( )2ln102 1
V 1Z

t

W

e t

t
e

ς
σς

ς

− + −
= −             (13) 

where σW is the standard deviation, VW is the 
coefficient of variation of W(t). If we obtain the 
distribution function of W(t), we can solve 
Equation (9) based on the experimental results. 
Thus, various distribution functions which are 
defined in the positive domain, such as Weibull, 

lognormal, gamma, etc., will be investigation 
for approximating that of W(t). Here we assume 
W(t) follows a two-parameters Weibull 
distribution, then the cumulative distribution 
function is expressed  

( ){ }( ) ( ) 1 expW tF x x αβ= − −                       (14) 

where the shape parameter α(t) and the scale 
parameter β(t), function of time, satisfy the 
following expression 

( ) ( )
( )

1/ 2
22 21 1

V 11W
α α

α

⎡ ⎤Γ + −Γ +⎣ ⎦=
Γ +

  (15) 

( )11Wμ β α= Γ +                                         (16) 

where ( )Γ ⋅ is the Gamma function. Then we can 
acquire 

( ){ }( )
( ) ( ) 1 exp ( ) ( ) t

a tF x t x t αβ= − −            (17) 

( ){ }1

( )
( ) 1( ) exp ( ) ( ) t

T aF t t a t αβ= −                (18) 

Fa(t)(x) and FT(a)(t) relate to the correlation 
time ζ-1. In the condition of lognormal white 
noise random process, there is the smallest 
statistical dispersion for crack growth 
accumulation, leading to the most 
unconservative life prediction, whereas the life 
prediction using the lognormal random variable 
always achieves the conservative result. 

2.3 Verification of Gaussian process Z(t) 
The above mentioned universal probabilistic 
fatigue crack growth model employs the zero-
mean Gauss process Z(t), which should be 
verified based on the experimental data. 

Equation (2) can be written as  
( )log ( ) log ( )t

Tda dN Z t L aΔ= +                      (19) 
Rearranging Equation (19) yields 

( )( ) log ( ) log / log ( )t t
T TZ t X t da dN L aΔ Δ= = −   (20) 

where the crack growth rate (da/dN)i (i=1,2,…n. 
n is the total number of the data points) was 
calculated by the seven-point incremental 
polynomial method. Thus the data set Z(t)i can 
be obtained. The goodness-of-fit for Z(t) was 
confirmed with a Kolmogorov-Smirnov (K-S) 
test statistic, as shown in Table1.  
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Table1 One-Sample K-S test for Z(t) 

 
From Table1, it is known that μZ=0, 

σZ=0.11447, the K-S value is 1.274. Asymptotic 
significance of 2-tailed 0.078 is greater than the 
significance level 0.05α = , which demonstrates 
the zero-mean normal distribution for Z(t) is 
acceptable at least a 5% level of significance. 

2.4 Stochastic FCCG distribution 
With the procedure described above, theoretical 
prediction for the distribution of service time to 
reach a given crack size, FT(a)(t), and the 
distribution of crack size at a specified load 
cycle, Fa(t)(x), using the Weibull distribution are 
plotted in Fig.4 and Fig.5, respectively. Three 
different crack size (i.e. a=13.5mm, 14mm and 
15mm) were considered for FT(a)(t), and three 
different service times (i.e. t=200, 300 and 
400cycles) were considered for Fa(t)(x). 

It is demonstrated that the correlations 
between the Weibull approximation and the 
experimental test data are very satisfactory. As a 
conclusion, the Weibull approximation model 
can be used to predict the FCCG under constant 
amplitude cyclic loadings. 
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Fig.4 Number of load cycles distribution to reach the 

specified crack sizes 
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Fig.5 Crack size distribution at a given load cycle 

3 Probabilistic Analysis on Crack Growth 
Life of Turbine Disk 

3.1 Crack growth life prediction of the disk 
A high-pressure (HP) turbine disk of a certain 
kind of engine made of GH4133B, installed in a 
certain type of aero-engine was chosen in this 
work. The two-dimensional FE analysis with 
plane strain conditions was conducted using the 
commercial code ANSYS. The FE model is 
shown in Fig.6. The J-integral technique was 
employed to obtain the stress intensity factor 
(SIF) range, where the initial crack size a0 is set 
as 0.8mm in this study due to the capacity of the 
flaw detection device. 

 
Fig.6 FE mesh and boundary constraint conditions 

With varying the craze size, the 
corresponding SIF range can be obtained by the 
use of J-integral method and the SIF range is 
fitted by a least square method, as plotted in 
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Fig.7. Then the critical crack size acr of 8.4mm 
can be obtained based on the fracture toughness 
of GH4133B. 

 
Fig.7 The curve of K aΔ −  

Fight time of the turbine disk is predicted 
by Larson model obtained through experimental 
data, as shown in Fig.8. The crack growth life 
for the turbine disk is 10181 cycles (7635hours), 
in which a0=0.8mm, acr=8.4mm. 

 
Fig.8 The relationship between flight time to crack size 

3.2 Probabilistic analysis on crack growth life 
of the turbine disk 

The uncertainties related to the operating 
environment as well as in the structural 
properties will result in the scatter of crack 
growth life. We aim to perform the probabilistic 
analysis on the crack growth life of the turbine 
disk mainly considering material properties 
through experimental data and operational load 
as random variables in this study. The 
uncertainty in FCCG of the turbine disk can be 
modeled as follows: 

( ) ( , , )ωΔ Δ= Δ = Δ
T T

t tda dt X f K X f T a          (21) 

where 
T

tX Δ reflects the uncertainty of material at 
fatigue-creep failure, ω is rotational speed, 
ΔT is the temperature difference of the disk-rim 
to disk-center, a is the crack size. Then crack 
growth life is made integrating equation (21) 
over the crack length 

0

1
( , , )ωΔ=

⋅ Δ∫
cr

T

a

ta
N da

X f T a
                         (22) 

The limit state function of the turbine disk under 
LCF-Creep can be defined as: 

( )
( )

cr

0
0 0

0

( )
1

Y
, ,

, , ,

ω

ω

Δ

Δ

= − = −

=

⋅ Δ

Δ

∫
T

T

a

ta

t

g N N Nda
X f T a

F X T N
(23) 

where, Y is a vector of random variables, 
0N  is 

specified crack growth life of the turbine disk. 
The expression that ( )g Y is less than zero 
denotes the failure state, and the probability of 
the turbine disk at failure is: 

( )( )0 0, , ,ωΔ= Δ <
T

t
fp P F X T N                  (24) 

Structural probability of failure or 
reliability can be derived by using analytical or 
simulation methods to solve equation (24).The 
basic Monte Carlo method becomes 
prohibitively expensive and time-consuming to 
achieve high accuracy in estimating a low 
failure probability, especially for complicated 
systems that may need a large amount of 
computational effort for each deterministic 
analysis. Thus, efficient methods CVT 
(centroidal Voronoi tessellation) sampling (See 
[20]) is used to improve the efficiency, where 
the sample set is shown in Table2. Then we 
applied the combination technique of response 
surface (RS) analysis and Monte Carlo 
simulation to perform stochastic analysis on the 
crack growth life, with central composite design 
(CCD) sampling used in RS analysis method 
and CVT sampling method chosen in Monte 
Carlo simulation. The distribution function of 
crack growth life is plotted in Fig.9. Hence, the 
failure probability of crack growth rate at a 
specified value can be quantified, as shown in 
Table3. 
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Table2 CVT sample set and response of crack growth 
life of turbine disk 

 ω (rad/s) ΔT(˚C) X N(cycles)
1 1103.45 281.36 1.6791086898 6088.6 
2 1283.16 301.89 1.6640871789 6065.8 
3 1194.16 282.44 0.6451916867 15772 
4 1317.53 281.54 0.5245821803 19175 
5 1289.59 299.01 0.5351864867 18852 
6 1073.01 281.28 0.5446554268 18793 
7 1099.46 298.82 1.6366715455 6245.9 
8 1285.37 278.01 1.6564734850 60965 
9 1105.95 299.06 0.5502448813 18573 
10 1272.59 290.23 1.6467298803 6138.9 
11 1070.34 279.67 0.5037736321 18316 
12 1317.16 279.76 1.1740189586 11537 
13 1107.63 302.37 1.6833562284 7822.7 
14 1223.89 292.92 1.0922995464 11930 
15 1287.51 302.22 1.6468711334 6161.3 
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Fig.9 The cumulative density function of crack growth 

life for turbine disk 
Table3 Probabilistic results of crack growth life for 

turbine disk 
 50% 

reliability 
99% 

reliability 
99.87% 

reliability 
99.9% 

reliability
life/cycles 14000.1 5639.4 4765.7 4654.6 

4 Conclusion 
The FCCG experiments on GH4133B were 
carried out on 30 CT specimens at 600˚C, where 
the crack size was measured with an optical 
crack tracking device. The prediction for the 
median FCCG curve using Larson model is very 
good in this study, and various stochastic 
models for FCCG under constant amplitude 
loadings have been investigated. These models 
are based on the general assumption that the 
FCCG rate is a lognormal random process with 
a median value of unity.   

The second moment approximation such as 
Weibull approximation has been used to 
demonstrate the validity of stochastic crack 
growth model of GH4133B. Theoretical 
predictions for the distribution of service time to 
reach a given crack size and the distribution of 
crack size at a specified service time correlate 
well using the Weibull approximation. The 
stochastic model for FCCG presented in this 
paper is based on the median crack growth 
curve (see Equation (1)). Therefore, it is 
important to accurately establish the crack 
growth model under the experimental 
conditions. 

In order to predict the turbine disk 
remaining lifetime, the determination of the 
fracture parameters such as SIF and J-integral 
value is a crucial point. Thanks to the 
development of FE techniques, it is now 
accessible by a fracture analysis based on FEM. 
Furthermore, a probabilistic fracture mechanics 
(PFM) model for the stochastic crack growth 
life of the turbine disk is established. Then the 
reliability analysis on the crack growth rate is 
carried out with a combined approach of 
response surface and Monte Carlo simulation 
method. As a result, the distribution function of 
turbine disk crack growth life under LCF-creep 
is determined considering the uncertainties 
including material properties through 
experimental data and operational loads 
including rotational speed and temperature. 
Thus the damage tolerance risk of the turbine 
disk under LCF-creep can be quantified.  

The results are of importance for the 
assessment of life extension of disks in the 
respect that an inspection schedule can be 
derived from the calculated failure probabilities. 
The proposed method will give results on the 
impact of a proposed schedule on the reliability. 
However, it is noted that the initial crack size is 
treated as a deterministic value in this study. 
Although the careful pre-cracking experiment is 
conducted, there is statistical scatter of the 
initial crack size. Therefore, the random 
distribution of the initial crack size should be 
studied. 
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