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Abstract

Developed at Technische Universität München,
the small disturbance Navier-Stokes method
FLM-SD.NS has been substantiated as both an
efficient and accurate means for providing un-
steady air loads to the transonic aeroelastic anal-
ysis process. In an effort to extend its range
of applicability, a dynamically linear instance
of the Willcox k-ω eddy-viscosity closure is in-
corporated, complementing the original Spalart-
Allmaras option. Harmonic pitching oscillations
of a generic high-aspect-ratio wing are investi-
gated. For the attached-flow cases, the k-ω in-
carnation of FLM-SD.NS delivers equally ac-
curate predictions as the Spalart-Allmaras orig-
inal. Reductions in computation time, up to half
an order of magnitude, in relation to the com-
parative time-domain Reynolds-averaged Navier-
Stokes method FLM-NS are again observed. For
the detached-flow case, the primary benefit of
the Wilcox k-ω eddy-viscosity closure is wit-
nessed in the FLM-NS-supplied time-invariant
mean solution about which FLM-SD.NS com-
putes the dynamically linear perturbation: At lo-
calities of flow detachment, the supersonic-flow-
terminating shock is rendered distinctly closer
to the measured physical position than for the
Spalart-Allmaras instance. Limitations of the
small disturbance approach, however, become
apparent for both incarnations, as a substantial
degree of nonlinear interaction physically exists.

∗ Dipl.-Ing. (Univ.), Research Engineer
† Prof. em. Dr.-Ing.

Nomenclature

A = semispan planform area,R s
0 cdy

AR = semispan aspect ratio, s2/A
c = local chord length, c(y/s)
c f = skin friction coefficient
cL = lift coefficient,

dimensional lift normalized
with ρ̌∞|v̌∞|2Ǎ/2

cM = moment coefficient,
dimensional moment
respective to the pitch axis
normalized with
ρ̌∞|v̌∞|2Ǎčµ/2
(greater than 0: tail-heavy
moment / pitch up)

cp = pressure coefficient
cp,crit = critical pressure coefficient,

cp(Ma∞) at Ma = 1.0
cr = root chord length, c(0)
ct = tip chord length, c(1)
cµ = reference chord length,R s

0 c2 dy/A
Dk,Dω = k-, ω-destruction term
d+ = sublayer-scaled distance of

the first offbody grid plane
Evψ = generalized viscous

flux vector
Eψ = generalized convective

flux vector
e = specific total energy
F,G,H = convective flux vector

in ξ, η, ζ direction;
respectively, Eξ, Eη, Eζ
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Fv,Gv,Hv = viscous flux vector
in ξ, η, ζ direction;
respectively, Evξ, Evη, Evζ

f = oscillation frequency
H = total enthalpy per unit

volume, ρe + p
Im = imaginary part
i = imaginary unit
J = determinant of the Cartesian-

-to-curvilinear-coordinate
transformation’s Jacobian

Jψx,Jψy, = generalized metrics of the
Jψz,Jψt Cartesian-to-curvilinear-

coordinate transformation
Kψ = Jacobian matrix of Eψ
k = specific turbulence kinetic

energy
k̆ = angular frequency,

√γMa∞kred
kred = reduced oscillation frequency,

2π f̌ Ľ
√

ρ̌∞/(Ma∞
√

γp̌∞)
L = reference length

of the geometric
nondimensionalization

Ma = local Mach number
Ma∞ = freestream Mach number,

|v̌∞|
√

ρ̌∞/
√

γp̌∞
Pk,Pω = k-, ω-production term
p = static pressure
p∞ = freestream static pressure
Pr = Prandtl number
Prt = turbulent Prandtl number
Q = conservative state vector

in the ξηζ system
q = conservative state vector

in the Cartesian coordinate
system

qx,qy,qz = components of the Cartesian
heat-flux vector

Re = real part
Re∞ = freestream Reynolds number,

ρ̌∞|v̌∞|čr/µ̌∞
S = Sutherland constant
s = semispan length
T = static temperature
T∞ = freestream static temperature
T = turbulent source term vector
t = time

tmethod
CPU = Institute for Fluid Mechanics

method computation time
u,v,w = velocity in x, y, z direction
|v∞| = magnitude of the freestream

velocity vector
x,y,z = global Cartesian coordinates
x = span-station-local chordwise

coordinate, x(y/s)
(0: leading edge,
c: trailing edge)

xp,zp = global pitch axis coordinates
y = semispan coordinate

(0: root, s: tip)
α = incidence angle
γ = ratio of specific heats
∆ = difference between lower-

and upper-surface values,
∆(x/c); for example,
∆cp = cp,lower− cp,upper

ζCPU = ratio of Institute for Fluid
Mechanics method comp-
putation times, ťSD.NS

CPU / ťNS
CPU

ϕ̌χ̂ = phase angle of χ̂, deg
λ = taper ratio, ct/cr
µ = molecular viscosity
µ∞ = freestream molecular

viscosity, µ(T∞)
µt = eddy viscosity
ξ,η,ζ = curvilinear coordinates
Πx,Πy,Πz = Cartesian energy-fluxes
ρ = density
ρ∞ = freestream density
θψ = generalized contravariant

velocity multiplied by J
τ = time in the ξηζ system, t
τs = characteristic time,

ť Ma∞
√

γp̌∞/(Ľ
√

ρ̌∞)
τxx,τyy,τzz = diagonal components of the

Cartesian shear-stress tensor
τxy,τxz,τyx = off-diagonal components of
τyz,τzx,τzy the Cartesian shear-stress

tensor
τkx,τky,τkz, = shear-stress equivalent
τωx,τωy,τωz k-, ω-terms
τ◦ = pseudo-time
Φ = instantaneous arbitrary

flow quantity
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χ = generalized load coefficient,
χ ∈ {cp, cL, cM}

|χ̂| = magnitude of χ̂,√
(Re χ̂)2 + (Im χ̂)2

ψ = generalized curvilinear
coordinate, ψ ∈ {ξ, η, ζ}

ω = specific dissipation rate

Subscripts

l = laminar
t = turbulent

Superscripts

0 = zeroth harmonic
1 = first harmonic
¯ = time-invariant mean
˜ = periodic perturbation
∗ = linearized with respect

to the perturbation
ˆ = perturbation amplitude
ˇ = dimensional
(1) = homogenous in the

amplitude flow quantities
(2) = homogenous in the

amplitude metrics

1 Introduction

Production analysis of an aircraft’s dynamic
aeroelastic behavior in the transonic speed range
requires a computational fluid dynamics (CFD)
method which can supply the unsteady aero-
dynamic loading efficiently as well as accu-
rately with respect to the effects of compress-
ibility and viscosity [10]. Developed at the for-
mer Aerodynamics Division of the Institute for
Fluid Mechanics (FLM)‡, Technische Univer-
sität München over the past decade, the small
disturbance Navier-Stokes method FLM-SD.NS
can satisfy this need [7]. Also referred to as a
frequency-domain time-linearized Navier-Stokes
method, it solves a system of statistically treated
linear partial differential equations exclusively
governing the complex amplitude of a harmonic

‡reconstituted as the Institute of Aerodynamics in 12/04

perturbation about a time-invariant mean flow-
field state in pseudotime. The necessary com-
putational effort becomes comparable to the one
involved with the steady-state solution of the
Reynolds-averaged Navier-Stokes (RANS) equa-
tions, yet now for an unsteady problem. This ap-
proach postulates that a considered body’s minor
harmonic deflections about a reference position
induce a predominantly dynamically linear or-
ganized unsteadiness in the flowfield’s instanta-
neous response: Higher-order harmonics become
negligible to the point where a generally phase-
shifted first harmonic prevails – a valid assump-
tion for most problems of dynamic stability.

Next to the reference (time-invariant mean)
flowfield, the small disturbance Navier-Stokes
solution develops contingent on an a priori
known kred and amplitude surface deflection of
the considered body’s harmonic motion. The lat-
ter is numerically supplied by way of two com-
putational grids. One embeds the considered
body at its reference position, while the other
does so at its deflected extremum position. A
steady-state RANS solution realized in the ref-
erence grid for the specific Ma∞, Re∞, and ˇ̄α
serves as the time-invariant mean flowfield. The
directly obtained complex amplitude load rep-
resents the first-harmonic load, while the afore
computed time-invariant mean load embodies the
zeroth harmonic load.

Pertinent to the otherwise commonly em-
ployed time-domain RANS methods, the com-
putational expense of a time-accurate solution
process and the accompanied incremental grid
deformation, as well as the further reduction
in turnaround time and throughput due to post-
processing Fourier-analysis are no longer an is-
sue with FLM-SD.NS. The accustomed fidelity
of this dynamically fully nonlinear approach,
however, is retained to a high degree. FLM-
SD.NS application readiness has been substanti-
ated through investigations on harmonic oscilla-
tions of both low- and high-aspect-ratio wings,
as well as a rectangular wing/nacelle configu-
ration [8, 3]. Reductions in computation time
up to an order of magnitude, in relation to the
in-house time-domain RANS method FLM-NS
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have been demonstrated. A concurrently devel-
oped small disturbance Navier-Stokes incarna-
tion of the French Aerospace Research Labora-
tory’s elsA multipurpose CFD method [5] ex-
hibits similar advantages over its dynamically
fully nonlinear counterpart.

To date, a small disturbance accordant formu-
lation of the Spalart-Allmaras (S/A) one-equation
turbulence model [11] has been employed in
FLM-SD.NS by default to provide the fully-
accounted µ̂t . This choice has served well in
accurately rendering attached unsteady boundary
layers of high-Reynolds-number transonic flow
and their shock interaction, while also allow-
ing oscillating regions of very localized separa-
tion to be treated. Nevertheless, the S/A turbu-
lence model merely encompasses a single trans-
port equation for a µt-related working variable,
with algebraic auxiliary functions providing the
remaining closure. Consequently, certain re-
strictions on the flowfield’s possible development
are given. For cases where the degree of un-
steadiness, flow separation, and involved length
scales may not be a priori assessable, employing
a model that better represents the physics of tur-
bulence would be favorable. In this regard, the
Wilcox k-ω turbulence model [12] as well as its
later derivatives [6, 9] have seen widespread use
for both steady and unsteady RANS computa-
tions, for example, becoming the standard turbu-
lence model in the DLR-developed FLOWer [4].

In its original incarnation, the Wilcox k-ω tur-
bulence model features two locally coupled par-
tial differential equations – one governing k and
one governing ω, with µt = ρk/ω – sans any al-
gebraic auxiliary functions. They are referred to
as the k-ω transport equation system. No wall
distances need to be supplied, which for complex
configurations becomes computationally expen-
sive otherwise, as known from the S/A turbulence
model’s utilization. Thus, the Wilcox k-ω turbu-
lence model lends itself even more so to a small
disturbance formulation from the outset. Still,
only a single such instance appears to have come
to fruition over the years, although in the field
of turbomachinery: Holmes et al. employ it in
their principle small disturbance Navier-Stokes

computations of compressor cascade’s flutter and
forced response [2]. Their investigations, how-
ever, were limited to the subsonic speed range
with thin attached boundary layers, while a wall
function had been instated to bridge the near-
wall and logarithmic region. For the particular
cases, the need to fully account for µ̂t towards
the lower end of the frequency spectrum is iden-
tified, whereas it suffices to merely consider µ̄t
towards the higher one – the so-called frozen
eddy-viscosity approach. Evidently, the latter is
exclusively favored in elsA’s small disturbance
Navier-Stokes incarnation, as witnessed for both
the initially employed S/A turbulence model [5]
and the recently utilized shear-stress-transport k-
ω-derivative [1].

As pertaining to the external flow problem,
the three-dimensional small disturbance Navier-
Stokes equations incorporating a dynamically
linear formulation of the original Wilcox k-ω tur-
bulence model are subsequently presented. The
resultant FLM-SD.NS extension considers the
full integration of the transport equations towards
the wall boundary.

2 Theory

The k-ω transport equation system is consid-
ered to be initially formulated in nondimension-
alized strong-conservation flux-vector form with
respect to phase-averaged flow quantities for a
body-fitted ξηζ system, while accounting for
grid deformation. Individual decomposition of J,
Jψx, Jψy, Jψz, Jψt , and the phase-averaged field
quantities into periodically perturbed and time-
invariant mean instances then renders a transport
equation system in which higher-order perturba-
tion terms abound. Deeming them negligible
under the small disturbance premise, the subse-
quently modified transport equation system can
be separated into two entities. They represent
the Wilcox k-ω turbulence model’s dynamically-
linear perturbed and time-invariant mean state,
that is, throughout the former, terms are either
linear combinations of the perturbed flow quan-
tities with time-invariant mean flow quantities or
J̄, Jψx, Jψy, Jψz, or linear combinations of J̃∗,
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J̃ψx
∗
, J̃ψy

∗
, J̃ψz

∗
, J̃ψt

∗
with the time-invariant

mean flow quantities. Restriction of the consid-
ered body to harmonic motions then allows the
substitutions

J̃∗ := Ĵ∗ eik̆τ ,

Ĵψx := Ĵψx
∗

eik̆τ , Ĵψy := Ĵψy
∗

eik̆τ ,

Ĵψz := Ĵψz
∗

eik̆τ , Ĵψt := Ĵψt
∗

eik̆τ ,

(1)

as well as

Φ̃(ξ,η,ζ,τ) := Φ̂(ξ,η,ζ) eik̆τ , (2)

wherein Φ̂ ∈ �
. As eik̆τ again appears linearily

in all terms of this particular equation system, it
can be eliminated completely, and with it time-
dependency. Ultimately, a transport equation sys-
tem governing both k̂ and ω̂ – and thus also µ̂t – is
obtained, with respect to the unknown amplitudes
of the other perturbed flow quantities. Its time-
invariant mean counterpart, that is, the transport
equation system governing k̄ and ω̄ – and thus
also µ̄t – is simply equal to the steady-state for-
mulation of the Wilcox k-ω tubulence model for
the reference grid. The preceding process con-
forms to the one originally applied to the S/A tur-
bulence model. Described extensively in [7], an
explicit derivation is not presented here. Subse-
quently, ∗ will be dropped in connection with ˆ
as the indicator of linearity, avoiding double no-
tation.

K̄ψ =




0 Jψx Jψy Jψz 0 0 0

Jψxφ̄− ū θ̄ψ θ̄ψ + (1−Γ)Jψxū Jψyū−ΓJψxv̄ Jψzū−ΓJψxw̄ ΓJψx −ΓJψx 0

Jψyφ̄− v̄ θ̄ψ Jψxv̄−ΓJψyū θ̄ψ + (1−Γ)Jψyv̄ Jψzv̄−ΓJψyw̄ ΓJψy −ΓJψy 0

Jψzφ̄− w̄ θ̄ψ Jψxw̄−ΓJψzū Jψyw̄−ΓJψzv̄ θ̄ψ + (1−Γ)Jψzw̄ ΓJψz −ΓJψz 0

(φ̄−ϒ) θ̄ψ ϒJψx−Γθ̄ψū ϒJψy−Γθ̄ψv̄ ϒJψz−Γθ̄ψw̄ γ θ̄ψ −Γθ̄ψ 0

−k̄ θ̄ψ Jψx k̄ Jψy k̄ Jψz k̄ 0 θ̄ψ 0

−ω̄ θ̄ψ Jψx ω̄ Jψy ω̄ Jψz ω̄ 0 0 θ̄ψ




,

θ̄ψ = Jψx ū+ Jψy v̄ + Jψz w̄ , Γ = γ−1 , ϒ = γē− φ̄−Γk̄ , φ̄ = Γ(ū2 + v̄2 + w̄2)/2 , (7)

The k̂-ω̂ transport equation system is incor-
porated into the small disturbance Navier-Stokes
equations as novel sixth and seventh components
of the constituting vectors. Specifically,

∂Q̂(1)

∂τ◦
+

∂(F̂(1)− F̂(1)
v )

∂ξ
+

∂(Ĝ(1)− Ĝ(1)
v )

∂η

+
∂(Ĥ(1)− Ĥ(1)

v )

∂ζ
= Ŝ(1) + Ŝ(2) ,

(3)
where the right hand side is given through

Ŝ(1) = −ik̆Q̂(1) + T̂(1) ,

Ŝ(2) = −
[

ik̆Q̂(2) +
∂(F̂(2)− F̂(2)

v )

∂ξ

+
∂(Ĝ(2)− Ĝ(2)

v )

∂η
+

∂(Ĥ(2)− Ĥ(2)
v )

∂ζ

]

+ T̂(2) .
(4)

The constituting vectors of the left hand side are

Q̂(1) = J̄ q̂ = J̄
(

ρ̂, ρ̂u, ρ̂v, ρ̂w, ρ̂e, ρ̂k, ρ̂ω
)T

, (5)

Ê(1)
ψ =

∂Eψ

∂q

∣∣∣∣
q̄

q̂ = K̄ψ q̂ , (6)

with

5



ALEXANDER PECHLOFF , BORIS LASCHKA

as well as

Ê(1)
vψ =




0

Jψxτ̂xx + Jψyτ̂yx + Jψzτ̂zx

Jψxτ̂xy + Jψyτ̂yy + Jψzτ̂zy

Jψxτ̂xz + Jψyτ̂yz + Jψzτ̂zz

JψxΠ̂x + JψyΠ̂y + JψzΠ̂z

Jψxτ̂kx + Jψyτ̂ky + Jψzτ̂kz

Jψxτ̂ωx + Jψyτ̂ωy + Jψzτ̂ωz




, (8)

and

T̂(1) = J̄
(
0, 0, 0, 0, 0, P̂k + D̂k, P̂ω + D̂ω

)T
. (9)

Correspondingly, the constituting vectors of Ŝ(2)

are

Q̂(2) = Ĵ q̄ = Ĵ
(
ρ̄, ρu, ρv, ρw, ρe, ρk, ρω,

)T
, (10)

Ê(2)
ψ =




ρ̄ θ̂(2)
ψ

ρu θ̂(2)
ψ + Ĵψx p̄

ρv θ̂(2)
ψ + Ĵψy p̄

ρw θ̂(2)
ψ + Ĵψz p̄

H̄ θ̂(2)
ψ − Ĵψt p̄
ρk θ̂(2)

ψ

ρωθ̂(2)
ψ




,

θ̂(2)
ψ = Ĵψxū + Ĵψyv̄ + Ĵψzw̄ + Ĵψt ,

(11)

as well as,

Ê(2)
vψ =




0

Ĵψxτ̄xx + Ĵψyτ̄yx + Ĵψzτ̄zx

Ĵψxτ̄xy + Ĵψyτ̄yy + Ĵψzτ̄zy

Ĵψxτ̄xz + Ĵψyτ̄yz + Ĵψzτ̄zz

ĴψxΠ̄x + ĴψyΠ̄y + ĴψzΠ̄z

Ĵψxτ̄kx + Ĵψyτ̄ky + Ĵψzτ̄kz

Ĵψxτ̄ωx + Ĵψyτ̄ωy + Ĵψzτ̄ωz




, (12)

and

T̂(2) = J̄ (0, 0, 0, 0, 0, P̄k + D̄k, P̄ω + D̄ω)
T
. (13)

All relations needed to complete the preceding
constituting vectors are compiled in Appendix A.
Ultimately,

µ̂t = µ̄t

(
ρ̂
ρ̄

+
k̂
k̄
− ω̂

ω̄

)
(14)

and
µ̄t = cPk

ρ̄k̄
ω̄
, (15)

with

k̂ = (ρ̂k− ρ̂k̄)/ρ̄, k̄ = ρk/ρ̄,

ω̂ = (ρ̂ω− ρ̂ω̄)/ρ̄, ω̄ = ρω/ρ̄,
(16)

are responsible for coupling the primary gov-
erning equations system (vector components one
through five) with those of the k̂-ω̂ transport
equation system – witnessed in the amplitude and
time-invariant mean shear-stress tensor.

The necesary small disturbance formulation
of the Wilcox k-ω turbulence model’s near- and
far-field boundary-condition is straightforward
and thus not provided here.

3 Numerical Method

FLM-SD.NS is a cell-centered structured fi-
nite volume method (multiblock capable) featur-
ing a multigrid-accelerated implicit pseudotime-
integration of the discretized small disturbance
Navier-Stokes equations. Second-order spatial
accuracy is given for smoothly stretched grids
and regions of continuous flow, with the total
variation diminishing condition yet satisfied at lo-
cations of discontinuity. Details on the numerical
properties have been provided in [7, 8, 3]. The
k-ω extension of FLM-SD.NS coexists with the
original S/A instance in the underlying Fortran 90
code, allowing user access to either eddy viscos-
ity closure in a single generated executable – se-
lected case-dependently through an input param-
eter. Discerning the two incarnations, the desig-
nations FLM-SD.NS k-ω and FLM-SD.NS S/A
are introduced.

In the past development of FLM-SD.NS, an
effort had been made to retain numerical equiv-
alence to the in-house RANS method FLM-NS,
which is used, on the one hand, to supply the
necessary time-invariant mean flowfield to FLM-
SD.NS, while on the other hand, it is used to
render a dynamically fully nonlinear solution of
the particular unsteady case for comparative pur-
poses. Therefore, the initial step towards imple-
menting FLM-SD.NS k-ω, was to extend FLM-
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NS with the Wilcox k-ω turbulence model as
well. Corresponding to FLM-SD.NS, the dis-
cerning designations FLM-NS k-ω and FLM-NS
S/A are employed henceforth.

The validity, limitation, and computational
efficiency of FLM-SD.NS k-ω are analyzed in
the following. As commonly utilized, the dy-
namic test cases for the generic high-aspect-ratio
wing of Lockheed-Georgia, the Air Force Flight
Dynamics Laboratory, NASA-Langley, and NLR
[13] (LANNW) – featuring harmonic pitching
oscillations – are best suited for evaluating aero-
dynamic turbulence models under unsteady high-
Reynolds-number transonic flow conditions: The
considered motion is governed by

α̌(kred τs) = ˇ̄α + ˇ̃α(kred τs) with

ˇ̃α(kred τs) := ˇ̂α sin(kred τs)
(17)

about the given pitch axis, with ˇ̄α, ˇ̂α, and kred
set through the individual test case. The local
unsteady load distribution normal to the wing’s
surface, embodied by c̄p, ĉp, as well as the re-
sultant global loading, expressed by c̄L, ĉL and
c̄M, ĉM , are investigated. The latter are directly
gained from the integration of the c̄p, ĉp and c̄ f ,
ĉ f distributions over the wing’s reference posi-
tion surface. If desired, time-dependent cp, cL,
and cM evolutions can be gained by recomposite,
that is,

χ(kred τs)|SD.NS := χ̄+ χ̃(kred τs) with

χ̃(kred τs) = Re χ̂ sin(kred τs)

+ Im χ̂ cos(kred τs) .
(18)

The phase angle of χ̂ is given through

ϕ̌χ̂ =

[
π
2

Im χ̂
|Im χ̂|

(
1− Re χ̂
|Re χ̂ |

)

+ arctan
(

Im χ̂
Re χ̂

)]
180deg /π ,

(19)

with ϕ̌χ̂ > 0 indicating a χ̃ that leads the excita-
tion, and ϕ̌χ̂ < 0 indicating a χ̃ that lags the ex-
citation, respectively, according to Im χ̂ > 0 and
Im χ̂< 0.

In this context, the evaluation of the systemic
energy transfer by c̃M over the course of a sin-
gle period shows that for α̂ > 0 the correspond-
ing free pitching oscillation can be classified as
unstable if ImĉM > 0 or stable if ImĉM < 0. This
conforms, respectively, to a c̃M that either has an
amplifying or a damping effect.

Primarily, prediction quality of FLM-SD.NS
is assessed by comparing its time-invariant mean
and complex amplitude result – the load co-
efficients’ zeroth and first harmonic – to the
one yielding from the Fourier-analyzed FLM-NS
time series of a periodic cycle. The discrete evo-
lution of cL and cM itself arises from the integra-
tion of the cp and c f distributions over the de-
flected wing’s surface after each converged phys-
ical time step. For this purpose, the nomenclature
of the FLM-SD.NS-computed load coefficients is
brought into conformity with that common to the
Fourier-analysis:

χ0
∣∣
SD.NS := χ̄ , χ1

∣∣
SD.NS := χ̂ . (20)

Comparing the results of FLM-SD.NS k-ω
to FLM-NS k-ω, those of FLM-SD.NS S/A and
FLM-NS S/A are additionally drawn upon to in-
vestigate the impact of the chosen turbulence
model. FLM-NS renders the unsteady aero-
dynamic loading with second-order accuracy in
time. Experimental surface pressure data are
also taken into account, as well as a steady-state
FLOWer k-ω solution realized in the reference
grid.

The LANNW’s reference position is defined
with respect to a globally used Cartesian co-
ordinate system. The latter’s origin, however,
does not coincide with the wing’s root leading
edge (LE). The x (chordwise) direction runs pos-
itively toward the trailing edge (TE) and the y
(spanwise) direction runs positively toward the
starboard tip, rendering the designated refer-
ence plane for α̌ [13]. The imposed motion is
strictly longitudinal, that is, occurring about an
axis parallel to the spanwise direction. Conse-
quently, a semispan numerical treatment of the
LANNW suffices, the starboard half being con-
sidered here.
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4 LANN Wing

Devised as the wing of a generic transonic-
transport, the LANNW is characterized by a 27
deg swept LE, a 17 deg swept TE, and a super-
critical section of constant 12% relative thickness
across the span (xd/c ≈ 0.40, round LE, sharp
TE). The tip section exhibits an accrued twist of
−5 deg respective the root section (Fig. 1). In its
semi-span instance (Ľ := š = 1.000 m), the plan-
form is trapezoidal, with s := š/Ľ = 1.0 and cr :=
čr/Ľ = 0.361 supplementing the sweep angles in
the definition. The secondary geometric prop-
erties result to λ = 0.399, A := Ǎ/Ľ2 = 0.253,
AR = 3.953, and cµ := čµ/Ľ = 0.268, while the
pitch axis resides at xp/cr = 0.62 and zp = 0.00.
Surface pressure distributions were evaluated at
six distinct span stations, all corresponding to
those instrumented on the test model. Data for
merely one inner- and one median-span station,
respectively, ys1 := y/s = 0.20 and ys4 = 0.65 will
be compared here.
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x =0.62 c

p

p r

rigid wing
2x(72x36)
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Fig. 1 LANNW semi-span surface grid with su-
perimposed pitch axis and investigated span sta-
tions

The upper and lower surface of the
LANNW’s numerical embodiment are each
discretized with 72 cells (hyperbolically dis-
tributed) in chordwise and 36 cells (equidistantly
distributed, with segments of parabolic distribu-

tion towards root and tip) in spanwise direction,
for a total of 2592 cells per surface. It is em-
bedded (at reference position) in an elliptically
smoothed two-block C-H-topology structured
volume grid by way of a boundary-fitted (ξηζ)
coordinate system. All far-field distances are
set to 3.6× s from the origin of the globally
used Cartesian coordinate system, that is, in
positive chordwise direction, in both positive
and negative vertical (z) direction, as well as in
spanwise direction respective the wing’s lateral
(xz) plane of symmetry. Each block discretizes
approximately one half of the numerically
treated physical domain. The individual block
is associated with strictly one of the wing’s
surfaces, either the upper or lower. It discretizes
the delimited volume with 96 cells in positive
chordwise, 48 cells in spanwise, and 44 cells in
wing surface normal direction, translating into
202,752 cells per block or 405,504 cells for the
entire grid.

The grid per se has been derived from the
LANNW grid employed in the FLM-SD.NS S/A
investigations on high-aspect ratio wing har-
monic oscillations [3] by adjusting scale and
wing-surface-normal cell distribution: In regard
to the former, the original grid had been con-
structed for Ľ := čr = 0.361 m, thus rendering
the semi-span instance of the LANNW with s :=
š/Ľ = 2.77 and cr := čr/Ľ = 1.000. For the
purpose of consistency with the NASA clipped-
delta-wing grid used in [8], however, s = 1.0 was
preferred, that is, all lengths of the original grid
were divided by 2.77. In regard to the later, 40
cells had been hyperbolically distributed, with
the distance of the first offbody grid plane be-
ing set to 1× 10−5 × cr. For the considered
high-Reynolds-number transonic flow this corre-
sponds to a d+ < 5, which had been sufficient
for the S/A turbulence model, yet is not for the
Wilcox k-ω one. Merely splitting each of the
first two offbody cell layers in normal direction,
twice in succession, however, was able to reduce
the distance of the first offbody grid plane to
2.5× 10−6× cr, that is, 9× 10−7× s, rendering
d+ < 1 as required, while retaining the original
grid’s four-level-multigrid capability.
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The LANNW extremum grid is obtained
without employing the accustomed regeneration
of the volume grid and subsequent smoothing:
Taking the reference grid per se, the surface grid
is rotated by ˇ̂α, with all interior grid points of the
block and of the xz-plane-of-symmetry-defining
faces simply rotated in kind. Gained in this
fashion, the global properties of the LANNW
extremum grid naturally concur to those of the
reference grid. In this context, the supplemen-
tal FLM-SD.NS/FLM-NS S/A computations em-
ploy the same reference and extremum grid as the
FLM-SD.NS/FLM-NS k-ω ones in order to retain
spatial comparability.

From the multitude of available dynamic
test cases, results for a leading-edge-shock case
(CT2) and a spanwise-λ-shock case (CT5), both
featuring fully attached flow, as well as a
spanwise-λ-shock case with partially detached
flow (CT9) are presented. Table 1 provides the
computation parameters for each case, with the
dimensional thermodynamic reference quantities
complementing Ľ provided in Table 2. All cases

Case Ma∞ Re∞ ˇ̄α, deg ˇ̂α, deg kred
CT2 0.77 7.1×106 0.60 0.25 0.594
CT5 0.82 7.3×106 0.60 0.25 0.564
CT9 0.82 7.2×106 2.60 0.25 0.560

Table 1 Computation parameters of the LANNW
cases

Case p̌∞, kPa ρ̌∞, kg/m3 Ť∞, K
CT2 100.7 1.308 268.1
CT5 95.6 1.264 263.5
CT9 95.3 1.243 267.1

Table 2 Values of the LANNW cases’ dimen-
sional thermodynamic reference quantities

have f̌ = 24.0 Hz, γ = 1.4, Pr = 0.72 (air), and
Prt = 0.90 in common. Both FLM-SD.NS k-
ω and FLM-SD.NS S/A computations employ a
three-level V-symmetric multigrid cycle for ac-
celeration. Per multigrid cycle dual pseudotime

steps on the finest and coarsest grid level in com-
bination with a single pseudotime step on the in-
termediary level (2/1/2) are conducted. A con-
verged solution of the governing equations is as-
sumed when the following load tolerance crite-
rion is met, terminating the computation: At the
current pseudotime step the relative change of
|ĉL| with respect to each |ĉL| of the 30 prior pseu-
dotime steps must be lower in absolute value than
1×10−5.

For the comparative FLM-NS k-ω computa-
tions three oscillation cycles suffice to achieve
load coefficient periodicity, each discretized with
100 physical time intervals. This is also given
for the FLM-NS S/A computations of cases CT2
and CT5, with CT9, however, requiring 12 oscil-
lation cycles, at equal temporal discretization. In-
cremental grid deformation is carried out through
time-law accordant interpolation and extrapola-
tion between the extremum and reference grid.
Multigrid parameters and abort criterion – now
naturally formulated in terms of cL itself – are
set equal to those of the FLM-SD.NS computa-
tions. All FLM-SD.NS/FLM-NS computations
were conducted on a single 1.6 GHz Intel Itanium
2 processor of the Leibniz-Rechenzentrum Linux
cluster. The methods’ machine code was gener-
ated with the Intel Fortran Compiler for Linux. In
the following, the load coefficients real and imag-
inary parts are normalized with ˇ̂απ/180 deg.

5 Results and Discussion

5.1 Leading-Edge-Shock / Attached-Flow
Case

For Ma∞ = 0.77, Re∞ = 7.1×106, and ˇ̄α = 0.60
deg the FLM-NS supplied time-invariant mean
flowfield exhibits a localized supersonic region
in proximity to the upper wing surface. It ex-
tends from the root to the tip, terminating with
a medium strength shock shortly downstream of
the LE (Fig. 2). For the entire upper surface,
flow remains attached (Fig. 3). Variations be-
tween the k-ω and S/A instances are marginal
for both the sonic isosurface and the upper-
surface isobars. FLM-SD.NS-k-ω-computed sur-
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Fig. 2 Sonic isosurface of the time-invariant mean flowfields, respectively, employed by FLM-SD.NS
k-ω (mirrored) and FLM-SD.NS S/A in the LANNW case CT2 (Ma∞ = 0.77, Re∞ = 7.1×106, ˇ̄α = 0.60
deg, ˇ̂α = 0.25 deg, kred = 0.594, xp/cr = 0.62)
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Fig. 3 Planform upper-surface skin-friction coefficient distribution (flow separation indicated by c̄ f < 0)
with superimposed isobars yielding from the time-invariant mean flowfields, respectively, employed
by FLM-SD.NS k-ω (mirrored) and FLM-SD.NS S/A in the LANNW case CT2 (Ma∞ = 0.77, Re∞ =
7.1×106, ˇ̄α = 0.60 deg, ˇ̂α = 0.25 deg, kred = 0.594, xp/cr = 0.62)
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Fig. 4 Comparison of the zeroth- and first-harmonic pressure coefficient distributions (c0
p and c1

p) for
the LANNW case CT2 (Ma∞ = 0.77, Re∞ = 7.1× 106, ˇ̄α = 0.60 deg, ˇ̂α = 0.25 deg, kred = 0.594,
xp/cr = 0.62)
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face pressure distributions for CT2 are compos-
ited with their FLM-NS k-ω, FLM-SD.NS/FLM-
NS S/A, and experimental counterparts, as well
as the FLOWer k-ω steady result in Fig. 4. For
the investigated span stations, FLM-SD.NS-k-ω-
computed c0

p, Rec1
p, and Imc1

p all agree excel-
lently with those obtained from FLM-NS k-ω.
The conformity between the two methods can be
regarded equal to that between FLM-SD.NS S/A
and FLM-NS S/A. Deviations in c0

p, Rec1
p, and

Imc1
p between the turbulence models per se is

only marginal. Experimental surface pressure is
reproduced well, while FLOWer k-ω confirms the
shock location.

Considering the computed global load coeffi-
cients (Table 3), both c0

L and Rec1
L gained from

FLM-SD.NS k-ω agree excellently to their re-
spective FLM-NS k-ω counterpart. FLOWer k-

FLM-method c0
L Rec1

L Imc1
L

SD.NS k-ω 0.353 6.071 -0.461
NS k-ω 0.355 6.079 -0.431
SD.NS S/A 0.332 5.992 -0.401
NS S/A 0.330 5.910 -0.352

FLM-method c0
M Rec1

M Imc1
M

SD.NS k-ω -0.136 -1.676 -0.214
NS k-ω -0.136 -1.604 -0.260
SD.NS S/A -0.121 -1.652 -0.241
NS S/A -0.121 -1.538 -0.274

Table 3 Comparison of the global load coeffi-
cients for the LANNW case CT2 (Ma∞ = 0.77,
Re∞ = 7.1× 106, ˇ̄α = 0.60 deg, ˇ̂α = 0.25 deg,
kred = 0.594, xp/cr = 0.62)

ω confirms either c0
L-prediction with a value of

0.356. Imc1
L, on the other hand, is rendered 7%

higher in absolute value. This deviation, how-
ever, becomes acceptable when taking the order
of magnitude into account that separates Rec1

L
from Imc1

L. Both computations congruently pre-
dict a time-dependent cL that minimally lags the
excitation (ϕ̌c1

L
≈ −4 deg). FLM-SD.NS-S/A-

computed c0
L is 6% lower than its k-ω counter-

part, a difference accrued through the marginally
narrower lower- and upper-surface sectional c0

p
progression – thus yielding a smaller sectional c0

L
– across the semispan. In contrast, FLM-SD.NS-
S/A-computed Rec1

L can be considered identi-
cal to its k-ω counterpart, attributable to the two
method’s excellent conformity in the prediction
of the Rec1

p-shock-peak. For both c0
L and Rec1

L
the deviation of the S/A methods is just as negli-
gible as that of the k-ω methods before. Compa-
rably, Imc1

L appears to be more susceptible to the
choice of turbulence model, as well as the method
type per se: FLM-SD.NS-S/A-computed Imc1

L is
13% lower in absolute value than its k-ω coun-
terpart. Evidently, the reduced order of the Imc1

p
progression, in conjunction with the significantly
subdued shock peak, allows minor variations in
the two methods’ prediction to become amplified
towards Imc1

L. At 14%, the deviation between
FLM-SD.NS-S/A- and FLM-NS-S/A-computed
Imc1

L is double the one witnessed between the
FLM-SD.NS-k-ω- and FLM-NS-k-ω-computed
instances. Thus, it can be reciprocally argued that
the latter methods would already agree better in
their predicted Imc1

p progressions than is the case
for their S/A counterparts, even if not readily ap-
parent in the sectional comparison. Nevertheless,
the mean of the FLM-SD.NS-S/A- and FLM-NS-
S/A-computed ϕ̌c1

L
can be considered to conform

to its k-ω counterpart.
FLM-SD.NS-k-ω-predicted c0

M equals its
FLM-NS k-ω counterpart, confirmed by FLOWer
k-ω with a predicted value of -0.135. In contrast,
Rec1

M and Imc1
M are, respectively, gained 4%

higher and 18% lower in absolute value. Appar-
ently, the particular deviation exhibited in Rec1

L
and in Imc1

L has followed through to Rec1
M and

Imc1
M, even with amplification. Imc1

M, however,
is observed to be an order of magnitude smaller
than Rec1

M, rendering this circumstance again tol-
erable. For either method Rec1

M and Imc1
M con-

form in their negative sign (pitch down), congru-
ently predicting a time-dependent cM that lags the
excitation by nearly half a cycle (ϕ̌c1

M
≈ −172

deg). In the case of a free pitching oscilla-
tion, cM would consequently have a damping
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effect. FLM-SD.NS-S/A-predicted c0
M is 11%

lower in absolute value than its k-ω counterpart,
with Rec1

M being gained nearly identical. Imc1
M,

on the other hand, is rendered 13% higher in ab-
solute value. Just as the FLM-SD.NS- and FLM-
NS-computed c0

M instances are again equal for
the S/A turbulence model, the two methods’ devi-
ation in their Rec1

M- as well as Imc1
M-prediction

is similar to the one observed between the k-ω
incarnations: FLM-SD.NS-S/A-computed Rec1

M
is gained 7% higher than the FLM-NS-S/A-
computed instance in absolute value, while Imc1

M
is rendered 12% lower, correspondingly. With
respect to the k-ω predictions, the deviation has
increased for the former yet decreased for the lat-
ter, albeit only marginally. The greater sensitiv-
ity of Imc1

L to the choice of turbulence model
and method type has apparently followed through
to Imc1

M. Nevertheless, the mean of the FLM-
SD.NS-S/A- and FLM-NS-S/A-computed ϕ̌c1

M
can be considered to conform to its k-ω counter-
part.

Overall, FLM-SD.NS k-ω renders the un-
steady loading of the LE-shock case in very good
agreement to FLM-NS k-ω. Prediction accuracy
can be considered equal to that of their S/A coun-
terparts.

5.2 Spanwise-λ-Shock / Attached-Flow Case

For Ma∞ = 0.82, Re∞ = 7.3×106, and ˇ̄α = 0.60
deg the FLM-NS supplied time-invariant mean
flowfield exhibits an expanded supersonic region
in proximity to the upper wing surface. It ex-
tends from the root to the tip, terminating with a
medium strength shock substantially downstream
of the LE (Fig. 5). Additionally, a weaker
shock is initiated at the root LE, which even-
tually merges with the former at y/s ≈ 0.45 to
constitute the spanwise-λ-shock system. For the
entire upper surface, flow remains attached (Fig.
6). Variations between the k-ω and S/A instances
have become more notable for both the sonic iso-
surface and the upper-surface isobars, witnessed
especially with respect to the shock that termi-
nates supersonic flow (SSF). FLM-SD.NS-k-ω-
computed surface pressure distributions for CT5

are composited with their FLM-NS k-ω, FLM-
SD.NS/FLM-NS S/A, and experimental counter-
parts, as well as the FLOWer k-ω steady result
in Fig. 7. For the investigated span stations,
FLM-SD.NS-k-ω-computed c0

p, Rec1
p, and Imc1

p
again all agree excellently with those obtained
from FLM-NS k-ω. The conformity between the
two methods can be regarded equal to that be-
tween FLM-SD.NS S/A and FLM-NS S/A. How-
ever, somewhat greater deviations in c0

p, Rec1
p,

and Imc1
p between the turbulence models than

witnessed for CT2 occur: FLM-SD.NS/FLM-NS
S/A predict the SSF-terminating shock position
slightly farther upstream, that is,≈ 4%c as exhib-
ited by c0

p. This circumstance naturally follows
through to the associated Rec1

p- and Imc1
p-peak,

also marginally influencing their magnitude and
shape. Both the experimental surface pressure
- otherwise reproduced well – and FLOWer k-
ω appear to favor the FLM-SD.NS/FLM-NS S/A
prediction over the k-ω one.

Focusing on the computed global coeffi-
cients (Table 4), FLM-SD.NS-k-ω-rendered c0

L
and Rec1

L can be considered equal to their respec-
tive FLM-NS-k-ω-yielding counterpart. FLOWer

FLM-method c0
L Rec1

L Imc1
L

SD.NS k-ω 0.395 7.071 -1.619
NS k-ω 0.397 7.100 -1.644
SD.NS S/A 0.358 6.874 -1.226
NS S/A 0.357 6.811 -1.130

FLM-method c0
M Rec1

M Imc1
M

SD.NS k-ω -0.152 -2.489 0.187
NS k-ω -0.153 -2.473 0.154
SD.NS S/A -0.128 -2.277 -0.080
NS S/A -0.128 -2.181 -0.168

Table 4 Comparison of the global load coeffi-
cients for the LANNW case CT5 (Ma∞ = 0.82,
Re∞ = 7.3× 106, ˇ̄α = 0.60 deg, ˇ̂α = 0.25 deg,
kred = 0.564, xp/cr = 0.62)

k-ω again confirms either c0
L-prediction with a

value of 0.389 – a deviation of merely 2%. With
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Fig. 5 Sonic isosurface of the time-invariant mean flowfields, respectively, employed by FLM-SD.NS
k-ω (mirrored) and FLM-SD.NS S/A in the LANNW case CT5 (Ma∞ = 0.82, Re∞ = 7.3×106, ˇ̄α = 0.60
deg, ˇ̂α = 0.25 deg, kred = 0.564, xp/cr = 0.62)
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Fig. 6 Planform upper-surface skin-friction coefficient distribution (flow separation indicated by c̄ f < 0)
with superimposed isobars yielding from the time-invariant mean flowfields, respectively, employed
by FLM-SD.NS k-ω (mirrored) and FLM-SD.NS S/A in the LANNW case CT5 (Ma∞ = 0.82, Re∞ =
7.3×106, ˇ̄α = 0.60 deg, ˇ̂α = 0.25 deg, kred = 0.564, xp/cr = 0.62)
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Fig. 7 Comparison of the zeroth- and first-harmonic pressure coefficient distributions (c0
p and c1

p) for
the LANNW case CT5 (Ma∞ = 0.82, Re∞ = 7.3× 106, ˇ̄α = 0.60 deg, ˇ̂α = 0.25 deg, kred = 0.564,
xp/cr = 0.62)
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respect to the CT2 case, the spread between
FLM-SD.NS-k-ω- and FLM-NS-k-ω-computed
Imc1

L has narrowed to near congruency of the two
instances. In absolute value, Imc1

L is now only
half an order of magnitude smaller than Rec1

L,
as the prominence of the Imc1

p-peak associated
with the SSF-terminating shock has increased
significantly across the semispan. Consequently,
the time-dependent cL lags the excitation more
distinctly than before (ϕ̌c1

L
≈ −13 deg). FLM-

SD.NS-S/A-computed c0
L is 9% lower than its k-

ω counterpart, a difference accrued through the
slightly farther upstream prediction of the SSF-
terminating shock – thus yielding a smaller sec-
tional c0

L – across the semispan. This circum-
stance puts the sensitivity of the c0

L-prediction
to the employed turbulence model even more
into evidence than before: An apparent, yet
only localized variation, in the upper-surface c0

p-
progression that could be considered marginal
amplifies in the integration of ∆c0

p over the en-
tire wing to a distinct c0

L-difference. In contrast,
FLM-SD.NS-S/A-computed Rec1

L is merely 3%
lower than its k-ω counterpart: Despite the in-
evitable difference in position, the Rec1

p-peak as-
sociated with the SSF-terminating shock is ren-
dered in good conformity with respect to magni-
tude and shape by the two methods. Of course,
the respectively-resultant local ∆Rec1

p contribute
almost equally to the pertinent Rec1

L across the
semispan. For both c0

L and Rec1
L the deviation

of the S/A methods is just as negligible as that
of the k-ω methods before. In comparison to
the CT2 case, Imc1

L presents itself even more
susceptible to the choice of turbulence model,
yet somewhat less to the method type. FLM-
SD.NS-S/A-computed Imc1

L is now 24% lower
in absolute value than its k-ω counterpart, at-
tributable to a notably reduced magnitude of the
Imc1

p-peak associated with the SSF-terminating
shock. At 8%, a distinct deviation between
FLM-SD.NS-S/A- and FLM-NS-S/A-computed
Imc1

L emerges, where one had not between the
FLM-SD.NS-k-ω- and FLM-NS-k-ω-computed
instances. Again, it can be deduced that the lat-
ter methods must already agree better in their

predicted Imc1
p progressions than is the case for

their S/A counterparts. With the mean of the
FLM-SD.NS-S/A- and FLM-NS-S/A-computed
ϕ̌c1

L
being marginally in the negative double-digit

degree range, it can still be considered to conform
to its k-ω counterpart.

FLM-SD.NS-k-ω-predicted c0
M and Rec1

M are
both nearly identical to their respective FLM-
NS k-ω counterpart, FLOWer k-ω confirming c0

M
with a computed value of -0.147 – a deviation
of merely 3%. In contrast, Imc1

M is gained 21%
higher, despite having observed near congruency
of the corresponding Imc1

L instances. Similar to
the CT2 case, Imc1

M emerges an order of mag-
nitude smaller than Rec1

M , making this circum-
stance again tolerable. For either method, how-
ever, Rec1

M and Imc1
M no longer conform in their

sign, the positive Imc1
M (pitch up) now indicating

a time-dependent cM that leads the excitation by
nearly half a cycle (ϕ̌c1

M
≈ 176 deg). In the case

of a free pitching oscillation, cM would conse-
quently have an amplifying effect. FLM-SD.NS-
S/A-predicted c0

M and Rec1
M are, respectively,

gained 16% and 9% lower in absolute value
than their k-ω counterparts, a behavior consis-
tent with the SSF-terminating shock’s farther up-
stream prediction: Across the semispan, the posi-
tive ∆c0

p and ∆Rec1
p of the pertinent shock region

have become less leveraged towards the pitch
axis, resulting in reduced sectional pitch-down
contributions. FLM-SD.NS-S/A-predicted Imc1

M
differs even more substantially to its k-ω coun-
terpart. It is barely half the absolute value, while
exhibiting a negative sign (pitch down): As ob-
served before, the Imc1

p-peak associated with the
SSF-terminating shock has become notably sub-
dued in its farther upstream prediction. Hence,
the pertinent ∆Imc1

p is not only leveraged lesser
towards the pitch axis, but also of lesser negative
value per se. Dually, the sectional pitch-up con-
tribution to Imc1

M is mitigated across the semis-
pan to the point where an overall pitch-down bias
remains. FLM-SD.NS- and FLM-NS-computed
c0

M instances are again equal for the S/A turbu-
lence model, with their Rec1

M-predictions devi-
ating by a mere 4%, a marginal increase from
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the near identity observed between the k-ω in-
carnations. For Imc1

M, on the other hand, the
spread has increased substantially, with the FLM-
SD.NS-S/A-computed absolut value only being
half of its FLM-NS-S/A counterpart. Similar to
the CT2 case, the greater sensitivity of Imc1

L to
the choice of turbulence model and method type
has followed through to Imc1

M. Since both Imc1
M

are still an order of magnitude smaller than their
correspondent Rec1

M , this circumstance is still
tolerable: Both FLM-SD.NS-S/A and FLM-NS-
S/A render a time-dependent cM that lags the ex-
citation by nearly half a cycle (mean ϕ̌c1

M
≈−177

deg). In the case of a free pitching oscillation,
cM would consequently have a damping effect.
At first glance a disparity appears to be given be-
tween the S/A- and k-ω-prediction of the stability
behavior. For either turbulence model, however,
the rendered time-dependent cM may just as well
be perceived as being entirely out of phase, that
is, both conforming in their indication of an in-
different free pitching oscillation.

Overall, FLM-SD.NS k-ω renders the un-
steady loading of the spanwise-λ-shock/attached-
flow case in very good agreement to FLM-NS
k-ω. Prediction accuracy with respect to that
of their S/A counterparts lies within the com-
monly known variation between the two turbu-
lence models.

5.3 Spanwise-λ-Shock / Detached-Flow Case

For Ma∞ = 0.82, Re∞ = 7.2×106, and ˇ̄α = 2.60
deg the FLM-NS supplied time-invariant mean
flowfield exhibits an even more expanded super-
sonic region in proximity to the upper wing sur-
face than observed for CT5. It extends from
the root to the tip, terminating with a shock
that increases spanwise in strength, respectively,
from medium to strong (Fig. 8). The shock
initiated at the root LE now merges farther in-
board with the former, while having decreased
in strength. On the upper surface, flow is no
longer entirely attached (Fig. 9). Variations be-
tween the k-ω and S/A instances have become
very evident for both the sonic isosurface and the
upper-surface isobars, due to a substantially dif-

fering flow topology. Whereas FLM-NS k-ω pre-
dicts a very localized region of flow detachment
downstream of the SSF-terminating shock, the
FLM-NS S/A computation yields an extensive
one, that even defies reattachment towards the
TE: For y/s ≈ 0.65 the SSF-terminating shock
has its farthest upstream position – within 10%c
of the LE. FLM-SD.NS-k-ω-computed surface
pressure distributions for CT9 are composited
with their FLM-NS k-ω, FLM-SD.NS/FLM-NS
S/A, and experimental counterparts, as well as
the FLOWer k-ω steady result in Fig. 10. For
the investigated span stations, FLM-SD.NS-k-ω-
computed c0

p again agrees excellently with the
one obtained from FLM-NS k-ω. With respect to
Rec1

p and Imc1
p, however, substantial deviations

are observed for the peaks associated with the
SSF-terminating shock at the localities of flow
detachment, indicating that the premise of the dy-
namically linear approach may no longer be valid
here. It is known from the experimental data that,
even for a small amplitude of ˇ̂α = 0.25 deg, the
imposed motion on both the shock and the region
of detached flow, as well as their dynamic inter-
action, are sufficient to induce significant higher-
order harmonics within the time-dependent evo-
lution of the upper-surface cp. This can also be
put into evidence by investigating the planform
upper-surface second and third harmonic pres-
sure coefficient distributions gained from FLM-
NS. As discussed in [8], for regions where the
higher-order harmonics are no longer negligible,
the small disturbance method cannot render an
accurate first harmonic prediction. Nevertheless,
conformity between the two methods can be re-
garded similar to that between FLM-SD.NS S/A
and FLM-NS S/A, however, with somewhat less
deviation in the predictions of the Rec1

p- and
Imc1

p-peak associated with the SSF-terminating
shock seen for k-ω. Most importantly, however,
the k-ω turbulence model per se renders the po-
sition of the SSF-terminating shock more closely
to the measured physical position at localities of
flow detachment than the S/A one. The FLOWer
k-ω steady result supports this circumstance.

Regarding the computed global load coeffi-
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Fig. 8 Sonic isosurface of the time-invariant mean flowfields, respectively, employed by FLM-SD.NS
k-ω (mirrored) and FLM-SD.NS S/A in the LANNW case CT9 (Ma∞ = 0.82, Re∞ = 7.2×106, ˇ̄α = 2.60
deg, ˇ̂α = 0.25 deg, kred = 0.564, xp/cr = 0.62)
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Fig. 9 Planform upper-surface skin-friction coefficient distribution (flow separation indicated by c̄ f < 0)
with superimposed isobars yielding from the time-invariant mean flowfields, respectively, employed
by FLM-SD.NS k-ω (mirrored) and FLM-SD.NS S/A in the LANNW case CT9 (Ma∞ = 0.82, Re∞ =
7.2×106, ˇ̄α = 2.60 deg, ˇ̂α = 0.25 deg, kred = 0.564, xp/cr = 0.62)
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cients (Table 5), c0
L gained from FLM-SD.NS k-

ω agrees excellently to its FLM-NS k-ω coun-
terpart. Either c0

L-prediction is again confirmed

FLM-method c0
L Rec1

L Imc1
L

SD.NS k-ω 0.636 5.208 -0.184
NS k-ω 0.638 4.798 0.614
SD.NS S/A 0.484 4.784 1.737
NS S/A 0.490 4.051 2.504

FLM-method c0
M Rec1

M Imc1
M

SD.NS k-ω -0.229 -1.587 -0.421
NS k-ω -0.230 -1.200 -1.083
SD.NS S/A -0.133 -0.917 -2.000
NS S/A -0.134 -0.451 -1.739

Table 5 Comparison of the global load coeffi-
cients for the LANNW case CT9 (Ma∞ = 0.82,
Re∞ = 7.2× 106, ˇ̄α = 2.60 deg, ˇ̂α = 0.25 deg,
kred = 0.560, xp/cr = 0.62)

by FLOWer k-ω with a value of 0.626 – a de-
viation of merely 2%, just as seen for the CT5
case. Where conformity in the FLM-SD.NS-k-ω-
and FLM-NS-k-ω-computed Rec1

L had been es-
tablished for CT5, a spread of 9% between the
two instances is now observed. This circum-
stance can be made attributable to the strongly
differing magnitude prediction of the Rec1

p-peak
associated with the SSF-terminating shock at the
localities of flow detachment. For the corre-
sponding Imc1

p-peak, the magnitude deviation
between the two methods is even more pro-
nounced, especially when taking into account
the otherwise minute value of the upper-/lower-
surface Imc1

p progressions. Similar to the CT2
case, both Imc1

L-predictions are an order of mag-
nitude smaller in absolute value than their Rec1

L
counterparts. FLM-SD.NS-k-ω-computed Imc1

L,
however, exhibits a negative sign, while only
having a third of the FLM-NS-k-ω-computed in-
stance’s absolute value: Integrating over the en-
tire wing, the positive ∆Imc1

p of the pertinent
shock region, has compensated only partially
for the otherwise negative one. Whereas FLM-

SD.NS-k-ω now indicates a time-dependent cL
that again marginally lags the excitation (ϕ̌c1

L
≈

−2 deg), FLM-NS-k-ω renders one that mini-
mally leads (ϕ̌c1

L
≈ 7 deg). For either method,

however, the time-dependent cL may just as well
be perceived as being entirely in phase. FLM-
SD.NS-S/A-computed c0

L is 24% lower than its
k-ω counterpart, a difference accrued through the
substantially farther upstream prediction of the
SSF-terminating shock (≈ 23%c at greatest) for
the localities of flow detachment – thus yield-
ing a significantly smaller sectional c0

L – across
the semispan. In contrast, FLM-SD.NS-S/A-
computed Rec1

L is merely 8% lower than its k-ω
counterpart. Then again, the corresponding Imc1

L
exhibits the greatest turbulence-model-induced
variation of all three test cases, being an order
of magnitude greater in absolute value than the
FLM-SD.NS-k-ω-computed instance, while hav-
ing a positive sign. Primarily, the changes seen in
both Rec1

L and Imc1
L can be, respectively, made

attributable to the k-ω-differing upper-surface
Rec1

p- and Imc1
p-progression for the shock/post-

shock region at localities of flow detachment.
A singular aspect, such as the deviating pre-
diction of the c1

p-peak associated with the SSF-
terminating shock, however, cannot be unam-
biguously picked out. Whereas FLM-SD.NS-
S/A- and FLM-NS-S/A-computed c0

L are practi-
cally identical, the spreads for Rec1

L and Imc1
L

are substantial: 18% and 31%, respectively. Still,
FLM-SD.NS-S/A and FLM-NS-S/A conform in
their indication of a time-dependent cL that dis-
tinctly leads the excitation, contrary to the k-ω
predictions. They strongly differ, however, in
ϕ̌c1

L
, respectively, being ≈ 20 deg and ≈ 32 deg.
FLM-SD.NS-k-ω-predicted c0

M is nearly
identical to its FLM-NS k-ω counterpart. They
are confirmed by the FLOWer k-ω-computed c0

M
of −0.222 value – a deviation of merely 3%, just
as seen for the CT5 case. Once again, where
conformity in the FLM-SD.NS-k-ω- and FLM-
NS k-ω-predicted Rec1

M had been established for
CT5, a spread of 32% between the two instances
is observed. Evidently, the circumstances al-
ready responsible for the difference in computed
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Rec1
L are strongly amplified when leverage to-

wards the pitch axis is accounted for. This is
witnessed even more so in Imc1

M, where in ab-
solute value the FLM-SD.NS-k-ω-computed in-
stance is only a third of its FLM-NS k-ω coun-
terpart. In contrast to both CT2 and CT5, how-
ever, either Imc1

M emerges in the same order of
magnitude as Rec1

M , making such a deviation no
longer tolerable. Even though FLM-SD.NS k-ω
and FLM-NS k-ω conform in their indication of
a time-dependent cM that distinctly lags the exci-
tation, they strongly differ in their prediction of
ϕ̌c1

M
, respectively, ≈ −15 deg and ≈ −42 deg.

In regard to a free pitching oscillation, FLM-
SD.NS k-ω would thus render a substantially
lesser measure of dynamic stability. In abso-
lute value, FLM-SD.NS-S/A-predicted c0

M is now
about half its k-ω counterpart, a behavior again
consistent with the SSF-terminating shock’s far-
ther upstream prediction at the localities of flow
detachment. A similar change can be witnessed
for Rec1

M , whereas FLM-SD.NS-S/A-predicted
Imc1

M has five times the absolute value of its k-
ω counterpart. Notably differing form CT2 and
CT5, the absolute value of Imc1

M has become
twice that of Rec1

M . FLM-SD.NS- and FLM-NS-
computed c0

M instances can again be considered
equal for the S/A turbulence model. In regard
to Rec1

M , the spread between the two methods
has substantially widened, with the FLM-SD.NS-
S/A prediction having twice the absolute value
of its FLM-NS-S/A counterpart. Contrarily, the
15% deviation exhibited by Imc1

M actually repre-
sents an improvement. In analogy to both CT2
and CT5, the greater sensitivity of Imc1

L to the
choice of turbulence model has followed through
to Imc1

M. The same, however, can no longer be
said with respect to the method type, as Rec1

L
now sees its spread more strongly amplified to-
wards Rec1

M . Both FLM-SD.NS S/A and FLM-
NS S/A render a time-dependent cM that lags the
excitation by somewhat more than a quarter cy-
cle: Despite the deviations, they conform surpris-
ingly well in their predicted ϕ̌c1

M
instances, re-

spectively, being ≈ −115 and ≈ −104 deg. In
regard to the free pitching oscillation, the S/A

turbulence model would thus indicate a substan-
tially higher degree of dynamic stability than its
k-ω counterpart.

Overall, FLM-SD.NS k-ω renders the
unsteady loading of the spanwise-λ-shock/
detached-flow case in less than satisfactory
agreement to FLM-NS k-ω. The same can be
said for FLM-SD.NS S/A with respect to FLM-
NS S/A. For this particular test case, however,
a substantial degree of nonlinear interaction is
known to physically exist: Despite an improved
prediction of the time-invariant mean flowfield
through the Wilcox k-ω turbulence model, the
limitations inherent to the small disturbance
approach are still predominant.

6 Computational Efficiency

As documented in Table 6 and Table 7, FLM-
SD.NS retains the established computational ef-
ficiency gain over its FLM-NS counterpart even
in their k-ω incarnations, reducing computation
times by up to an half order of magnitude for
the investigated cases. With the exception of

Case ť SD.NS
CPU |k−ω, h ť NS

CPU |k−ω, h ζCPU

CT2 84.8 190.4 2.2
CT5 30.0 120.5 4.0
CT9 30.2 90.8 3.0

Table 6 Comparison of computational effort be-
tween FLM-SD.NS k-ω and FLM-NS k-ω for the
LANNW cases

Case ť SD.NS
CPU |S/A, h ť NS

CPU |S/A, h ζCPU

CT2 33.9 99.1 2.9
CT5 24.1 88.0 3.7
CT9 173.5 312.0a 1.8
a 12 oscillation cycles computed

Table 7 Comparison of computational effort be-
tween FLM-SD.NS S/A and FLM-NS S/A for the
LANNW cases

CT9, however, FLM-SD.NS/FLM-NS k-ω com-
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putation times are substantially higher than those
of FLM-SD.NS/FLM-NS S/A. In this regard, Ta-
ble 8 reveals that the bare computational effort
of FLM-SD.NS k-ω is 55% higher than that of
FLM-SD.NS S/A, while allocating 27% more
memory. Contrarily, the bare computational ef-
fort of FLM-NS k-ω is 20% higher than that of
FLM-NS S/A, while allocating merely 10% more
memory. Thus, the penalties already inherent to
the dynamically fully nonlinear k-ω implemen-
tation become amplified towards the small dis-
turbance one. Nevertheless, as FLM-SD.NS k-ω
scales to FLM-NS k-ω in both computational ef-
fort and memory requirements nearly the same
way FLM-SD.NS S/A does to FLM-NS S/A, no
significant relative penalty can be said to have oc-
curred.

FLM-method ťmethod
CPU

a, µs RAMa, KB
SD.NS k-ω 76 6.2
NS k-ω 12 1.2
SD.NS S/A 49 4.9
NS S/A 10 1.1
a per pseudotime step and per cell

Table 8 Comparison of the test-case-averaged
computational effort, discounting the conver-
gence rate, and memory requirements for all
FLM-methods

7 Conclusions

In an effort to extend FLM-SD.NS’s range of
applicability, a dynamically linear instance of
the Wilcox k-ω turbulence model as incorpo-
rated into the small disturbance Navier-Stokes
equations has been implemented. FLM-SD.NS
k-ω computational results for LANNW har-
monic pitching oscillations were presented and
compared with those of FLM-NS k-ω, FLM-
SD.NS/FLM-NS S/A, as well as experimental
data, and a FLOWer k-ω steady result. For
the attached-flow cases, FLM-SD.NS k-ω yields
equally accurate predictions as FLM-SD.NS S/A.
Reductions in computation time, up to half an
order of magnitude, in relation to FLM-NS k-ω

are ascertained. Naturally, absolute computation
times of FLM-SD.NS k-ω are higher than those
of FLM-SD.NS S/A. For the detached-flow case,
the primary benefit of the Wilcox k-ω turbulence
model lies in an FLM-NS-supplied time-invariant
mean flowfield that better represents the actual
physical one. Consequently, in production cases
where the flowfield’s development is not a pri-
ori known, FLM-SD.NS k-ω can offer an advan-
tage over FLM-SD.NS S/A. Prediction accuracy,
however, will be increasingly compromised the
more extensive any underlyingly-rendered flow
detachment becomes.
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A Supplemental Relations

• Amplitude and time-invariant mean ther-
mal equation of state:

T̂ = ( p̂− ρ̂ T̄ )/ρ̄ , T̄ = p̄/ρ̄ . (21)

• Amplitude and time-invariant mean static
pressure:

p̂ = Γ

(
ρ̂e + ρ̂

ρu2 + ρv2 + ρw2

2 ρ̄2

− ρu ρ̂u + ρv ρ̂v + ρw ρ̂w
ρ̄

− ρ̂k

)
,

p̄ = Γ

(
ρe − ρu2 + ρv2 + ρw2

2 ρ̄2 −ρk

)
.

(22)

• Amplitude and time-invariant mean molec-
ular viscosity:

µ̂ =
µ̄

T̄ + S

[
3(T̄ + S)

2T̄
−1
]

T̂ ,

µ̄ = µ̄∞ T̄
3
2

1 + S
T̄ + S

.

(23)

• Diagonal components of the amplitude
laminar shear-stress tensor:

τ̂xx,l =
2
3

µ̄
(

2
∂û
∂x
− ∂v̂

∂y
− ∂ŵ

∂z

)

+
2
3

µ̂
(

2
∂ū
∂x
− ∂v̄

∂y
− ∂w̄

∂z

)
,

τ̂yy,l =
2
3

µ̄
(

2
∂v̂
∂y
− ∂û

∂x
− ∂ŵ

∂z

)

+
2
3

µ̂
(

2
∂v̄
∂y
− ∂ū

∂x
− ∂w̄

∂z

)
,

τ̂zz,l =
2
3

µ̄
(

2
∂ŵ
∂z
− ∂û

∂x
− ∂v̂

∂y

)

+
2
3

µ̂
(

2
∂w̄
∂z
− ∂ū

∂x
− ∂v̄

∂y

)
.

(24)
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• Off-diagonal components of the amplitude
laminar shear-stress tensor:

τ̂xy,l = τ̂yx,l = µ̄
(

∂û
∂y

+
∂v̂
∂x

)

+ µ̂
(

∂ū
∂y

+
∂v̄
∂x

)
,

τ̂xz,l = τ̂zx,l = µ̄
(

∂û
∂z

+
∂ŵ
∂x

)

+ µ̂
(

∂ū
∂z

+
∂w̄
∂x

)
,

τ̂yz,l = τ̂zy,l = µ̄
(

∂v̂
∂z

+
∂ŵ
∂y

)

+ µ̂
(

∂v̄
∂z

+
∂w̄
∂y

)
.

(25)

• Diagonal components of the time-invariant
mean laminar shear-stress tensor:

τ̄xx,l =
2
3

µ̄
(

2
∂ū
∂x
− ∂v̄

∂y
− ∂w̄

∂z

)
,

τ̄yy,l =
2
3

µ̄
(

2
∂v̄
∂y
− ∂ū

∂x
− ∂w̄

∂z

)
,

τ̄zz,l =
2
3

µ̄
(

2
∂w̄
∂z
− ∂ū

∂x
− ∂v̄

∂y

)
.

(26)

• Off-diagonal components of the time-
invariant mean laminar shear-stress tensor:

τ̄xy = τ̄yx = µ̄
(

∂ū
∂y

+
∂v̄
∂x

)
,

τ̄xz = τ̄zx = µ̄
(

∂ū
∂z

+
∂w̄
∂x

)
,

τ̄yz = τ̄zy = µ̄
(

∂v̄
∂z

+
∂w̄
∂y

)
.

(27)

• Diagonal components of the amplitude tur-
bulent shear-stress tensor:

τ̂xx,t =
2
3

µ̄t

(
2

∂û
∂x
− ∂v̂

∂y
− ∂ŵ

∂z

)

+
2
3

µ̂t

(
2

∂ū
∂x
− ∂v̄

∂y
− ∂w̄

∂z

)
− 2

3
ρ̂k ,

τ̂yy,t =
2
3

µ̄t

(
2

∂v̂
∂y
− ∂û

∂x
− ∂ŵ

∂z

)

+
2
3

µ̂t

(
2

∂v̄
∂y
− ∂ū

∂x
− ∂w̄

∂z

)
− 2

3
ρ̂k ,

τ̂zz,t =
2
3

µ̄t

(
2

∂ŵ
∂z
− ∂û

∂x
− ∂v̂

∂y

)

+
2
3

µ̂t

(
2

∂w̄
∂z
− ∂ū

∂x
− ∂v̄

∂y

)
− 2

3
ρ̂k .

(28)

• Off-diagonal components of the amplitude
turbulent shear-stress tensor:

τ̂xy,t = τ̂yx,t = µ̄t

(
∂û
∂y

+
∂v̂
∂x

)

+ µ̂t

(
∂ū
∂y

+
∂v̄
∂x

)
,

τ̂xz,t = τ̂zx,t = µ̄t

(
∂û
∂z

+
∂ŵ
∂x

)

+ µ̂t

(
∂ū
∂z

+
∂w̄
∂x

)
,

τ̂yz,t = τ̂zy,t = µ̄t

(
∂v̂
∂z

+
∂ŵ
∂y

)

+ µ̂t

(
∂v̄
∂z

+
∂w̄
∂y

)
.

(29)

• Diagonal components of the time-invariant
mean turbulent shear-stress tensor:

τ̄xx,t =
2
3

µ̄t

(
2

∂ū
∂x
− ∂v̄

∂y
− ∂w̄

∂z

)
− 2

3
ρk ,

τ̄yy,t =
2
3

µ̄t

(
2

∂v̄
∂y
− ∂ū

∂x
− ∂w̄

∂z

)
− 2

3
ρk ,

τ̄zz,t =
2
3

µ̄t

(
2

∂w̄
∂z
− ∂ū

∂x
− ∂v̄

∂y

)
− 2

3
ρk .

(30)
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• Off-diagonal components of the time-
invariant mean turbulent shear-stress ten-
sor:

τ̄xy,t = τ̄yx,t = µ̄t

(
∂ū
∂y

+
∂v̄
∂x

)
,

τ̄xz,t = τ̄zx,t = µ̄t

(
∂ū
∂z

+
∂w̄
∂x

)
,

τ̄yz,t = τ̄zy,t = µ̄t

(
∂v̄
∂z

+
∂w̄
∂y

)
.

(31)

• Components of the amplitude total shear-
stress tensor:

τ̂xx = τ̂xx,l + τ̂xx,t , τ̂xy = τ̂yx = τ̂yx,l + τ̂yx,t ,

τ̂yy = τ̂yy,l + τ̂yy,t , τ̂xz = τ̂zx = τ̂zx,l + τ̂zx,t ,

τ̂zz = τ̂zz,l + τ̂zz,t , τ̂yz = τ̂zy = τ̂zy,l + τ̂zy,t .

(32)

• Components of the time-invariant mean to-
tal shear-stress tensor:

τ̄xx = τ̄xx,l + τ̄xx,t , τ̄xy = τ̄yx = τ̄yx,l + τ̄yx,t ,

τ̄yy = τ̄yy,l + τ̄yy,t , τ̄xz = τ̄zx = τ̄zx,l + τ̄zx,t ,

τ̄zz = τ̄zz,l + τ̄zz,t , τ̄yz = τ̄zy = τ̄zy,l + τ̄zy,t .

(33)

• Amplitude Cartesian energy-flux:

Π̂x = ū τ̂xx + v̄ τ̂xy + w̄ τ̂xz

+ û τ̄xx + v̂ τ̄xy + ŵ τ̄xz + τ̂kx− q̂x ,

Π̂y = ū τ̂yx + v̄ τ̂yy + w̄ τ̂yz

+ û τ̄yx + v̂ τ̄yy + ŵ τ̄yz + τ̂ky− q̂y ,

Π̂z = ū τ̂zx + v̄ τ̂zy + w̄ τ̂zz

+ û τ̄zx + v̂ τ̄zy + ŵ τ̄zz + τ̂kz− q̂z .
(34)

• Time-invariant mean Cartesian energy-
flux:

Π̄x = ū τ̄xx + v̄ τ̄xy + w̄ τ̄xz + τ̄kx− q̄x ,

Π̄y = ū τ̄yx + v̄ τ̄yy + w̄ τ̄yz + τ̄ky− q̄y ,

Π̄z = ū τ̄zx + v̄ τ̄zy + w̄ τ̄zz + τ̄kz− q̄z .
(35)

• Components of the amplitude Cartesian
heat-flux vector:

q̂x = − γ
Γ

[ (
µ̄

Pr
+

µ̄t

Prt

)
∂T̂
∂x

+

(
µ̂

Pr
+

µ̂t

Prt

)
∂T̄
∂x

]
,

q̂y = − γ
Γ

[ (
µ̄

Pr
+

µ̄t

Prt

)
∂T̂
∂y

+

(
µ̂

Pr
+

µ̂t

Prt

)
∂T̄
∂y

]
,

q̂z = − γ
Γ

[ (
µ̄

Pr
+

µ̄t

Prt

)
∂T̂
∂z

+

(
µ̂

Pr
+

µ̂t

Prt

)
∂T̄
∂z

]
.

(36)

• Components of the time-invariant mean
Cartesian heat-flux vector:

q̄x = − γ
Γ

[ (
µ̄

Pr
+

µ̄t

Prt

)
∂T̄
∂x

]
,

q̄y = − γ
Γ

[(
µ̄

Pr
+

µ̄t

Prt

)
∂T̄
∂y

]
,

q̄z = − γ
Γ

[(
µ̄

Pr
+

µ̄t

Prt

)
∂T̄
∂z

]
.

(37)

• Amplitude shear-stress-equivalent k-terms:

τ̂kx = (µ̂ + σk µ̂t)
∂k̄
∂x

+ (µ̄ + σk µ̄t)
∂k̂
∂x
,

τ̂ky = (µ̂ + σk µ̂t)
∂k̄
∂y

+ (µ̄ + σk µ̄t)
∂k̂
∂y
,

τ̂kz = (µ̂ + σk µ̂t)
∂k̄
∂z

+ (µ̄ + σk µ̄t)
∂k̂
∂z
.

(38)
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• Amplitude shear-stress-equivalent ω-
terms:

τ̂ωx = (µ̂ + σω µ̂t)
∂ω̄
∂x

+ (µ̄ + σω µ̄t)
∂ω̂
∂x
,

τ̂ωy = (µ̂ + σω µ̂t)
∂ω̄
∂y

+ (µ̄ + σω µ̄t)
∂ω̂
∂y
,

τ̂ωz = (µ̂ + σω µ̂t)
∂ω̄
∂z

+ (µ̄ + σω µ̄t)
∂ω̂
∂z
.

(39)

• Time-invariant mean shear-stress-
equivalent k-, ω-terms:

τ̄kx = (µ̄ + σk µ̄t)
∂k̄
∂x
, τ̄ωx = (µ̄ + σω µ̄t)

∂ω̄
∂x
,

τ̄ky = (µ̄ + σk µ̄t)
∂k̄
∂y
, τ̄ωx = (µ̄ + σω µ̄t)

∂ω̄
∂y
,

τ̄kz = (µ̄ + σk µ̄t)
∂k̄
∂z
, τ̄ωx = (µ̄ + σω µ̄t)

∂ω̄
∂z
.

(40)

• Amplitude k-production:

P̂k = τ̄xx,t
∂û
∂x

+ τ̄xy,t

(
∂û
∂y

+
∂v̂
∂x

)

+ τ̄yy,t
∂v̂
∂y

+ τ̄yz,t

(
∂v̂
∂z

+
∂ŵ
∂y

)

+ τ̄zz,t
∂ŵ
∂z

+ τ̄zx,t

(
∂û
∂z

+
∂ŵ
∂x

)

+ τ̂xx,t
∂ū
∂x

+ τ̂xy,t

(
∂ū
∂y

+
∂v̄
∂x

)

+ τ̂yy,t
∂v̄
∂y

+ τ̂yz,t

(
∂v̄
∂z

+
∂w̄
∂y

)

+ τ̂zz,t
∂w̄
∂z

+ τ̂zx,t

(
∂ū
∂z

+
∂w̄
∂x

)
.

(41)

• Time-invariant mean k-production:

P̄k = τ̄xx,t
∂ū
∂x

+ τ̄xy,t

(
∂ū
∂y

+
∂v
∂x

)

+ τ̄yy,t
∂v̄
∂y

+ τ̄yz,t

(
∂v̄
∂z

+
∂w̄
∂y

)

+ τ̄zz,t
∂w̄
∂z

+ τ̄zx,t

(
∂ū
∂z

+
∂w̄
∂x

)
.

(42)

• Amplitude and time-invariant mean k-
destruction:

D̂k = D̄k

(
ρ̂
ρ̄

+
ω̂
ω̄

+
k̂
k̄

)
, D̄k =−cDk ρ̄ω̄k̄ .

(43)

• Amplitude and time-invariant mean ω-
production:

P̂ω = P̄ω

(
ω̂
ω̄
− k̂

k̄
+

P̂k

P̄k

)
, P̄ω = cPω

ω̄
k̄

P̄k .

(44)

• Amplitude and time-invariant mean ω-
destruction:

D̂ω = D̄ω

(
ρ̂
ρ̄

+ 2
ω̂
ω̄

)
, D̄ω =−cDω ρ̄ω̄2 .

(45)

• Calibration coefficients:

σk = 0.50 , σω = 0.50 , κ = 0.41 ,

cPk = 1.00 , cDk = 0.09 ,

cPω = 0.56 , cDω = cDk (cPω +
σωκ2

√cDk

) .

(46)
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