
27
TH

 INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

1

Abstract

Support for configuration and instantiation of

large-scale aircraft simulations has become a

major issue as the numbers of models grow,

model fidelity increases and there is a trend to

design models to allow reuse between

simulation environments. In this work a method

for configuration support is presented that is

based on the Product Line principles with

structures and data inherited from the Product

Data Management system. An XML-based

information object to carry product

configuration data and knowledge between

tools, called a CNA-string is introduced. A rule-

based method to support specification of

consistent configurations is adopted from the

sales configuration domain. The application

example is configurations of the Gripen fighter

aircraft simulation models.

1 Introduction

Increases in computer performance enable

modeling and simulation based approaches to be

used more extensively in the development of

products and systems. Simulation is also used

for training and to support certification

activities. Large-scale rigs and simulators rely

increasingly on software models instead of

hardware components, mainly due to the cost

per simulation hour. Management of models is

identified as a growing concern with partly new

needs to support engineers and decision makers.

This paper describes the challenges of

model management for large-scale simulation in

more detail to describe the fundamental needs in

product line development supported by

modeling and simulation. Some basic

definitions are given as a foundation to develop

the future simulation configuration

methodology. The hypothesis presented in this

paper is that Configuration Management (CM)

of parametric models and other simulator

components can be efficiently handled through

the Software Product Line (SPL) approach,

enhanced by Product Data Management (PDM)

methodology/systems.

One distinction between software product

line engineering and conventional software

engineering is the presence of variation of the

software artifacts. In the early stages of SPL

engineering, software artifacts are designed to

contain variations that represent choices about

how a final software product will behave. At a

point during the engineering process, decisions

are made for the variations, after which the

behavior of the final software product is fully

specified [12]. This is illustrated in Fig. 1.

Fig. 1. Core concept of product instantiation in a

Product Line approach

A specific property of the simulation software

product line described in this work, is that a

portion of it is a representation of another

product line; viz the aircraft product family. The

components of the simulation SPL do not in

general have exactly the same functionality as

the represented components. The models are

Model store

M1

M2 Mn

M..

Software assets
with variations

Decisions about
variations for a
product instance

Variation binding
and product instantiation

Products

CONFIGURATION MANAGEMENT OF MODELS
FOR AIRCRAFT SIMULATION

Henric Andersson* **, Sören Steinkellner* **, Hans Erlandsson*

* Saab Aerosystems, **Linköping University

Keywords: Software Product Line, Modularity, Configurator, Simulation

ANDERSSON, STEINKELLNER, ERLANDSSON

2

enhanced with e.g. fault simulation functions,

but are simplified in other respects. This implies

that variations and combinations of the

simulation models (SPL artifacts) are partly

constrained or guided by the variability rules of

the aircraft’s components and functions.

1.1 Challenges

The following challenges in set-up and support

of large-scale simulations have been identified:

 Many models ~100

 Different kinds of models, e.g. environment,

mechanics, software

 Variants of the systems that a model

represents/simulates

 Versions of a model, e.g. due to error

correction

 Different sets of system parameters for

parametric models

 Different operating systems and/or computer

platforms for simulation execution

 Variants of “the same” model, e.g. different

levels of fidelity/accuracy for use in

different simulation environments (with

different computing capabilities)

There are also challenges due to

introduction of various MBSE (Model Based

Systems Engineering) methods and tools which

provides a range of model types, notations, and

languages [3]. These “new” models together

with “old” or “legacy code” models have to be

integrated in some way. This aspect of the

problem is not further described here.

2 Configurations and usage of models

Simulations at aircraft level made from a set of

integrated subsystem models are used in

different contexts:

Early validation - Simulations support the

description and common understanding of new

ideas and functionality offered to potential or

existing customers. Flexibility in the model

world (“the virtual aircraft”) enables rapid

prototyping and evaluation of various concepts.

Design - Involves both exploration of the

design space and investigation of errors and

bugs in early stages of development

System verification - In the case of safety-

critical systems it is crucial to verify

functionality in a simulated environment before

real usage in order to reduce risk or even to be

allowed to perform “first flight” of a new

configuration at all. Verification includes

troubleshooting of unwanted behavior or

performance (bugs/errors).

Training - Simulation models are built

into training products/simulators for both pilot

operations (Mission Training) and ground crew

operations (Maintenance Training).

Fig. 2 gives an overview of the

combinatory problem: Product variants

(aircrafts) simulated in various simulation

systems. Some combinations are not applicable.

 D
e
s
k
to

p

s
im

u
la

ti
o

n

L
a

b
o

ra
to

ry

s
im

u
la

ti
o

n

S
y
s
te

m
 s

im
u

l.

In
c
l.
 E

C
U

 h
/w

M
a

in
te

n
a
n

c
e

T
ra

in
in

g

M
is

s
io

n

T
ra

in
in

g

S
im

u
la

ti
o

n

ty
p

e

D
e
v
e

lo
p

m
.

d
e

s
ig

n

D
e
v
e

lo
p

m
.

v
a

lid
a

ti
o

n

S
y
s
te

m

v
e

ri
fi
c
a
ti
o

n

G
ro

u
n

d
 c

re
w

tr
a

in
in

g

P
ilo

t
tr

a
in

in
g

M
a

in

p
u

rp
o

s
e

Product
Variant

No of
seats

Test A/C 1 1 N/A N/A N/A

Test A/C 2 2 N/A N/A N/A

A/C Var A 1

A/C Var B 2

A/C Var C 1

A/C Var D 2

Fig. 2. Variant matrix, product variants versus

simulation type

The Product Line approach enables the

model assets to be configured to represent

different product variants but also configured

for the different usage contexts described above.

3 Information models

Several information models related to product

data, product variants and model/software

configuration management are studied. The

fundamental terminology in this work regarding

configuration and data management is based on

[5] and [7], and regarding product line

development on [1], [6], [12] and [14].

CONFIGURATION MANAGEMENT OF MODELS FOR AIRCRAFT SIMULATION

3

3.1 Definitions and nomenclature

This section describes definitions and concepts

related to product line development.

Product Line / Family and Variants. A

group of individual products may be thought of

as an evolving family of products (a product

line) that are derived from a common platform

but nonetheless with specific features/functions.

Each individual within a product line is called

an instance or Product Variant (PV). A product

line targets a certain market segment and a PV

addresses a specific subset of customer needs in

the market segment. All PVs share some

common structures and product technologies,

which form the platform of the product line.

There are three important aspects of a product

platform:

 Its modular architecture

 The modules’ interfaces

 Rules to which the modules must conform

Product Configuration from Modules. A

modular platform is used to create product

variants through configuration of already

existing modules. The product line architecture

enables/restricts the arrangement of the

functional elements into modules and the way in

which these modules interact [15]. There is a

trade-off between modularity and integrality. In

simulation architectures the optimal trade-off is

different for the different simulation contexts:

validation, design, verification and training.

Design for Variety. Product variety is the

diversity of products that is provided. There are

two main types of variety:

 Technical variety

 Functional variety

Technical variety is relevant to

development, testing, and production and is

focused on actually reducing the technical

variety to gain cost advantages. This includes

activities such as variety reduction programs,

functional sharing, and design for modularity.

Functional variety is related to customer

satisfaction and aims at increasing the

functional variety and is more focused on

development of the market and business plans,

such as product line structuring, product

positioning and so on.

A Product Family Model contains a

definition of the whole family, as well as of how

any member of the family can be specified.

When the configuration of variants is in focus, it

may also be called a configurable product

family model [12]. One important property in

product family design (compared to that of a

single product) is the simultaneous handling of

multiple products.

The Sales Configuration discipline deals

with product customization that supports fast

and reliable specification of product variants.

Handling of the rules for variability and

configuration/integration is strong and relies on

knowledge about connectivity implemented in a

configurator tool/system. Features of sales

configurators are very similar to the needs of

“simulation configurators”. Methods for

analysis and definition of a product range and

the standard product [10] will also apply for the

simulation model set.

Software Product Line (SPL)

development is a way of organizing software

and its release structure, similar to the Product

Line approach described above. Key

interconnected SPL activities are:

 Core asset development (e.g. the models of

various aircraft subsystems/equipments)

 Product development (integration, build and

delivery of simulation systems)

 Management (planning for updates,

delivery, resource allocation, etc.)

 Quotation from [6]: “In a product line

effort, Configuration Management (CM) is more

complicated and reaches across all of the core

asset and product-building projects and

possibly even across product lines. It is usually

appropriate to plan configuration management

at the organizational level.”

3.2 Configuration and data management

Configuration models are used for handling data

for development, certification, delivery, and

ANDERSSON, STEINKELLNER, ERLANDSSON

4

maintenance in a PDM/PLM (Product Lifecycle

Management) context.

There is no common industrial information

model for data stored and maintained in CM or

PDM/PLM systems, but information about and

relations between the PDM objects may be

defined as in [4]. Data included in a PDM

system typically consist of

 Core product information objects:

o Configuration structure

o Specifying and reporting documents

o Realizations of various types

o Product configurations

 Planning objects:

o Development steps/increments

o Product features and functions

o Work Packages – work items

 Change Control objects:

o Change Request (CR) feature/function

o CR breakdown structure

o CR responsibility, definition of work

Product parts are handled in traditional

PDM/PLM systems and means to also manage

models of those parts is to some extent

supported. There is, however, information

missing in general PDM systems to fully

support the configuration activity for simulation

systems. For example, models representing the

aircraft physical environment are not part of the

product definition. This is true for models

representing atmosphere, wind, vortex, and

runway locations but also for tactical scenarios,

pilot behavior and similar.

Modeling and simulation environments, on

the other hand, typically provide interfaces for

integration with standard software configuration

management (SCM) tools. Such tools are

inherently strong in software version

management, but lack support for model version

and variant handling [2]. Model development

environments need parts of the integrated

support found in PDM systems for evolution

and maintenance of realized products. Even if

configuration of simulation model integration is

not straightforward with PDM methods, change

management (identification and definition of

changes of models) aligns well. To manage

constraints (rules) in the combinational logics of

models, the sales configuration domain is strong

and may support configuration of simulation

systems.

3.3 Parametric models

Due to their flexibility, parametric models are

particularly useful in modular simulation

products, but also during the different product

development stages. This means that parametric

models fit well into an SPL approach.

Definitions of different parameter types are

illustrated in Fig. 3.

Configuration Parameters (CP) are created

through the PDM system and used during the

simulator build/integration steps and prior to a

simulation run to instantiate the models with a

consistent set of System Parameters (SP).

In PDM terms the model can be viewed as

yet another realization of the PDM part.

Fig. 3. Model interactions: Input, Output, State, System Parameters and Configuration Parameters used in

parametric models.

Algorithm part

Sets of System

Parameters

Input (u)

System

Parameters (sp)

State (x)

Output (y)

Configuration

Parameters (cp) PDM

System

Model A Model C

Model B (Engine)

Constant during

simulation runs

Varying during

simulation runs

27
TH

 INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

5

Typically, the CP are stored in PDM while

SP are handled in a SCM tool, and in this work

a proposed connection between CP and SP on

the conceptual level is presented.

3.4 Variant Configuration Language

There have been attempts to support

configuration activities with specialized tools

and languages [11], [16], whereof one language

is briefly described here. The XML-based

Variant Configuration Language, XVCL, is a

general-purpose mark-up language for

configuring variants in a variety of software

assets such as software architecture, program

code, or test cases. In [11] four aspects are

described:

 To cope with a large number of features and

feature dependencies

 Functional dependencies among features

implying that only certain combinations of

variants may coexist

 Adding new features to make new releases

across all existing system variants (past

releases in operation)

 Selective propagation of new features (or

other changes, error correction) to past

releases

3.5 Configuration data, CNA

To describe product configuration data the

similarity to genomes in biology may be used.

Assume that every product instance (car, truck,

aircraft) is viewed as an individual with its own

specific configuration (genome), and that the

configuration data is possible to represent in a

structured information storage object. Let’s call

this object a CNA-string (ConfiguratioN datA

string). The CNA is used for on-board

configuration i.e. loading a specific

configuration into the computer/avionics system

of a vehicle prior to usage, in order for its

embedded system to “know” what configuration

it has. It is also used for On-Ground

configuration, i.e. loading a specific

configuration into a simulator and setting

parameters of included models to consistent

values. Examples of data in some elements of

the CNA-string are shown in Fig. 4.

Fig. 4. Example of a CNA-string in XML format.

By using the CNA approach, a tool for cross-

referencing or mapping of CP onto SP is

introduced. The various validated CNA-strings

containing consistent configurations can be

stored in the simulation environment for easy

access. An extension is to also store a consistent

input and state vector for reliable initialization

of the simulation model(s).

4 Application example

The application example is a product line effort

for the Gripen fighter aircraft simulation models

and examples of how they are integrated and

used. See further [3].

4.1 PL approach

As some models in the model store are used for

several aerospace products the assets (models)

reaches across product lines. Examples are the

atmosphere, and wind models which are used

for all airborne product lines (e.g. UAVs, fighter

aircraft, space vehicles) at an enterprise level.

The study is however limited to the Gripen

product line, and all models are assumed to be

fully managed within that scope.

27
TH

 INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

6

Sensors,

Comm.

Operational

Surrounding

IFF

radio 1

contol

panels

datalink

23 COM

ECUs e.g.

for control

of aircraft

systems

GECU

FADEC

AECU

CSMU

BECU

34 ILS

Physic

2Logic

Sensors

Actuat.

Aircraft

Systems

& Models

Gripen

Surrounding

General

models

28 fuel

72 engine

29 hydraulic

21 air control

32 ldg

35 oxygen

atmos

inertia

auto-pilot

wind

33 lights

34 gps

forces

configuration

22 atcs

Payload and

stores

ADC

cockpit

AircraftPhysical Avionics

Stores

ACSSW &

Avionics

Avionics

ground

roll

datalink

aircraftbody

HDD HDDHDD

HDD HDD HDD

Tactical ComputersFlight Computers

FC 1 FC 2 TC 1 TC 2

Avionics

Core

34 INS

HUD HMD

HMD

position

27 flight controls

radio 2

Fig. 5. The model map shows a simplified model overview of the application example.

4.2 Included models

During the initial analysis step of the project a

model overview was developed to gain a

common understanding of included models and

how the models are classified. The following

classes of models (in a CM context) are

identified, with reference to the simplified

version of the overview in Fig. 5:

 Models of aircraft surrounding, classified as

“Physical” in the figure, are normally not

included in the product part structure.

Example: the atmosphere model.

 Models of aircraft parts (mechanical

assemblies or whole aircraft subsystems,

but also sensors and actuators) classified as

“Aircraft”. Example: the engine model.

 Models of avionics product parts (e.g.

electronic control units, ECUs) classified as

“Avionics”. Example: the Air Data

Computer, ADC.

 Models of embedded software classified as

“ACSSW” (Aircraft Computer System

SoftWare). Example: the navigation

software.

 Models of payload and stores that may not

be included in the aircraft product structure

but are separate products classified as

“Stores”. Example: the droptanks.

There are also some special models, for

example: pilot behavior and tactical scenarios.

4.3 Use Case examples

Simulation modeling, including scenario

creation, is considered to be a basis of general

simulation frameworks [8]. Batch simulation

runs are typical scenario examples of simulator

use. They are relevant for development and

verification contexts, but not for training.

To be able to repeat simulations over and

over again a set of reusable Operational Usage

Scenarios (OUS) are created and stored in a

scenario library. An OUS is based on a pre-

condition where the aircraft and its systems are

“parked” in a steady state or stationary

operating point, on the ground or in the air.

7

CONFIGURATION MANAGEMENT OF MODELS FOR AIRCRAFT SIMULATION

From this steady state a dynamic

evolution/simulation is started.

Basic scenarios are typical “sunny-day”

usage of the product, with all systems fully

functional. It is possible to introduce failure(s)

as a pre-condition in the stationary operating

point or during the dynamic simulation. The

time-efficiency of the simulation runs depends

on the time it takes to obtain a stable operating

point in advance of each simulation. One way

to increase the efficiency is to calculate and

save steady-state solutions to the library in

advance and use these to initiate the simulation

model during the batch run.

Fig. 6 gives an introduction to three use

case variants, how batch mode simulations are

structured when adding new product variants,

when adding new specified usage, or when re-

testing existing definitions. Given

 a set of Product Variants (PV)

 a set of Operational Usage Scenarios (OUS)

there is a matrix with mappings of

applicable OUS versus PV as shown in Fig 6.

Fig. 6. The matrix shows operational usage

scenarios to be simulated for a range of product

variants. Regression test points are also indicated.

4.4 Usage Sweep Use Case

When a new product configuration or variant is

decided to be offered or delivered, simulations

need to be performed for applicable OUS. In

batch script pseudo-code it will look like:

With selected PV [m+1]
 Integrate models
 Instantiate the models
 For all OUS [1..n+1]
 Initiate the models
 Simulate PV for given OUS
 Store results for evaluation
 End for
End with

This simulation pattern is typically relevant

when a PV is selected for production and will

undergo test and verification activities as basis

for certification and delivery.

4.5 PV Sweep Use Case

This Use Case variant defines a need from the

opposite viewpoint. Simulation is performed

for a OUS for all applicable PVs. The

corresponding pseudo-code is:

With selected OUS [n+1]
 For all PV [1..m+1]
 Integrate current PV models
 Instantiate the models
 Initiate the models
 Simulate PV for given OUS
 Store results for evaluation
 End for
End with

Thus, the challenge in the second use case

example is to build, instantiate, and initiate a

set of consistent simulation models that are

representing (all) the product variants within

the product range. The Use Case is relevant

when a different usage of the product (family)

is defined, e.g. a new defined combination of

internal/external stores, or operation in “new”

environments.

4.6 Regression test Use Case

The third example applies to modifications or

corrections in subsystems of the product line

(including existing products). In order to ensure

functionality and performance to some extent

without analyzing an overwhelming amount of

simulation results, a subset of indices of the

PV-OUS matrix is pre-selected for thorough

regression testing. In pseudo-code format:

 OUS
PV

OUS
1

OUS
2

OUS
..

OUS
n

OUS
n+1

PV 1 N/A

PV 2 N/A N/A

PV 3 N/A

PV .. N/A

PV m

PV m + 1 Usage sweep Use Case

P
V

s
w
e
e
p

U
s
e

C
a
s
e

R

R

R

R

R

R

R

ANDERSSON, STEINKELLNER, ERLANDSSON

8

For all selected PV-OUS indices
 Integrate current PV models
 Instantiate the models
 Initiate the models
 Simulate PV for given OUS
 Store results for evaluation
End for

Selected indices are viewed as circles with an

“R” in Fig. 6 specifying regression test PV-

OUS pairs. Regression test examples could be

e.g. changed sub-supplier of some aircraft

equipment.

5 Results

Results are gained in the investigation of how

the PDM structure and the simulation model

structure are aligned and also in modeling of

the simulation models variability through a

Product Variant Master.

5.1 Alignment between PDM and simulators.

Preliminary results show that the data needed to

configure an aircraft simulation can only partly

be obtained from the PDM data-set because

there are models representing things not

included as parts in the aircraft part structure.

Of the different model classes listed in section

4.2, the “Aircraft” and “Avionics” classes are

well aligned. The “ACSSW” and “Stores”

classes may be aligned depending on the level

of details handled in the system. The models in

the “Physical” class have to be treated as

separate parts if the PDM approach should

provide any value.

Further, it should be noted that the

simulation model structure does not align to the

(PDM) product configuration structure, due to:

 separation of the algorithm part from the

data part in parametric models

 models are clustered into bigger models

representing several parts in the PDM part

structure.

The two different structure patterns are

illustrated in Fig. 7 and 8 respectively.

Fig. 7. Product part structure.

Fig. 8. Model structure.

Change management through PDM

concepts is shown to be usable for models,

even though the models themselves are not

included in the PDM system. Requests for and

planning of model changes are defined through

Change Control and Planning objects.

Configuration of models is better suited to be

performed in the simulation environment.

Product

SubSys1 SubSys2

SubSys3

ComSys Engine

FuelSys

Consist of

Variant H

Variant L

Has variants

Variant M

Sim Model

SybSys

123Model
FuelSysM

ComSysM EngineM

Consist of

Variant H

Variant M

Is instan-

tiated by

Testing

Training

Variant L

Has variants
Algo-

rithm

Para-

meters

Consist of

9

CONFIGURATION MANAGEMENT OF MODELS FOR AIRCRAFT SIMULATION

5.2 Product Variant Master

The product line model is partly implemented

as a “Product Variant Master” PVM, according

to the methodology in [9].

Fig. 9. Product Variant Master model for the

application example.

The PVM includes rules to constrain the

combinations in order to avoid a combinatorial

explosion. A screenshot from an example PVM

model in the Product Model Manager tool [13]

is shown in Fig. 9.

6 Conclusions and further work

The following conclusions have been drawn so

far in the project;

 As computer performance increases, the

number of useful simulation models

representing products and/or product parts

grows in industry and the models are also

included in training of end users.

 There is a need to support the configuration

specification activity in order to integrate

and build consistent combinations of

models into large-scale simulations.

 A method based on genealogy principles

for specifying a product’s configuration in a

so called CNA-string is introduced.

 The simulation model structure does not

align to the (PDM) product configuration

structure due to separation of algorithms

from data and that models are clustered to

represent several PDM parts.

 The CNA-string approach is proven to

work in practice and is promising as a basis

for integration of configuration data

between the PDM and simulation tools.

Further work is to develop methods to

support the build/integration process steps from

configuration specification to back-reporting of

actual simulation configuration. Comparison

methods are needed to analyze differences in

specified configuration versus actual

configuration. More stringent mapping of

product models by meta-modeling is planned.

9 Acknowledgement

The authors wish to thank their supervisors

Petter Krus at Linköping University and Erik

Herzog at Saab Aerosystems, for their support.

Funding for this work was provided by the

Swedish National Aeronautics Research

Programme, NFFP5.

ANDERSSON, STEINKELLNER, ERLANDSSON

10

References

[1] Alizon F, Khadke K, Thevenot HJ, Gershenson JK,

Marion TJ, Shooter SB and Simpson TW.

Frameworks for product family design and

development, Concurrent Engineering Research and

Applications, 2007., pp. 187-199.

[2] Altmanninger K, Brosch P, Kappel G, Langer P,

Seidl M, Wieland K, and Wimmer M, Why Model

Versioning Research is Needed!? - An Experience

Report. Proceedings of the Joint MoDSE-MCCM

2009 Workshop. Denver, 2009

[3] Andersson H. Aircraft Systems Modeling - Model

Based Systems Engineering in Avionics Design and

Aircraft Simulation. Licentiate Thesis, Linköpings

universitet. Linköping, 2009

[4] Andersson H. Variability and Configuration

Principles for Simulation Models in Product Line

Development. 7
th

 European Systems Engineering

Conference EuSEC. Stockholm, 2010.

[5] ANSI/EIA-649-A. National Consensus Standard for

Configuration Management. 2004

[6] Clements P, Northrop L. Software product lines-

practices and patterns. Addison-Wesley. Boston,

2002, pp 303.

[7] Dahlqvist AP, et al. PDM and SCM - similarities

and differences. The Association of Swedish

Engineering Industries. 2001

[8] Harrison, N., Gilbert, B., Jeffrey, A., Lauzon, M. &

Lestage, R. (2004). Adaptive and Modular M&S

Configuration for Increased Reusability.

Interservice/Industry Training, Simulation and

Education Conference. Orlando, 2004.

[9] Haug A, Hvam L, Mortensen NH, Lundvald S and

Holt P. Implementation of conceptual product

models into configurators: From months to minutes.

5
th

 World Conference on Mass Customization &

Personalization. Helsinki, 2009.

[10] Hvam L, Mortensen NH and Riis J. Product

Customization. Springer-Verlag. Heidelberg, Berlin,

2008.

[11] Jarzabek, S. Effective Software Maintenance and

Evolution: Reused-based Approach, Auerbach, CRC

Press, Taylor and Francis Group, New York 2007.

[12] Krueger CW. Towards a Taxonomy for Software

Product Lines BigLever Software, Inc., USA,

[13] PMM, Product Model Manager, Incore Systems,

www.incoresystems.dk, Retrieved on (2010-06-02).

[14] Sivard G. A Generic Information Platform for

Product Families. Doctoral Thesis, Royal Institute of

Technology. ISSN 1650-1888, Stockholm 2001.

[15] Ulrich K and Eppinger SD, Product Design and

Development. McGraw-Hill. New York, 2008.

[16] Jiang P, Mair Q, Newman J, and Huang J. UML and

XML based change process and data model

definition for product evolution, Software Evolution

with UML and XML, H.J. Yang (ed.), IDEA Group

Publishing, pp. 190-221, 2005.

Copyright Statement

The authors confirm that they, and/or their company or

organization, hold copyright on all of the original

material included in this paper. The authors also confirm

that they have obtained permission, from the copyright

holder of any third party material included in this paper,

to publish it as part of their paper. The authors confirm

that they give permission, or have obtained permission

from the copyright holder of this paper, for the

publication and distribution of this paper as part of the

ICAS2010 proceedings or as individual off-prints from

the proceedings.

http://www.incoresystems.dk/

