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Abstract  

Support for configuration and instantiation of 

large-scale aircraft simulations has become a 

major issue as the numbers of models grow, 

model fidelity increases and there is a trend to 

design models to allow reuse between 

simulation environments. In this work a method 

for configuration support is presented that is 

based on the Product Line principles with 

structures and data inherited from the Product 

Data Management system. An XML-based 

information object to carry product 

configuration data and knowledge between 

tools, called a CNA-string is introduced. A rule-

based method to support specification of 

consistent configurations is adopted from the 

sales configuration domain. The application 

example is configurations of the Gripen fighter 

aircraft simulation models. 

1  Introduction 

Increases in computer performance enable 

modeling and simulation based approaches to be 

used more extensively in the development of 

products and systems. Simulation is also used 

for training and to support certification 

activities. Large-scale rigs and simulators rely 

increasingly on software models instead of 

hardware components, mainly due to the cost 

per simulation hour. Management of models is 

identified as a growing concern with partly new 

needs to support engineers and decision makers. 

This paper describes the challenges of 

model management for large-scale simulation in 

more detail to describe the fundamental needs in 

product line development supported by 

modeling and simulation. Some basic 

definitions are given as a foundation to develop 

the future simulation configuration 

methodology. The hypothesis presented in this 

paper is that Configuration Management (CM) 

of parametric models and other simulator 

components can be efficiently handled through 

the Software Product Line (SPL) approach, 

enhanced by Product Data Management (PDM) 

methodology/systems.  

One distinction between software product 

line engineering and conventional software 

engineering is the presence of variation of the 

software artifacts. In the early stages of SPL 

engineering, software artifacts are designed to 

contain variations that represent choices about 

how a final software product will behave. At a 

point during the engineering process, decisions 

are made for the variations, after which the 

behavior of the final software product is fully 

specified [12]. This is illustrated in Fig. 1. 

 
Fig. 1. Core concept of product instantiation in a 

Product Line approach 
 

A specific property of the simulation software 

product line described in this work, is that a 

portion of it is a representation of another 

product line; viz the aircraft product family. The 

components of the simulation SPL do not in 

general have exactly the same functionality as 

the represented components. The models are 
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enhanced with e.g. fault simulation functions, 

but are simplified in other respects. This implies 

that variations and combinations of the 

simulation models (SPL artifacts) are partly 

constrained or guided by the variability rules of 

the aircraft’s components and functions. 

1.1 Challenges 

The following challenges in set-up and support 

of large-scale simulations have been identified: 

 Many models ~100 

 Different kinds of models, e.g. environment, 

mechanics, software 

 Variants of the systems that a model 

represents/simulates 

 Versions of a model, e.g. due to error 

correction 

 Different sets of system parameters for 

parametric models 

 Different operating systems and/or computer 

platforms for simulation execution 

 Variants of “the same” model, e.g. different 

levels of fidelity/accuracy for use in 

different simulation environments (with 

different computing capabilities) 

 

There are also challenges due to 

introduction of various MBSE (Model Based 

Systems Engineering) methods and tools which 

provides a range of model types, notations, and 

languages [3]. These “new” models together 

with “old” or “legacy code” models have to be 

integrated in some way. This aspect of the 

problem is not further described here. 

2  Configurations and usage of models 

Simulations at aircraft level made from a set of 

integrated subsystem models are used in 

different contexts: 

Early validation - Simulations support the 

description and common understanding of new 

ideas and functionality offered to potential or 

existing customers. Flexibility in the model 

world (“the virtual aircraft”) enables rapid 

prototyping and evaluation of various concepts.  

Design - Involves both exploration of the 

design space and investigation of errors and 

bugs in early stages of development 

System verification - In the case of safety-

critical systems it is crucial to verify 

functionality in a simulated environment before 

real usage in order to reduce risk or even to be 

allowed to perform “first flight” of a new 

configuration at all. Verification includes 

troubleshooting of unwanted behavior or 

performance (bugs/errors). 

Training - Simulation models are built 

into training products/simulators for both pilot 

operations (Mission Training) and ground crew 

operations (Maintenance Training). 

Fig. 2 gives an overview of the 

combinatory problem: Product variants 

(aircrafts) simulated in various simulation 

systems. Some combinations are not applicable. 
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Product 
Variant 

No of 
seats 

Test A/C 1 1  N/A  N/A N/A 

Test A/C 2 2  N/A  N/A N/A 

A/C Var A 1      

A/C Var B 2      

A/C Var C 1      

A/C Var D 2      

Fig. 2. Variant matrix, product variants versus 

simulation type  
 

The Product Line approach enables the 

model assets to be configured to represent 

different product variants but also configured 

for the different usage contexts described above.  

3  Information models 

Several information models related to product 

data, product variants and model/software 

configuration management are studied. The 

fundamental terminology in this work regarding 

configuration and data management is based on 

[5] and [7], and regarding product line 

development on [1], [6], [12] and [14]. 
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3.1 Definitions and nomenclature 

This section describes definitions and concepts 

related to product line development. 

 

Product Line / Family and Variants. A 

group of individual products may be thought of 

as an evolving family of products (a product 

line) that are derived from a common platform 

but nonetheless with specific features/functions. 

Each individual within a product line is called 

an instance or Product Variant (PV). A product 

line targets a certain market segment and a PV 

addresses a specific subset of customer needs in 

the market segment. All PVs share some 

common structures and product technologies, 

which form the platform of the product line. 

There are three important aspects of a product 

platform:  

 Its modular architecture 

 The modules’ interfaces 

 Rules to which the modules must conform 

 

Product Configuration from Modules. A 

modular platform is used to create product 

variants through configuration of already 

existing modules. The product line architecture 

enables/restricts the arrangement of the 

functional elements into modules and the way in 

which these modules interact [15]. There is a 

trade-off between modularity and integrality. In 

simulation architectures the optimal trade-off is 

different for the different simulation contexts: 

validation, design, verification and training. 

 

Design for Variety. Product variety is the 

diversity of products that is provided. There are 

two main types of variety:  

 Technical variety 

 Functional variety 

Technical variety is relevant to 

development, testing, and production and is 

focused on actually reducing the technical 

variety to gain cost advantages. This includes 

activities such as variety reduction programs, 

functional sharing, and design for modularity. 

Functional variety is related to customer 

satisfaction and aims at increasing the 

functional variety and is more focused on 

development of the market and business plans, 

such as product line structuring, product 

positioning and so on. 

 

A Product Family Model contains a 

definition of the whole family, as well as of how 

any member of the family can be specified. 

When the configuration of variants is in focus, it 

may also be called a configurable product 

family model [12]. One important property in 

product family design (compared to that of a 

single product) is the simultaneous handling of 

multiple products. 

 

The Sales Configuration discipline deals 

with product customization that supports fast 

and reliable specification of product variants. 

Handling of the rules for variability and 

configuration/integration is strong and relies on 

knowledge about connectivity implemented in a 

configurator tool/system. Features of sales 

configurators are very similar to the needs of 

“simulation configurators”. Methods for 

analysis and definition of a product range and 

the standard product [10] will also apply for the 

simulation model set. 

 

Software Product Line (SPL) 

development is a way of organizing software 

and its release structure, similar to the Product 

Line approach described above. Key 

interconnected SPL activities are:  

 Core asset development (e.g. the models of 

various aircraft subsystems/equipments) 

 Product development (integration, build and 

delivery of simulation systems) 

 Management (planning for updates, 

delivery, resource allocation, etc.) 

 Quotation from [6]: “In a product line 

effort, Configuration Management (CM) is more 

complicated and reaches across all of the core 

asset and product-building projects and 

possibly even across product lines. It is usually 

appropriate to plan configuration management 

at the organizational level.” 

3.2 Configuration and data management 

Configuration models are used for handling data 

for development, certification, delivery, and 
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maintenance in a PDM/PLM (Product Lifecycle 

Management) context. 

There is no common industrial information 

model for data stored and maintained in CM or 

PDM/PLM systems, but information about and 

relations between the PDM objects may be 

defined as in [4]. Data included in a PDM 

system typically consist of  

 Core product information objects: 

o Configuration structure 

o Specifying and reporting documents 

o Realizations of various types 

o Product configurations 

 Planning objects: 

o Development steps/increments 

o Product features and functions 

o Work Packages – work items 

 Change Control objects: 

o Change Request (CR) feature/function 

o CR breakdown structure 

o CR responsibility, definition of work 

 

Product parts are handled in traditional 

PDM/PLM systems and means to also manage 

models of those parts is to some extent 

supported. There is, however, information 

missing in general PDM systems to fully 

support the configuration activity for simulation 

systems. For example, models representing the 

aircraft physical environment are not part of the 

product definition. This is true for models 

representing atmosphere, wind, vortex, and 

runway locations but also for tactical scenarios, 

pilot behavior and similar. 

Modeling and simulation environments, on 

the other hand, typically provide interfaces for 

integration with standard software configuration 

management (SCM) tools. Such tools are 

inherently strong in software version 

management, but lack support for model version 

and variant handling [2]. Model development 

environments need parts of the integrated 

support found in PDM systems for evolution 

and maintenance of realized products. Even if 

configuration of simulation model integration is 

not straightforward with PDM methods, change 

management (identification and definition of 

changes of models) aligns well. To manage 

constraints (rules) in the combinational logics of 

models, the sales configuration domain is strong 

and may support configuration of simulation 

systems. 

3.3 Parametric models 

Due to their flexibility, parametric models are 

particularly useful in modular simulation 

products, but also during the different product 

development stages. This means that parametric 

models fit well into an SPL approach. 

Definitions of different parameter types are 

illustrated in Fig. 3. 

Configuration Parameters (CP) are created 

through the PDM system and used during the 

simulator build/integration steps and prior to a 

simulation run to instantiate the models with a 

consistent set of System Parameters (SP). 

In PDM terms the model can be viewed as 

yet another realization of the PDM part.

 

 
Fig. 3. Model interactions: Input, Output, State, System Parameters and Configuration Parameters used in 

parametric models. 
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Typically, the CP are stored in PDM while 

SP are handled in a SCM tool, and in this work 

a proposed connection between CP and SP on 

the conceptual level is presented. 

3.4 Variant Configuration Language 

There have been attempts to support 

configuration activities with specialized tools 

and languages [11], [16], whereof one language 

is briefly described here. The XML-based 

Variant Configuration Language, XVCL, is a 

general-purpose mark-up language for 

configuring variants in a variety of software 

assets such as software architecture, program 

code, or test cases. In [11] four aspects are 

described: 

 To cope with a large number of features and 

feature dependencies 

 Functional dependencies among features 

implying that only certain combinations of 

variants may coexist 

 Adding new features to make new releases 

across all existing system variants (past 

releases in operation) 

 Selective propagation of new features (or 

other changes, error correction) to past 

releases 

3.5 Configuration data, CNA 

To describe product configuration data the 

similarity to genomes in biology may be used. 

Assume that every product instance (car, truck, 

aircraft) is viewed as an individual with its own 

specific configuration (genome), and that the 

configuration data is possible to represent in a 

structured information storage object. Let’s call 

this object a CNA-string (ConfiguratioN datA 

string). The CNA is used for on-board 

configuration i.e. loading a specific 

configuration into the computer/avionics system 

of a vehicle prior to usage, in order for its 

embedded system to “know” what configuration 

it has. It is also used for On-Ground 

configuration, i.e. loading a specific 

configuration into a simulator and setting 

parameters of included models to consistent 

values. Examples of data in some elements of 

the CNA-string are shown in Fig. 4. 
 

 
 

Fig. 4. Example of a CNA-string in XML format. 

  

By using the CNA approach, a tool for cross-

referencing or mapping of CP onto SP is 

introduced. The various validated CNA-strings 

containing consistent configurations can be 

stored in the simulation environment for easy 

access. An extension is to also store a consistent 

input and state vector for reliable initialization 

of the simulation model(s). 

4  Application example 

The application example is a product line effort 

for the Gripen fighter aircraft simulation models 

and examples of how they are integrated and 

used. See further [3]. 

4.1 PL approach 

As some models in the model store are used for 

several aerospace products the assets (models) 

reaches across product lines. Examples are the 

atmosphere, and wind models which are used 

for all airborne product lines (e.g. UAVs, fighter 

aircraft, space vehicles) at an enterprise level. 

The study is however limited to the Gripen 

product line, and all models are assumed to be 

fully managed within that scope. 
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Fig. 5. The model map shows a simplified model overview of the application example. 

 

4.2 Included models 

During the initial analysis step of the project a 

model overview was developed to gain a 

common understanding of included models and 

how the models are classified. The following 

classes of models (in a CM context) are 

identified, with reference to the simplified 

version of the overview in Fig. 5: 

 Models of aircraft surrounding, classified as 

“Physical” in the figure, are normally not 

included in the product part structure. 

Example: the atmosphere model. 

 Models of aircraft parts (mechanical 

assemblies or whole aircraft subsystems, 

but also sensors and actuators) classified as 

“Aircraft”. Example: the engine model. 

 Models of avionics product parts (e.g. 

electronic control units, ECUs) classified as 

“Avionics”. Example: the Air Data 

Computer, ADC. 

 Models of embedded software classified as 

“ACSSW” (Aircraft Computer System 

SoftWare). Example: the navigation 

software. 

 Models of payload and stores that may not 

be included in the aircraft product structure 

but are separate products classified as 

“Stores”. Example: the droptanks. 

There are also some special models, for 

example: pilot behavior and tactical scenarios. 

4.3 Use Case examples 

Simulation modeling, including scenario 

creation, is considered to be a basis of general 

simulation frameworks [8]. Batch simulation 

runs are typical scenario examples of simulator 

use. They are relevant for development and 

verification contexts, but not for training. 

To be able to repeat simulations over and 

over again a set of reusable Operational Usage 

Scenarios (OUS) are created and stored in a 

scenario library. An OUS is based on a pre-

condition where the aircraft and its systems are 

“parked” in a steady state or stationary 

operating point, on the ground or in the air. 
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From this steady state a dynamic 

evolution/simulation is started. 

 

Basic scenarios are typical “sunny-day” 

usage of the product, with all systems fully 

functional. It is possible to introduce failure(s) 

as a pre-condition in the stationary operating 

point or during the dynamic simulation. The 

time-efficiency of the simulation runs depends 

on the time it takes to obtain a stable operating 

point in advance of each simulation. One way 

to increase the efficiency is to calculate and 

save steady-state solutions to the library in 

advance and use these to initiate the simulation 

model during the batch run. 

 

Fig. 6 gives an introduction to three use 

case variants, how batch mode simulations are 

structured when adding new product variants, 

when adding new specified usage, or when re-

testing existing definitions. Given 

 a set of Product Variants (PV) 

 a set of Operational Usage Scenarios (OUS) 

there is a matrix with mappings of 

applicable OUS versus PV as shown in Fig 6. 

Fig. 6. The matrix shows operational usage 

scenarios to be simulated for a range of product 

variants. Regression test points are also indicated. 

4.4 Usage Sweep Use Case  

When a new product configuration or variant is 

decided to be offered or delivered, simulations 

need to be performed for applicable OUS. In 

batch script pseudo-code it will look like:  

 

 

With selected PV [m+1] 
  Integrate models 
  Instantiate the models 
  For all OUS [1..n+1] 
    Initiate the models 
    Simulate PV for given OUS 
    Store results for evaluation 
  End for 
End with 
 

This simulation pattern is typically relevant 

when a PV is selected for production and will 

undergo test and verification activities as basis 

for certification and delivery. 

4.5 PV Sweep Use Case  

This Use Case variant defines a need from the 

opposite viewpoint. Simulation is performed 

for a OUS for all applicable PVs. The 

corresponding pseudo-code is: 

 
With selected OUS [n+1] 
  For all PV [1..m+1] 
    Integrate current PV models 
    Instantiate the models 
    Initiate the models 
    Simulate PV for given OUS 
    Store results for evaluation 
  End for 
End with 
 

Thus, the challenge in the second use case 

example is to build, instantiate, and initiate a 

set of consistent simulation models that are 

representing (all) the product variants within 

the product range. The Use Case is relevant 

when a different usage of the product (family) 

is defined, e.g. a new defined combination of 

internal/external stores, or operation in “new” 

environments. 

4.6 Regression test Use Case 

The third example applies to modifications or 

corrections in subsystems of the product line 

(including existing products). In order to ensure 

functionality and performance to some extent 

without analyzing an overwhelming amount of 

simulation results, a subset of indices of the 

PV-OUS matrix is pre-selected for thorough 

regression testing. In pseudo-code format: 
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For all selected PV-OUS indices 
  Integrate current PV models 
  Instantiate the models 
  Initiate the models 
  Simulate PV for given OUS 
  Store results for evaluation 
End for 

 

Selected indices are viewed as circles with an 

“R” in Fig. 6 specifying regression test PV-

OUS pairs. Regression test examples could be 

e.g. changed sub-supplier of some aircraft 

equipment. 

5  Results 

Results are gained in the investigation of how 

the PDM structure and the simulation model 

structure are aligned and also in modeling of 

the simulation models variability through a 

Product Variant Master. 

5.1 Alignment between PDM and simulators. 

Preliminary results show that the data needed to 

configure an aircraft simulation can only partly 

be obtained from the PDM data-set because 

there are models representing things not 

included as parts in the aircraft part structure. 

Of the different model classes listed in section 

4.2, the “Aircraft” and “Avionics” classes are 

well aligned. The “ACSSW” and “Stores” 

classes may be aligned depending on the level 

of details handled in the system. The models in 

the “Physical” class have to be treated as 

separate parts if the PDM approach should 

provide any value.  

Further, it should be noted that the 

simulation model structure does not align to the 

(PDM) product configuration structure, due to: 

 separation of the algorithm part from the 

data part in parametric models 

 models are clustered into bigger models 

representing several parts in the PDM part 

structure. 

 

The two different structure patterns are 

illustrated in Fig. 7 and 8 respectively. 

 

 
Fig. 7. Product part structure. 

 

 
Fig. 8. Model structure. 

 

Change management through PDM 

concepts is shown to be usable for models, 

even though the models themselves are not 

included in the PDM system. Requests for and 

planning of model changes are defined through 

Change Control and Planning objects. 

Configuration of models is better suited to be 

performed in the simulation environment. 
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5.2 Product Variant Master 

The product line model is partly implemented 

as a “Product Variant Master” PVM, according 

to the methodology in [9].  

 

 
 

Fig. 9. Product Variant Master model for the 

application example. 

The PVM includes rules to constrain the 

combinations in order to avoid a combinatorial 

explosion. A screenshot from an example PVM 

model in the Product Model Manager tool [13] 

is shown in Fig. 9. 

6  Conclusions and further work 

The following conclusions have been drawn so 

far in the project;  

 As computer performance increases, the 

number of useful simulation models 

representing products and/or product parts 

grows in industry and the models are also 

included in training of end users.  

 There is a need to support the configuration 

specification activity in order to integrate 

and build consistent combinations of 

models into large-scale simulations. 

 A method based on genealogy principles 

for specifying a product’s configuration in a 

so called CNA-string is introduced.  

 The simulation model structure does not 

align to the (PDM) product configuration 

structure due to separation of algorithms 

from data and that models are clustered to 

represent several PDM parts. 

 The CNA-string approach is proven to 

work in practice and is promising as a basis 

for integration of configuration data 

between the PDM and simulation tools. 

 

Further work is to develop methods to 

support the build/integration process steps from 

configuration specification to back-reporting of 

actual simulation configuration. Comparison 

methods are needed to analyze differences in 

specified configuration versus actual 

configuration. More stringent mapping of 

product models by meta-modeling is planned. 
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