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Abstract  

This paper presents a Reinforcement Learning 
control methodology to the problem of 
unmanned air vehicle morphing. An innovative 
morphing UCAV  with the capabilities in 
creating the two wing changes of configuration 
and shape is induced to develop the RL control 
method, and the control vector of the morphing 
UCAV is defined as the rotary angle 
displacements of those smart joints in two wings 
that changes the morphing vehicle shape 
towards the optimal one, and the control vector 
is associated with those aerodynamic force and 
moment parameters by a neural network,  all of 
which may not have been experienced before. 
The Reinforcement Learning module of the 
morphing UCAV is implemented by Q-Learning 
method. The RL module is composed of the 
states, actions, Q-matrix, Q-learning update, 
reward, and control police, and so on. The RL 
methodology is demonstrated with a numerical 
example of a hypothetical 3-D smart unmanned 
air vehicle that can morph in the configuration 
and shape of wings, to track a specified 
trajectory by running the RL control module. 
Results presented in the paper show that this 
methodology is capable of learning the required 
morphing into it, and accurately tracking the 
reference trajectory. 

1  Introduction  
It has been interested to develop an aircraft 
which has been designed to both effectively and 
efficiently complete a multi-disparate mission. 
An example of such a mission is one which 
requires an aircraft to have both long loiter 

endurance as well as supersonic fight 
capabilities. A solution to achieve the required 
performance for this scenario is an aircraft that 
could radically change both its size and shape, 
or morph. 

In the context of flight vehicles, Morphing 
for Mission Adaptation is a large scale, 
relatively slow, in-flight shape change to enable 
a single vehicle to perform multiple diverse 
mission profiles, and is defined as the Wing 
Configuration Change, such as the wing’s 
length extending or shrinking, and the wing’s 
area augmenting or dwindling; Conversely, 
Morphing for Control is an in-flight physical or 
virtual shape change to achieve multiple control 
objectives, and is defined as the Wing Shape 
Change, such as the maneuvering, flutter 
suppression, load alleviation and active 
separation control, and so on. 

This paper develops an Reinforcement 
Learning Control methodology by using a 
Aerodynamic Calculating Neural Network, the 
Six Freedom Equation, and the Q-learning 
Update Module, to more efficiently and 
accurately generalize the knowledge gained 
from iterative experiences. 

The design and use of distributed shape-
change devices to provide low-rate maneuvering 
capability for a tailless aircraft is considered in 
[1]. An improved Adaptive-Reinforcement 
Learning control methodology to the problem of 
unmanned air vehicle morphing is presented in 
[2]. Reinforcement Learning is utilized with an 
antenna model to demonstrate that antenna 
elements equipped with SMA actuators in [3]. A 
novel UAV upset recovery system is developed 
that combines the benefits of robust control with 
the benefits of intelligent learning techniques in 
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[4]. It is more beneficial to learn the voltage 
position relationship in order to control Shape 
Memory Alloy wires using Reinforcement 
Learning in [5]. 

The paper is organized as follows: Section 
2 explains in detail the configuration and control 
regulation of an conceptual morphing UCAV. 
The flight control method of the morphing 
UCAV based on Reinforcement Learning is 
presented in Section 3. Section 4 talks about the 
numerical example. Section 5 summarizes the 
conclusions. 

2  Configuration and Control Regulation of 
an Conceptual Morphing UCAV  

2.1 Translating Fashion of the Morphing 
UCAV’s Configuration  
For making an aircraft to have both long loiter 
as well as  rapid dive fight capabilities, it must 
be depended on that the three-dimensional 
morphing wing technology.   

Thereby, a hypothetical example of 
morphing UCAV is shown in Fig.1. The aircraft 
is able to achieve both the three configuration 
changes of straight, small-forward-bend and 
large-forward-bend wing in Fig.1 and the three 
wing shape changes of bend, warp and twist by 
controlling those smart joints in two wings. The 
six joints in the left wing are defined as 

, , , , , and  in Fig.2, while  the 
joints of the right wing are same. Each joint is 
designed to turn respectively round the body 

1L 2L 3L 4L 5L 6L

x , , andy z axis for achieving the all 
configuration  and shape changes of the wings. 
 

 
Fig.1. The Conceptual Morphing UCAV  
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Fig.2. The Approach of Achieving Morph 

 

 
Fig.3. The Morphing Panorama of the Aileron 

Function  
 

 
 

Fig.4. The Morphing Details of the Aileron Function 
 

 
Fig.5. The Morphing of the Tail-wing Function 
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2.2 Definition of the Control Vectors of the 
Morphing UCAV 

The vectors of controlling shape changes are 
defined as follows: 
Let 1 1 1( , , , , , ,i i ,iAL ALx ALy ALz ALx ALy ALz=

, , , , )m m mALx ALy ALz ALt  

1 1 1( , , , , , ,i i ,iAR ARx ARy ARz ARx ARy ARz=
, , , , ) 6m m mARx ARy ARz ARt m =  

iALx , iALy ,and iALz are the rotary angle 
displacements of  the L  joint turning 
respectively round the body 

i

x , , andy z axis 
and  is deflection of the left tail-wing , 
while the meaning of

ALt
iARx , iARy , iARz , and 

 is similar. ARt AL and AR  are used to describe 
the shape–change driving states of the morphing 
UCAV. Each shape–change driving state 
induces actually one only aerodynamic force 
and moment state of the morphing aircraft. Let 

1 2( , , , ) ( , , , , )k n cA a a a AL AR q α β= = =

)
)

 

1 3 3 1 3 2 3 3 2 2 1( , , , , , , , , )m m m m m n n na a a a a a a a+ + + + − −     
 1 2 3 3 1( , , , , )m mAL a a a a +=

3 2 3 3 3 3 2( , , ,m m m mAR a a a+ + + +=     

2 1( ), ( ), (c n n nq a a aα β− −= = =  

1 2( , , , )k pB b b b=

1 2( , , ) ( , , , , , ), 6k qC c c c L D Y M L N q= = =  
L  is the lift force, D  is the drag force, Y  

is the side force, M is pitching moment, L is 
rolling moment, and N  is yawing moment;  
is the dynamic press, 

cq
α  is the attack angle, β  

is the side-slip angle. 
A three-layer neural network is created and 

shown in Fig.3. The input, hidden, and output 
layer vectors are defined as kA ( =41), , and 

( =6), respectively. 
n kB

kC q

Fig.6.  The Neural Network Architecture 

 
The activation function is ( ) tanh( )f x x= . 
The forward calculating process is shown as: 

1 1
( ), (

pn

j ij i j t jt j
i j

b f w a c f v b )tθ γ
= =

= − =∑ ∑ −  

The approach of acquiring the Neural 
Network samples is presented as follows: 
        When the aircraft flights by keeping a 
certain Euler angles such as hovering with a 
small roll angle, the control vectors of AL and 
AR  are measured from the all joints in two 
wings and tail-wings of a three-dimensional 
morphing UCAV model built by employing the 
CATIA software, and the all aerodynamic 
forces and moments  of   ,L D , Y , M , L , and 

 are calculated by employing the FLUENT 
software. The three samples are shown as 
follows: 

N

1,2,3 1 2 41( , , , ) ( , , , , )cA a a a AL AR q α β= = =  

1 19 20 38 39 40 41( , , , , , , , )a a a a a a a      

1,2,3 1 2 19( , , , )AL a a a= =  

1 1 1 2 2 2 3 3( , , , , , , , , 3,ALx ALy ALz ALx ALy ALz ALx ALy ALz

4 4 4 5 5 5 6 6, , , , , , , , 6 ,ALx ALy ALz ALx ALy ALz ALx ALy ALz
)ALt  

(0.0,5.0,0.0,0.0,5.0,0.0,0.0,10.0,0.0,=
0.0,10.0,0.0,0.0,15.0,0.0,0.0,15.0,0.0,15.0)  

1,2,3 20 21 38( , , , )AR a a a= =  

1 1 1 2 2 2 3 3( , , , , , , , , 3,ARx ARy ARz ARx ARy ARz ARx ARy ARz

4 4 4 5 5 5 6 6, , , , , , , , 6 ,ARx ARy ARz ARx ARy ARz ARx ARy ARz
)ARt  

(0.0, 5.0,0.0,0.0, 5.0,0.0,0.0, 10.0,0.0,= − − −
0.0, 10.0,0.0,0.0, 15.0,0.0,0.0, 15.0,0.0,15.0)− − −  

2
1,2,3 39( ) 9433.6 /cq a N= = m  

1,2,3 41( ) 0aβ = = , 1 40( ) 2aα = =  

1 1 2 6( , , ) ( , , , , , )C c c c L D Y M L N= = =  
(90019,17709,906,896,511901, 89963)−  

1a

na

1c

qc

11w

ijw

11v

jtv

2 40( ) 5aα = =  

2 1 2 6( , , ) ( , , , , , )C c c c L D Y M L N= = =  
(152618,26472,2757,7637,454141, 99041)−  

3 40( ) 8aα = =  

3 1 2 6( , , ) ( , , , , , )C c c c L D Y M L N= = =  
(194606,39241,5886,15864,399838, 84669)−  
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where the unit of  L , D and Y  is ( ), and the 
unit of  

N
M , L and  is ( ) . N N m⋅

3 Flight Control Method of the Morphing 
UCAV Based on Reinforcement Learning  

3.1 Mathematical Model for the Dynamic 
Behavior of the Morphing UCAV  

The dynamic behavior of the morphing air 
vehicle is modeled by the nonlinear six degree 
of freedom equations. The dynamic equations 
are partitioned into ‘kinematic level’ and 
‘acceleration level’ equations. The kinematic 
level variables are xd , yd , , zd φ , θ and ψ . 
The states xd , yd , are the positions of the 
center of mass of the morphing vehicle along 
the inertial , , and 

zd

NX NY NZ  axis. The states φ ,  
θ , and ψ  are the 3-2-1 Euler angles which give 
the relative orientation of the body axis. The 
acceleration level states are the body-axis linear 
velocities , , and the body-axis angular 
velocities 

u v w
p , , . Let  q r

[ ] , [T
c x y z cp d d d v u v w= = ]T

]

 

[ ] , [T Tp q rσ φ θ ψ ω= =  
The kinematic states and acceleration states 

are related by the differential equations 
,c l cp J v Jασ ω= = . where 

l

C C S S C C S C S C S S
J C S S S S C C C S S S C

S S C C C

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

⎡ − +
⎢= +⎢
⎢ −⎣

⎤
⎥− ⎥
⎥⎦

      

1 tan( ) tan( )
0
0 sec( ) sec( )

a

S C
J C S

S C

φ φ

φ φ

φ φ

θ θ

θ θ

⎡
⎢= −⎢ ⎥
⎢ ⎥⎣ ⎦

⎤
⎥

 

cos( )Cφ φ= , sin( )Sθ θ= , and so on. 
The acceleration level differential 

equations are 
c cmv mv F Fdω+ = +  

k dI I I M Mω ω ω ω+ + = +  
where  is the mass of the morphing air 

vehicle, is the control force,  is the drag 
force, 

m
F dF

I  is the body axis moment of inertia, kM  

is the control torque, dM  is the drag moment,  
and Vω  is the matrix representation of the 
cross-product between vector ω and vector V . 

            
0

0
0

r q
r p
q p

ω
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

( , , , )F F L D Y T= ， ( , , )  M M M L N=k

where  T  is the engine push force. 
The shape–change driving states and the 

position states of the morphing UCAV are 
related by the calculating process from neural 
network to six degree of freedom equations. 

3.2 Implementation of  the Reinforcement 
Learning Module of the Morphing UCAV  

Reinforcement Learning (RL) is a branch of 
Artificial Intelligence in which the system 
learns to recognize situations and appropriately 
adapt to achieve a goal without external 
supervision. This technique is suited for 
situations in which little or nothing is known 
about how to achieve the desired outcome. The 
agent is responsible for learning based on its 
encounters with various environmental, or 
external conditions. Possible conditions for the 
agent itself are called states s , and the agent is 
capable of pursuing certain actions a  to change 
its state. The control policy π  is a mapping of 
states to actions; this mapping is used by the 
agent to select the best action while at a 
particular state. It is the ultimate goal of the 
agent to learn the optimal control policy. The 
desirability of a certain behavior is determined 
by rewards r , which are used to update the 
control policy. 

• The Q-Learning Update  
Reinforcement Learning (RL) algorithms 

are based on estimating value functions. The 
most general one is the action-value function 

, which estimates how good it is, under 
policy 

( , )Q s aπ

π , for the agent to perform action a  in 
state . It is defined as the expected return 
starting from s , taking action a , and thereafter 
following policy 

s

π . The process of computing 
 is called policy evaluation. ( , )Q s aπ π  can be 

improved to a better π ′ that, given a state, 
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always selects the action, of all possible actions, 
with the best value based on . This 
process is called policy improvement.  
can then be computed to improve 

( , )Q s aπ

( , )Q s aπ ′

π ′  to an even 
better π ′′ . The ultimate goal of RL is to find the 
optimal policy π ∗  that has the optimal action-
value function, denoted by  and defined 
as . This recursive way 
of finding an optimal policy is called policy 
iteration. 

( , )Q s a∗

( , ) max ( , )Q s a Q s aπ
π

∗ =

In this paper, the RL module uses a 1-step 
Q-learning method, which is illustrated as 
follows: 

Q-Learning( ) 
·Initialize  arbitrarily ( , )Q s a
·Repeat (for each episode) 

- Initialize  s
- Repeat ( for each step of the episode) 

* Choose a  from  using policy 
derived from  

s
( , )Q s a

* Take action , observe ,  a r s′
* ( , ) ( , ) {Q s a Q s a rα← + +  

max ( , ) ( , )}a Q s a Q s aγ ′ ′ ′ −  
                *  s s′←
            - until  is terminal s

·return  ( , )Q s a
    The discount factor γ ,  dictates how much 
weight is to be given to long-term, rather than 
immediate rewards. The rate of learning 
parameter α , is related to the probability of 
state transferring (the number of times a specific 
state is encountered).  
    In this paper, γ =0.5 and α =1.0.  

• The Possible States  
        The thing it interacts with, comprising 
everything outside the agent, is called the 
environment. The agent interacts with it’s 
environment at each instance of a sequence of 
discrete time steps. At each time step, the agent 
receives some representation of the environment 
state. All possible environment states may be 
defined as a set of the flight condition which the 
vehicle is flying in.  

The flight condition of the morphing 
vehicle is actually composed of many sorts 
maneuver actions.  However, for reducing 
complexity of the research in this paper, the 

state is designed to only consist of four typical 
flight conditions, and state is defined as: 

0 1 2 3( , , , )S s s s s=  
where , , and  represent the flight 

conditions of cruise, dive, climb and hover, 
respectively.  

0s 1s 2s 3s

 
• The Possible Actions  
The environment changing and state 

transferring are driven by selecting a special  
action in the RL module. In this paper, the 
action of the morphing vehicle should be 
defined as the configuration and shape changes 
of two wings formed by controlling all twelve 
smart joints ( , , , , , ,1L 2L 3L 4L 5L 6L 1R , 2R , 3R , 4R , 

5R  and  defined in Fig.1) and the deflection 
changes of  two tail-wings, theoretically. 

6R

However, the parameters describing the 
action will be too much to employ directly in 
the RL module. For simplifying  the research in 
this paper, the middle action is designed by 
introducing five parameters:   

WC , , ,  and   LSA LST RSA RST
where WC  represents Wing Configuration with 
three values of  SW (Straight Wing), SF  
(Small-Forward-Bend), and LF (Large-
Forward-Bend);  represents the Left wing 
Shape of Aileron function with five values of 
0(no deflection),±1(up and alow narrow-angle 
deflection), and ± 2(up and alow wide-angle 
deflection);  represents the Left Tail-wing 
Shape with five values of  0, ±1 and ±2 
( meaning of deflection is similar to );  The  
definition of RS  and  is similar to LSA  
and .  

B
B

LSA

LST

LSA
A RST

LST
It is apparent that the amount of all 

possible middle actions is also very large,  
thereby ten middle actions ( ～ ) continually 
employed in this paper’s states are distilled for 
simplifying  the research and shown in Table 1. 

0a 9a

Based on above analysis, in this paper, the 
action set of the RL module is defined as:  

0 1 2 3 4 5 6 7 8 9( , , , , , , , , , )A a a a a a a a a a a=  
The corresponding relation between the 

control vectors ( AL and AR ) and those typical 
actions such as  ( , ,  and ) is shown in 
Table 2 and Table 3.  

1a 2a 7a 8a
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Table 1. The Definition of the Actions  Table 3. The Corresponding Relation between the  
Control Vector ( AR ) and those Typical Actions                              

       
Table 2. The Corresponding Relation between the 

Control Vector ( AL ) and those Typical Actions 
 

                                                       Unit: degree 

 

 
Unit: degree 

 
• The Q-Matrix Defining Action-Value 

Function  
The agent observes the consequences of 

actions as they are taken and it uses this data to 
anticipate future outcomes of various state-
action pairs. In this paper, the number of the 
states and actions of the RL module is not large 
due to the simplifying work illustrated above.  
Thereby, ( ),Q s a  can be represented using a 
table, where the action-value for each state-
action pair is stored in one entity of the table.  

The table is also shown as Q-Matrix. the 
probability that a particular state-action pair is 
the best choice, regardless of the goal, is 
dictated by the Q-Matrix. Each row of the Q-
Matrix represents an action, while each column 
represents a state.  

A   WC       LSA LST RSA RST

0a           0         0         0          0 SW

1a          +1       -1       +1        +1 SW

2a          0         0        -1         -1 SFB

3a          0         0        -2         -2 LFB

4a          0         0        -1         -1 LFB

5a          0         0         0          0 LFB

6a         +1       -1       +1        +1 LFB

7a         +2       -2       +2        +2 LFB

8a           0         0       +2        +2 SFB

9a           0         0       +1        +1 SFB

A′                     1a 2a 7a 8a

1ALx        0.00        0.00        0.00        0.00 

1ALy        5.00        0.00      10.00        0.00 

1ALz        0.00        9.00      15.00        9.00 

2ALx       0.00        0.00         0.00        0.00 

2ALy       5.00        0.00       10.00        0.00 

2ALz        0.00        9.00      15.00        9.00 

A′                     1a 2a 7a 8a

1ARx        0.00       0.00        0.00        0.00 

1ARy       -5.00       0.00     -10.00       0.00 

1ARz        0.00       9.00       15.00       9.00 

2ARx        0.00       0.00         0.00       0.00 

2ARy      -5.00       0.00      -10.00       0.00 

2ARz        0.00      9.00        15.00       9.00 

3ARx        0.00       0.00         0.00       0.00 

3ARy     -10.00       0.00      -20.00      0.00 

3ARz        0.00     20.50        34.00    20.50 

4ARx        0.00      0.00          0.00      0.00 

4ARy     -10.00      0.00       -20.00     0.00 

4ARz        0.00     20.50        34.00    20.50 

5ARx        0.00       0.00         0.00       0.00 

5ARy     -15.00      0.00      -30.00       0.00 

3ALx        0.00        0.00        0.00        0.00 

3ALy      10.00        0.00      20.00        0.00 

3ALz        0.00      20.50      34.00      20.50 

4ALx        0.00        0.00        0.00        0.00 

4ALy      10.00        0.00      20.00        0.00 

4ALz        0.00       20.50      34.00      20.50 

5ALx        0.00         0.00        0.00        0.00 

5ALy      15.00         0.00      30.00        0.00 

5ALz        0.00       33.20      48.70       33.20 

6ALx        0.00         0.00        0.00        0.00 

6ALy      15.00         0.00       30.00       0.00 

6ALz        0.00        33.20      48.70      33.20 
ALt        15.00      -15.00      30.00      30.00 
 

5ARz        0.00     33.20        48.70     33.20 

6ARx        0.00      0.00          0.00       0.00 

6ARy    -15.00       0.00       -30.00      0.00 

6ARz        0.00     33.20        48.70     33.20 
ARt       15.00    -15.00        30.00     30.00 
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( ),Q s a =  

0 1 2 3

0

1

2

3

4

5

6

7

8

9

7.00 5.50 5.00 4.50
6.5 6.0 3.5 8.0
7.0 9.0 2.5 1.0
6.0 8.5 1.5 0.5
5.0 8.0 2.0 0.8
4.5 5.0 4.0 5.5
7.0 4.5 3.5 8.0
6.5 4.0 2.5 8.5
5.5 2.0 8.0 4.5
6.0 2.2 7.5 5.0

s s s s
a
a
a
a
a
a
a
a
a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
• The Reward Function  

Let  2 2
0 0 0[( ) ( ) ( ) ]x x y y z zd d d d d d d= − + − + − 2 0.5

Where xd , yd , and d  are the coordinates value 
of the aircraft’s space position; 

z

0xd , 0yd , and 
 are the coordinates value of the base point 

on the reference trajectory. The selected base 
point should ensure that  is the shortest one. 

0zd

d
 

The reward function is defined as: 
0.2 0 0.2
0.1 0.2 0.5

0 0.5
0.1 2
0.2 2

d d
d e d

r e d e
d e d e
d d e

< ≤⎧
⎪ < ≤⎪⎪= < ≤⎨
⎪− < ≤⎪
− >⎪⎩

e
e

 

where  is the allowable error of tracking 
flight trajectory. 

e

 
• The Control Policy  
This paper’s option is an ε − greedy policy, 

where ε  is a small value. The action a  with the 
maximum  is selected with probability ( ,Q s a)
1 ε− , otherwise a random action is selected.  

 
For the present research, the smart 

morphing vehicle attempts to minimize the total 
amount of reward over the entire flight 
trajectory. To reach this goal, it endeavors to 
learn, from its interaction with the environment, 
the optimal policy that, given the specific. 

Flight condition, commands the optimal 
rotary angle displacements of those joints in two 
wings (short for rotary angle displacements 
infra) that changes the morphing vehicle shape 
towards the optimal one. The environment is the 
flight conditions which the vehicle flying in. We 
assume that the RL module has no prior 
knowledge of the relationship between rotary 
angle displacements and the dimensions of the 
morphing vehicle, as defined by morphing 
control vectors AL and AR . Also it does not 
know the relationship between the flight 
conditions, rewards and the optimal shapes. 
However, the RL module does know all 
possible rotary angle displacements that can be 
applied. It has accurate, real-time information of 
the morphing vehicle shape, the present flight 
condition, and the current reward provided by a 
variety of sensors. 

4 Numerical Example  

4.1 Purpose and Scope  
The purpose of the numerical example is to 
demonstrate the performance of the RL flight 
control method for tracking trajectory. For 
learning purposes, a reference trajectory that the 
vehicle is required to track is specially designed   
to simulating a typical dive-bomb flight process 
and shown in Fig.7. The total flight path is 
divided into thirteen segments marked by the 
points of d0-d12. The space position of d0-d12 
is shown in the Table 4.  

Fig.7. The Reference Trajectory 

d0d0

d1d1

d2d2

d3d3

d5d5
d6d6

d8d8
d9d9

d10d10
d11d11

d12d12
d7d7

d4d4

d0d0

d1d1

d2d2

d3d3

d5d5
d6d6

d8d8
d9d9

d10d10
d11d11

d12d12
d7d7

d4d4
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Table 4.  The Space Position of the Reference 
Trajectory 

                                                Unit: meter 

       
      The reference trajectory is designed as a 
combination of two smooth curves (from d2 to 
d10 counter-clockwise, and from d4 to d8   
clockwise) and two semicircular curves (from 
d2 to d4, and from d8 to d10, clockwise).  The 
two smooth curves form the two planes, 
respectively. The distance along to the Y axis 
between the two planes is 1000 meters; The 
distance along to the X axis between d3 and d9 
is 12500 meters; The distance along to the Z 
axis between d3 and d9 is 2700 meters. 

In the numerical example, the morphing 
UCAV is required to not only flight through all 
points of d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, 
d10, d11, and d12 in sequence, but also has a 
initial velocity of Mach 0.5 at the point d0 and 
the least of the spending time. Hereby, the 
morphing UCAV must increase flying velocity 
by adaptively changing the configuration and 
shape of  the wings, and besides, it need 
accurately tracking trajectory. 

4.2 Reinforcement Learning Flight Control 
Architecture 

The relation between all parameters and 
function modules in section 2 and section 3 is 

shown  in the Reinforcement Learning Flight 
Control Architecture, Fig.8 .  
 

 Fig.8. The RL Flight Control Architecture 
 

The Reinforcement Learning Flight 
Control Architecture is composed of two sub-
systems: Dynamic Behavior (DB) and 
Reinforcement Learning (RL).  

The DB system including Aerodynamics 
Calculating Neural Network and Six freedom 
equation is used to work out the linear velocities 

cp and angular velocities  in terms of the 
morphing control vectors:

cv
AL and AR , and 

cp ,  will make the RL system’s current state 
 transfer to the next middle state 

cv
t
is 1t

js +′ .  
The RL system  is used to implement the 

iterative process of optimizing  shape changes 
policy: , , , and  derived from 1s 2s 3s 4s cp and  
by the States Simplifying module make up of 
the  States Set S ; , , , , and 

 derived from 

cv

WC LSA LST RSA
RST AL and AR  by the Actions 
Simplifying module make up of the  Actions Set 
A ; The Action-value function Q-Matrix is 
formed based on the experiences of the 
probability that a particular state-action pair is 
the best choice, and is the most important 
module of the RL system; The Actions selecting 
policy module initially commands an arbitrary 
action  from the Actions Set t

ka A  in term of the 
current state  and Q-Matrix, and  is 
transformed  into  which represents the 
morphing control vectors for driving the DB 
system running; The effect of tracking trajectory 
is evaluated with the reward function; The 
action-value function updates itself in terms of 
the Q-Matrix, the current state , the next state 

t
is t

ka
t

ka′

t
is

   D           Y      X Z     

              2500      500       5000 0d
                  0        500       5000 1d
             -2000     500        5700 2d

3d         -2500        0         5900 

4d         -2000    -500       5800 
                  0       -500       5500 5d
             1600      -500       5300 6d
              6000     -500       4400 7d
              9500     -500       3800 8d
            10000         0        3800 9d
             9500      500       3600 10d
              6400      500       3200 11d
             4000      500        4000 12d
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 1t
js + , the current action , and the reward. The 

two sub-systems interact significantly during 
both the episodic learning stage, when the 
optimal shape change policy is learned, and the 
operational stage, when the plant morphs and 
tracks a trajectory.  

t
ka

4.3 Trajectory Tracking  
The numerical example has been carried out 
based on both the RL flight control module 
implemented in the section 2 and section 3, and  
the  RL flight control architecture in Fig.8 .  

 
Fig.9c The Side View of the Simulation Results 
 

The results of simulating calculation are 
presented as follows: The effect of tracking a 
reference trajectory is shown in Fig.9a, and 
Fig.9b, 9c, 9d show the top view, side view, and 
front view, respectively. The gray broken line, 
red real line, and green real line represent the 
reference trajectory, the initial flight trajectory 
without learning, and the final flight trajectory 
after learning, respectively.  The most bad error 
of tracking trajectory is greater than 100 meters 
in initial phase and may be limited to 50 meters 
when the reward of the RL module has reached 
stability.  

 
Fig.9d The Front View of the Simulation Results 

 
In the numerical example, any experiences 

are actually induced to shorten the time of 
spending on the learning process of tracking the 
reference trajectory and it does not be absolutely 
unaware of the relationship between the flight 
conditions, rewards and the optimal shapes. A 
typical scenario is designed as:  

The hypothetical morphing UCAV that can 
morph in both wing configuration and shape 
corresponding to flight condition along the 
trajectory experiences an attacking flight with 
four phases. The UCAV flights by employing 
straight wing in the cruise phase, by employing 
small-forward-bend wing in the glide and climb 
phase, and by employing large-forward-bend 
wing in the dive-bomb phase. In each flight 
phase, the UCAV controls Euler angles by 
driving those smart joints in two wings and tail-
wings. By utilizing the 3D-MAX software, the 
flight simulation of the morphing UCAV has 
been made and shown in Fig.10. 

 
Fig.9a The Simulation Result of  Tracking Trajectory 

Fig.9b The Top View of the Simulation Results  
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Fig.10. The Flight Simulation of the Morphing UCAV 

5 Conclusions 
This paper developed a Reinforcement Learning 
Control methodology for morphing aircraft, 
combining morph policy learning and dynamic 
behavior controlling.  

An innovate morphing UCAV concept has 
been created to achieve the three Configuration 
changes (straight, small-forward-bend and 
large-forward-bend wing) and  three Shape 
changes (bend, warp and twist) by controlling 
those smart joints in two wings. 

The morphing control vectors that have be 
defined as the rotary angle displacements of  the 
joint turning respectively round the three body 
axis and deflection of the tail-wing are used to 
describe the shape–change driving states of the 
morphing UCAV. Each shape–change driving 
state induces actually one only aerodynamic 
force and moment state of the morphing aircraft. 

For establishing the complicated and 
nonlinear mapping from the morphing control 
vectors to those aerodynamic force and moment 
parameters, a three-layer neural network has 
been created. The shape–change driving states 
and the position states of the morphing UCAV 
are related by the calculating process from the 
neural network to the six degree of freedom 
equations. 

For achieving the flight control to track a 
reference trajectory, the Reinforcement 
Learning Module of the Morphing UCAV has 

been implemented based on the Q-Learning 
method. For simplifying  the research in this 
paper, the states and actions of the RL module 
have been designed by introducing a few 
transition parameters. The Action-value 
function Q-Matrix is formed based on the 
experiences of the probability that a particular 
state-action pair is the best choice. 

The numerical example of simulating an 
attacking flight process has been carried out 
based on the RL system. The results of 
simulating calculation are shown that the error 
of tracking trajectory may be limited to a better 
level. However, the above result is still primary 
and can not be compared with traditional 
aircraft because it has not been considered in 
this paper that many factors such as the inertia 
and mass changes as the aircraft morphs into 
different shapes, the primary aerodynamic 
forces and moments excepted. 
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