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Abstract

The objective of this paper is to present
simulation models and the design of control

laws for the helicopter Skeldar V150. The
simulation models include rotor dynamics,

flight mechanics and the coupling between these

equations and the rotor mechanism. The models,

which are derived from fundamental physical
laws, have been implemented in the symbolic
mathematical software Maple which enables an
efficient procedure for model analysis and
simplifications of the governing equations
together with automatic code generation.

Flight test, Optimization

paper focus on an early version of the helicopter
V150 (see fig 1). The outline of the paper is the
following. In section 2 the flight mechanical
models are discussed, the use of symbolic
calculation, which is an essential part for
deriving the different models, is presented in
section 3. Section 4 and 5 consider black box
modelling and the design of control laws and
simulation results are finally discussed in
section 6.

A black box version of the dynamic equations,
which were used both for the initial
development of the control laws and for the
validation of the models above, has been
constructed using system identification. The
black box models, which describe the roll, pitch
and roll motions and the translation velocities,
consist of simple linear systems having
parameters which are identified from flight test

data, mainly data from hovering conditions.

Fig 1. The autonomous helicopter Skeldar V150

Comparisons between the nonlinear simulation
model, a linearized version, the black box
version and flight test data are presented in the
results section in this paper.

1 Introduction

Since 2006 Saab Aerosystems has been
deweloping the unmanned autonomous
helicopter Skeldar. The helicopter is designed
for both military and commercial applications
with VTOL and hovering capacityl he present

2 Flight mechanical models

The different parts in the dynamical flight
mechanical model are described in this section.
The models are divided in four parts, the main
and tail rotor models i.e. the helicopter blade
motion and forces, the paddle model and the
rigid body model.



2.1 The helicopter blade dynamics

We will in this section describe how the
helicopter blade motion can be derived using a
number of general coordinate transformations
for rigid bodies. The main reason for using this
approach is that symbolic mathematical
software can be directly applied. Hence the
derivation and simplification of the equation is
done automatically which reduces the risk for
introducing errors in the model and the final
computer code. The transformations we are
going to use go from an earth fixed coordinate
system E), via the helicopter bodyB} and the
helicopter hub Kl) to the helicopter bladeb)
system. These transformations are
mathematically = described by following
equations.

Xe = Xg o+ TeopXs
Xg = Xy 0 * Toan Xy

XH = Xb,O +TH ZbXb

1)

The transformation notatiorE2B denotes a

coordinate transformation from the body to
earth system. Differentiating (1) with respect to
the time and using the fact that

Taony =% =% =0 leads to

Xe = Xg 0 +TE2B(aB x (aB x XB))+
TEZB(d)B X Xg 200 X Xg + XEs)

Xg = Tgon Xy

Xy =xb,0+TH2b(%x(a'l)xxb))+

Toi20(d % %) @)

wherew, andey, are the angular velocities of the

helicopter body and the helicopter blade
respectively. Equation (2), which describes the
acceleration of a point on the helicopter blade,
in three different coordinate systems, can be
simplified furthermore by assuming that the
helicopter body acceleration is small compared
to the helicopter blade acceleration i.e.
S0 =ty X (@ X X5 ) = X % =0.This implies,
after further simplifications of (2),
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Tb2HTH ZBTBZEXE = TbZHTH 2B (Za’B x XB) +

Ty Koo + b X (6 X %) + 63 X %, (3)

Assuming that the earth coordinate system is an
inertial frame in which Newton’s second law
holds at the poink. we have

Pre = e (4)

wherep is the density of the helicopter blade
and f_ the force which can alternatively be
written fo =T, 5 Taon Tha T, - INSErting (4) into
(3) results in

Py * %, =t = pT,, T, ZB[ZaB X XB] -

p[TbZH X0 T 09 X (C% X Xb)] (5)

The term PszHTHzB[Z%XXB] can be
interpreted as the gyroscopic force and
OlAn%o + @ x(wxx) as the centrifugal
force. The forcef, in equation (5) is needed

when computing the forces on the helicopter
body F; . and Fg,, , from the main and tail

rotor. (see next section 2.2). | the remaining part
of this section we will derive equations from

whichay can be computed. Multiplying both
sides in (5) byx, x and integrating over the
blade yields

lha +ad, x(1,a) =M, -
Ifj@(b X(TbZH Ty ZB[ZwB X XB]_TbZH Xb,o) (6)

where |, is the moment of inertia antll, the

torque around the hinge (see fig.2). From (6) we
obtain three decoupled equations for the blade
flapping (8) the pitching @) and the lead/lag

() motion.
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s 2+e
SETT
ﬁ(— pcodQt) +qgsin(Qt)) = N:’;ﬁ

§+0%0+ 20(psin(Qt)+ gcodt)) = “"I_
g
. 3e 2 _Mb,{
+ Q2% =
d 2A1-e) ¢ I @)
where
Iﬁzém)Rz(l_e)Z’ |e=—ﬁLCZ
le =émo(4Rz(1-e)2 +CZ) (8)

andR is the radius of the propeller discthe
chord of the bladeR(1-€) the length of the
blade, m, the blade mass aniq the angular

speed of the helicopter. The equations above are
solved in the following steps

1. Solve thg8 equation in (7).

2. The pitching angl& is known from the

forced blade pitching so no equation need to be
solved.

3. The lead/la¢¢ is neglected in the present
paper.

4. The angular speeg is computed frong

F, = [ f.ds=
[[(D cop+L sim 0L cogp-Dsing)ldy| (9)
The local lift ) and dragD) yield
Lzlpuzc-c | O+p-a
2 be | 2 0
_1 o,
D= 2,OU CeCy (10)

The moment around the hinge (i, =0 in the
blade system) can be written

(11)

M, = [[%,x f,dS

Which can be expressed, using the lift and drag
above, as

y(L cogp- Dsing)
My, = [| =%, (D cogp+ Lsing) dy

(12)
~ y(D cogp+ Lsing)

The torque contribution, from the main and tail
rotor, onto the helicopter body, can now be
obtained from (10) and (12) according to

and 6.

M =M, +Al xF, (13)

B,mnr

2. Compute equatiof from equation (5).
3. Compute the hinge forcég . .

The equations above are valid for both the main
and the tail rotor.

2.2 The helicopter blade forces

This section describes how the forces and
moments on the rotor blades are computed. The
aerodynamic force on the blade, which is the
essential force, is obtained from lift and drag
force on the blade according to (9)

Where Al is the distance vector from the rotor
shaft to the blade hinge (see fig 2).

Rotor (hub) shaft rotor blad

Fig 2. Generic helicopter blade




2.3 The helicopter paddle dynamics

The Skeldar helicopter V150 has stabilizing
paddles (a Bell-Hiller mixer) which control the
helicopter blade motion. The paddle motion is
modeled in a similar way as the motion of the
helicopter blades above.

To close the blade and paddle equations we
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2.4 Rigid body model

The general equations of a rigid body motion,
which can be found in a standard text book in
solid mechanics, are applied to the helicopter
body

MXo = Fy (14)

where x.; is the center of gravityn the mass

linkage between the swash plate and the
paddles/rotor blades.

Fig 3. Bell-Hiller mixer including linkage, the
connecting the flybar, the swashplate and the
main rotor blade grip

Ay

We can establish three identities, which define
the relation between Bell-Hiller bar ange,
the swash plate angled, 6., 6.and the pitch

angles of the individual blade, &, .

6,= 6, + 1, 01-8, Biny + 6, [Cosy) + f, [,
0,=6, - f,[=6, Siny + 6, [cogy) - f, [

For the collective pitch, holds 8, = f,. The
factorsf,, f, and f,are constants depending

only on the ratio between the length of the rods
involved in the Bell-Hiller mixer (see fig.3).

corresponding equation for angular velocity
w;, reads

g +ag x (1) =M,
whereM,;, is the total torque on the helicopter.

We will in the next section describe how the
total force and torque are computed.

(15)

2.5 Forces and torque on the helicopter

The forces and torque acting on the helicopter
are split up in four parts

I:B = I:B,n’nr + I:B,tlr + I:B,aero + I:B,gravity (16)
M B = M B,mnr + M B,aero + M B,tlr + (17)
(XCG - err)x I:B,n’nr + (XCG - thr )X I:B,tlr

where the subscriptenr denotes the main
rotor, tlr the tail rotor anchero aerodynamic
forces. The forces and torque from the main and
tail rotor are obtained from the equations in
section 2.2 above. The aerodynamic forces and
moments are obtained from CFD computations
and handbook methods.

3 Symbolic computations using Maple

As have been mentioned in the previous
sections the approach for deriving the different
models in the present paper is well suite for
symbolic operation. We have for this purpose
used the well known Symboli€omputation
System Maple. Different tools for simplifying,
expanding, developing multi Taylor series, etc.
were applied to the mathematical expressions
derived above. In this way mistakes and
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calculation error were avoided and a lot of range. For control purposes, this is precisely the
cumbersome hand calculations were saved. The frequency range of interest since very fast
equations describing the dynamical equations  dynamics (e.g., some of the dynamic modes of

and the forces and moments are rather the rotors) can be approximated as being
complicated and difficult to implement infinitely fast, and very slow dynamics (e.g., the
efficiently in a computer program. Since the phugoid like modes of the body movement) will

final code was aimed at real time simulations it be stabilized automatically when closing the
was hence important to write the code in very  loop with a controller.

efficient way. This was achieved using the

Maple code generation library together with 5 Control laws

own developed MATLAB codes. The Maple

soft ware was also used to generate a linearized
version of the simulation software which is of
importance for the development of control laws.

In the Skeldar flight control system, there are
several different autonomous control modes,
e.g., for hovering, for forward flight and for
take-off and landing. The core control mode is
4 The black box model g;ethri]smr/nec:drg.()de, the other modes are derivates
In parallel to the development of the flight
mechanical model described above, a black box In hover, the control objective is to maintain a
model of the rotational and translational user commanded horizontal position, altitude
dynamics has been developed using systemand heading in the presence of wind
identification. The term black box refers to that disturbances.
this model has been derived using no (or at least
minimal) physical insight into the helicopter To sense the helicopter state, an integrated
dynamics. AHRS/GPS wunit is used that continuously
reports the position, velocity, orientation,
The core idea in system identification is to angular velocity and acceleration (all 3-D
construct a dynamic model directly from data vectors) of the helicopter. After filtering out
collected from running the system. In this some narrowband noise, due to the engine and
project, flight tests have been designed and the rotors, these signals are used for feedback.
performed to collect data from pitch, roll, yaw
and climb maneuvers starting from a hovering The feedback controller is composed by
condition. separate SISO (single input, single output)
controllers for forward positioning, lateral
Low order linear dynamic models have then positioning and for altitude and heading control.
been fitted to these data. Typically, several Hence, the dynamic couplings that exist
model structures (in terms of input and output between, e.g., the pitch and roll dynamics, are
signals) and model orders are tested to come upignored by the controller. Such approximations
with the “best” model. In this context, a “good” are vital to make to come up with a controller
model is a model of low order with few input with a simple structure.
signals that can reproduce the observed output
data well. The standard estimation-validation In each degree of freedom (forward, lateral,
data split has been performed to test the vertical, heading), the controller consists of a
accuracy and the predictive strength of the “multivariable” Pl controller, with proportional
models. feedback from the relevant sensor signals and
integral control of the signal related to one of
Since the performed maneuvers are rather shortthe hovering control objectives.
and since the dynamic range of the sensors is
limited, the resulting models will only capture For example, the heading control loop consists
the helicopter dynamics in a mid-frequency of proportional feedback from yaw rate and

5
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heading error together with integral feedback of
the heading error. The proportional parts add P bouBLE Tt
virtual damping to the system and the integral
part accomplishes automatic trim of the tail
rotor.

[deg]
N S R -

The controller parameters are computed using I e T e I B
linear-quadratic (LQ) optimal control. In theory,

this gives the closed loop system certain
robustness properties such as 60 degrees phas "
margin and infinite gain margin at the input of | N R N
the plant. In practice, these margins are reduced T
somewhat due to some of the simplifying model I T e A I
assumptions that are made, e.g., neglecting
certain fast rotor dynamics and also couplings 8 IR O —
between motion around different axes. d
However, LQ still provides the control designer j‘f‘"j !
with a very useful and intuitive tool for , ;’
designing robust control laws with a “natural”
transient response.

|
]

von [deg]

In pitch, roll and climb, the control commands [ _. _ _ _
computed by the feedback loops are distributed F19 4. Comparison of the longitudal motion

to the individual main rotor servos based on the
geometry of the swashplate.

6 Results
The fully nonlinear simulation model above, a R
linearized version of this model and the black ot LT
box model have been compared and validated. ‘\{ £
Samples from this validation study are shown in / e
figure 4 and 5. Figure 4 shows comparison of o— ]
the pitching motion, starting from a trimmed o e
hovering state, from an input signal 1 — o ;
corresponding to a doublet #)_ of the main S ORI s I //
1 H g '77/ E 02 P
rotor swash plate. In figure 5 has instead a Fy £ v,
doublet ing,,,of the main rotor swash plate o2
been applied. Both test cases show a good T R S R R
agreement between the three models as can be )
seen in figure 4 and 5. , -
jmgiE
.-
0 1 Sivals] 3
Fig. 5 Comparison of the lateral motion
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