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Abstract  
The objective of this paper is to present 
simulation models and the design of control 
laws for the helicopter Skeldar V150. The 
simulation models include rotor dynamics, 
flight mechanics and the coupling between these 
equations and the rotor mechanism. The models, 
which are derived from fundamental physical 
laws, have been implemented in the symbolic 
mathematical software Maple which enables an 
efficient procedure for model analysis and 
simplifications of the governing equations 
together with automatic code generation. 
 
A black box version of the dynamic equations, 
which were used both for the initial 
development of the control laws and for the 
validation of the models above, has been 
constructed using system identification. The 
black box models, which describe the roll, pitch 
and roll motions and the translation velocities, 
consist of simple linear systems having 
parameters which are identified from flight test 
data, mainly data from hovering conditions.  
 
Comparisons between the nonlinear simulation 
model, a linearized version, the black box 
version and flight test data are presented in the 
results section in this paper. 

1  Introduction 

Since 2006 Saab Aerosystems has been 

developing the unmanned autonomous 

helicopter Skeldar. The helicopter is designed 

for both military and commercial applications 

with VTOL and hovering capacity. The present 

paper focus on an early version of the helicopter 

V150 (see fig 1). The outline of the paper is the 

following. In section 2 the flight mechanical 

models are discussed, the use of symbolic 

calculation, which is an essential part for 

deriving the different models, is presented in 

section 3. Section 4 and 5 consider black box 

modelling and the design of control laws and 

simulation results are finally discussed in 

section 6. 

 

 

Fig 1. The autonomous helicopter Skeldar V150 

 

2  Flight mechanical models 
The different parts in the dynamical flight 
mechanical model are described in this section. 
The models are divided in four parts, the main 
and tail rotor models i.e. the helicopter blade 
motion and forces, the paddle model and the 
rigid body model. 
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2.1 The helicopter blade dynamics 
We will in this section describe how the 
helicopter blade motion can be derived using a 
number of general coordinate transformations 
for rigid bodies. The main reason for using this 
approach is that symbolic mathematical 
software can be directly applied. Hence the 
derivation and simplification of the equation is 
done automatically which reduces the risk for 
introducing errors in the model and the final 
computer code. The transformations we are 
going to use go from an earth fixed coordinate 
system (E), via the helicopter body (B) and the 
helicopter hub (H) to the helicopter blade (b) 
system. These transformations are 
mathematically described by following 
equations. 
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The transformation notation E2B denotes a 
coordinate transformation from the body to 
earth system. Differentiating (1) with respect to 
the time and using the fact that 
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where Bω and bω are the angular velocities of the 

helicopter body and the helicopter blade 
respectively. Equation (2), which describes the 
acceleration of a point on the helicopter blade, 
in three different coordinate systems, can be 
simplified furthermore by assuming that the 
helicopter body acceleration is small compared 
to the helicopter blade acceleration i.e. 

( ) 00, ≈×=××= BBBBBB xxx ωωω
���

.This implies, 

after further simplifications of (2), 
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(3) 

 
Assuming that the earth coordinate system is an 
inertial frame in which Newton’s second law 
holds at the point Ex  we have 
 

EE fx =
��ρ  (4) 

 
whereρ is the density of the helicopter blade 

and Ef  the force which can alternatively be 

written bbHHBBEE fTTTf 222= . Inserting (4) into 

(3) results in 
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(5) 

 
The term [ ]BBBHHb xTT

�
×ωρ 222  can be 

interpreted as the gyroscopic force and 
( )[ ]bbbbbh xxA ××+ ωωρ 0,2

��
 as the centrifugal 

force. The force bf  in equation (5) is needed 

when computing the forces on the helicopter 
body mnrBF ,  and tlrBF , , from the main and tail 

rotor. (see next section 2.2). I the remaining part 
of this section we will derive equations from 
which bω can be computed. Multiplying both 

sides in (5) by ×bx and integrating over the 

blade yields 
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where bI  is the moment of inertia and bM  the 

torque around the hinge (see fig.2). From (6) we 
obtain three decoupled equations for the blade 
flapping (β ) the pitching (θ ) and the lead/lag 
(ξ ) motion. 
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and R is the radius of the propeller disc, c the 
chord of the blade, ( )eR −1  the length of the 

blade, bm the blade mass and p,q the angular 

speed of the helicopter. The equations above are 
solved in the following steps 
 
1. Solve theβ  equation in (7).  
2. The pitching angle θ  is known from the 
forced blade pitching so no equation need to be 
solved.  
3. The lead/lag ξ  is neglected in the present 
paper.  
4. The angular speed bω is computed fromβ  

and θ . 
2. Compute equationbf from equation (5). 

3. Compute the hinge forcesmnrBF , . 

 
The equations above are valid for both the main 
and the tail rotor.  

2.2 The helicopter blade forces 
This section describes how the forces and 
moments on the rotor blades are computed. The 
aerodynamic force on the blade, which is the 
essential force, is obtained from lift and drag 
force on the blade according to (9)  
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The moment around the hinge (i.e. 0xb =  in the 

blade system) can be written 
 � �

×= dSfxM bbb  (11) 

 
Which can be expressed, using the lift and drag 
above, as 
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The torque contribution, from the main and tail 
rotor, onto the helicopter body, can now be 
obtained from (10) and (12) according to 
 

bbmnrB FlMM ×∆+=,  (13) 

 
Where l∆ is the distance vector from the rotor 
shaft to the blade hinge (see fig 2).  
 

Fig 2. Generic helicopter blade 
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2.3 The helicopter paddle dynamics 
The Skeldar helicopter V150 has stabilizing 
paddles (a Bell-Hiller mixer) which control the 
helicopter blade motion. The paddle motion is 
modeled in a similar way as the motion of the 
helicopter blades above.  
 
To close the blade and paddle equations we 
need to describe the coupling to swash plate and 
linkage between the swash plate and the 
paddles/rotor blades.  
 
 

 

Fig 3. Bell-Hiller mixer including linkage, the 
connecting the flybar, the swashplate and the 
main rotor blade grip 

 
We can establish three identities, which define 
the relation between Bell-Hiller bar angle βP, 
the swash plate angles sc θθθ ,,0 and the pitch 

angles of the individual blades 21,θθ . 
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For the collective pitch0θ holds 000 lf=θ . The 

factors 0f , 1f  and 2f are constants depending 

only on the ratio between the length of the rods 
involved in the Bell-Hiller mixer (see fig.3).  

 

2.4 Rigid body model 
The general equations of a rigid body motion, 
which can be found in a standard text book in 
solid mechanics, are applied to the helicopter 
body  
 

BCG Fxm =
��

 (14) 

 
where CGx  is the center of gravity, m the mass  

and BF  is the total forces on the helicopter. The 
corresponding equation for angular velocity 

Bω reads 

( ) BBBB MII =×+ ωωω�
 (15) 

where BM  is the total torque on the helicopter. 
We will in the next section describe how the 
total force and torque are computed. 

2.5 Forces and torque on the helicopter 
The forces and torque acting on the helicopter 
are split up in four parts 
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where the subscripts mnr denotes the main 
rotor, tlr the tail rotor and aero aerodynamic 
forces. The forces and torque from the main and 
tail rotor are obtained from the equations in 
section 2.2 above. The aerodynamic forces and 
moments are obtained from CFD computations 
and handbook methods. 

3 Symbolic computations using Maple 
As have been mentioned in the previous 
sections the approach for deriving the different 
models in the present paper is well suite for 
symbolic operation. We have for this purpose 
used the well known Symbolic Computation 
System Maple. Different tools for simplifying, 
expanding, developing multi Taylor series, etc. 
were applied to the mathematical expressions 
derived above. In this way mistakes and 

Z = 0 

θr 

βP 

θl l7 

l7 

l4 

l4 l2 

l1 

l1 

l2 

l3 

l3 

l6 l6 

l5 

l5 

l5 

l5 

Z1 

Z0 

l0 

Z2 
Z2

’ 

Z3 Z3
’ 

Z4 

Z4
’ 

Z5 Z5
’ 

θSW 

Z6 

Z6
’ 



 

5  

DEVELOPMENT OF FLIGHT MECHANICAL MODELS AND CONTROL 
LAWS FOR THE AUTONOMOUS HELIPCOPTER SKELDAR 

calculation error were avoided and a lot of 
cumbersome hand calculations were saved. The 
equations describing the dynamical equations 
and the forces and moments are rather 
complicated and difficult to implement 
efficiently in a computer program. Since the 
final code was aimed at real time simulations it 
was hence important to write the code in very 
efficient way. This was achieved using the 
Maple code generation library together with 
own developed MATLAB codes. The Maple 
soft ware was also used to generate a linearized 
version of the simulation software which is of 
importance for the development of control laws. 

4 The black box model 
 In parallel to the development of the flight 
mechanical model described above, a black box 
model of the rotational and translational 
dynamics has been developed using system 
identification. The term black box refers to that 
this model has been derived using no (or at least 
minimal) physical insight into the helicopter 
dynamics.  
 
The core idea in system identification is to 
construct a dynamic model directly from data 
collected from running the system. In this 
project, flight tests have been designed and 
performed to collect data from pitch, roll, yaw 
and climb maneuvers starting from a hovering 
condition. 
 
Low order linear dynamic models have then 
been fitted to these data. Typically, several 
model structures (in terms of input and output 
signals) and model orders are tested to come up 
with the “best” model. In this context, a “good” 
model is a model of low order with few input 
signals that can reproduce the observed output 
data well. The standard estimation-validation 
data split has been performed to test the 
accuracy and the predictive strength of the 
models. 
 
Since the performed maneuvers are rather short 
and since the dynamic range of the sensors is 
limited, the resulting models will only capture 
the helicopter dynamics in a mid-frequency 

range. For control purposes, this is precisely the 
frequency range of interest since very fast 
dynamics (e.g., some of the dynamic modes of 
the rotors) can be approximated as being 
infinitely fast, and very slow dynamics (e.g., the 
phugoid like modes of the body movement) will 
be stabilized automatically when closing the 
loop with a controller. 

5 Control laws  
In the Skeldar flight control system, there are 
several different autonomous control modes, 
e.g., for hovering, for forward flight and for 
take-off and landing. The core control mode is 
the hover mode, the other modes are derivates 
of this mode. 
 
In hover, the control objective is to maintain a 
user commanded horizontal position, altitude 
and heading in the presence of wind 
disturbances. 
 
To sense the helicopter state, an integrated 
AHRS/GPS unit is used that continuously 
reports the position, velocity, orientation, 
angular velocity and acceleration (all 3-D 
vectors) of the helicopter. After filtering out 
some narrowband noise, due to the engine and 
the rotors, these signals are used for feedback. 
 
The feedback controller is composed by 
separate SISO (single input, single output) 
controllers for forward positioning, lateral 
positioning and for altitude and heading control. 
Hence, the dynamic couplings that exist 
between, e.g., the pitch and roll dynamics, are 
ignored by the controller. Such approximations 
are vital to make to come up with a controller 
with a simple structure. 
 
In each degree of freedom (forward, lateral, 
vertical, heading), the controller consists of a 
“multivariable” PI controller, with proportional 
feedback from the relevant sensor signals and 
integral control of the signal related to one of 
the hovering control objectives. 
 
For example, the heading control loop consists 
of proportional feedback from yaw rate and 
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heading error together with integral feedback of 
the heading error. The proportional parts add 
virtual damping to the system and the integral 
part accomplishes automatic trim of the tail 
rotor. 
 
The controller parameters are computed using 
linear-quadratic (LQ) optimal control. In theory, 
this gives the closed loop system certain 
robustness properties such as 60 degrees phase 
margin and infinite gain margin at the input of 
the plant. In practice, these margins are reduced 
somewhat due to some of the simplifying model 
assumptions that are made, e.g., neglecting 
certain fast rotor dynamics and also couplings 
between motion around different axes. 
However, LQ still provides the control designer 
with a very useful and intuitive tool for 
designing robust control laws with a “natural” 
transient response. 
  
In pitch, roll and climb, the control commands 
computed by the feedback loops are distributed 
to the individual main rotor servos based on the 
geometry of the swashplate. 

6 Results  
The fully nonlinear simulation model above, a 
linearized version of this model and the black 
box model have been compared and validated. 
Samples from this validation study are shown in 
figure 4 and 5. Figure 4 shows comparison of 
the pitching motion, starting from a trimmed 
hovering state, from an input signal 
corresponding to a doublet in cosθ of the main 

rotor swash plate. In figure 5 has instead a 
doublet in sinθ of the main rotor swash plate 

been applied. Both test cases show a good 
agreement between the three models as can be 
seen in figure 4 and 5. 
 
 

 

Fig 4. Comparison of the longitudal motion  

 
 
 

 

Fig. 5 Comparison of the lateral motion 

 



 

7  

DEVELOPMENT OF FLIGHT MECHANICAL MODELS AND CONTROL 
LAWS FOR THE AUTONOMOUS HELIPCOPTER SKELDAR 

7 References 
[1] Leischman Principles of Helicopter Aerodynamics.  

2nd edition, Cambridge University Press, 2006.  
[2] Bramwell A. R. S, Done G. and Balmford D. 

Helicopter Dynamics 2nd edition, Butterworth- 
Heinemann ,  2001.  

Copyright Statement 

The authors confirm that they, and/or their company or 
organization, hold copyright on all of the original material 
included in this paper. The authors also confirm that they 
have obtained permission, from the copyright holder of 
any third party material included in this paper, to publish 
it as part of their paper. The authors confirm that they 
give permission, or have obtained permission from the 
copyright holder of this paper, for the publication and 
distribution of this paper as part of the ICAS2010 
proceedings or as individual off-prints from the 
proceedings. 

 


