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Abstract  

 In traditional flight tests for navigation 
systems appraisal, the output parameters 
accuracy of tested sub-systems were generally 
estimated relying on more accurate reference 
navigation sensors’ parameters and outputs. If 
the reference sensors’ accuracy declines or 
larger disturbing error occurs, the accuracy 
estimation confidence gotten from the tested 
sub-systems would lower, and even the flight 
test results could not be approved. Moreover in 
the present flight tests, the output accuracy of 
tested navigation equipment becomes higher 
and higher, so it is very difficult to meet with the 
present appraisal flight tests’ requirement based 
upon the traditional navigation reference 
sensors measurement. 

At present major navigation equipment 
installed in aircraft includes inertial navigator, 
GPS, Tacon, air-data-computer, JIDS, then plus 
terrain assistant navigator, SAR radar imaging 
navigation system which increase the navigation 
parameters and reliability margin of aircraft. 
This paper proposed the structure of navigation 
information fusion and accuracy estimation 
based upon multi-navigation sensors’ output 
signals, building a high accurate navigation 
reference platform according to multi-
navigation sensors’ data fusion[1]. 

1  Navigation information fusion module 
The navigation information fusion and 

accuracy estimation about flight tests consist of 
the following function modules: 

1.1  Characteristic analysis of navigation 
system output errors in flight 

Automatically divide the flight into several 
stages according to the flight test data, 
determine each flight stage, maneuver feature, 
sensors working condition[2]. The relative 
statistics analysis is made about each navigation 
sensor error distribution according to flight 
stages and different maneuver feature, and then 
the parameters in information fusion are 
determined to select chief navigation sensors for 
fusion processing. 

1.2  Initial flight test navigation data fusion 
     The forward fusion[3], which consists of two 
steps, variable measurement information fusion 
and optimum filtering estimation, is made about 
each flight navigation sensor’s output signals: 

 According to each sensor’s error 
distribution analysis, successive, high accurate 
position and velocity measurement fusion are 
created. 

 The inertial navigator output and 
measured fusion measurement are through 
Kalman filtering by means of optimum filtering 
estimation, resulting in the forward fusion 
optimum navigation parameters. 

1.3  Whole procedure information 
optimization about flight test 

     By means of flight test data and known flight 
conditions, the whole procedure optimization 
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fusion is made based upon initial information 
fusion results. The fixed interval optimum 
smoothing algorithm is applied to the whole 
procedure optimization fusion, by which an 
inverse smoothing is exert to the state 
estimation and filtering covariance matrix 
derived from initial fusion so as to upgrade the 
fusion result accuracy[4]. 

1.4  Fusion accuracy estimation of flight test 
data based upon theory analysis 
     The prerequisite for the fusion result as a 
navigation system estimation reference is that 
the fusion navigation is much more accurate 
than any other single sensor, such as inertia 
navigator, GPS, air digital computer, Tacon, 
JIDS (joined information distribution system), 
such that the fusion result is useful to navigation 
flight accuracy estimation in engineering 
application. So how to estimate the navigation 
fusion accuracy is a key problem to navigation 
flight test information fusion estimation[5], and 
the estimation method procedure is as follows: 

 Based the two step fusion of navigation 
flight test information, the covariance matrix 
derived from the forward Kalman filtering and 
fixed interval optimized smoothing is the theory 
estimation index for the data fusion accuracy, 
which is as an estimation criterion for 
information fusion results. 

 The most accurate navigation sensor is 
selected as the estimation criterion of data 
fusion while processing flight test data. GPS, for 
example, is used as an estimation criterion for 
the information fusion of inertial navigator, air 
digital computer, Tacon, JIDS, and etc. Then the 
error between the fusion result and real 
reference is gotten to verify the error 
concordance between the information fusion 
covariance and real reference[6]. 

 The error concordance between the 
information fusion covariance and real fusion 
result is verified through theory simulation and 
real flight test data, which may verify the 
practicability of information fusion covariance 
as an estimation index for fusion accuracy[7]. 
     So the final information fusion may 
simultaneously result in the accuracy estimation 
index verified by real flight tests.  

2  Navigation information fusion algorithm 
Because an inertial navigator is the most 

primary and principal sensor, and also the 
sensory system whose signals output is most 
frequent and navigation information is most 
plentiful among multi-redundancy navigation 
sensors, its output data are certainly the most 
principal data sources about the navigation 
flight test information fusion and estimation 
system. The relative data fusion processing 
algorithms are mostly based upon its output 
data[8]. 

To improve data fusion accuracy an overall 
data fusion algorithm is used in course of test[9], 
and the Kalman filtering is combined with fixed 
interval optimized smoothing so as to upgrade 
the fusion accuracy concerning the output data 
of multi-redundancy navigation sensors. The 
main procedure is that the Kalman filtering 
optimized estimation is done according to time 
sequence, in which relative information is 
memorized. The fixed interval optimized 
smoothing is made in accordance with adverse 
time sequence after finishing Kalman filtering, 
then the data after fusion are gotten. The 
navigation data fusion algorithm mainly consists 
of the following two parts: 

 Primary fusion concerning navigation 
flight test data based upon concentrative 
Kalman filtering. 

 The overall information optimization 
fusion by means of the fixed interval optimized 
smoothing based upon Kalman. 

 
Fig.1 The core of navigation information fusion 

 
The core of navigation information fusion is 

shown in Fig.1. 
To meet with a large amount of data flow and 

high rate of data transfer for multi-navigation 
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sensors, an information fusion processing 
system based a distributed network 
configuration is used as showed in Fig.2[10]. The 
system consists of five sub-systems: a data pre-
processing and fusion procedure management 
system, an attitude recognition and measuring 
fusion system, an overall filtering fusion for 
navigation information system, a control system 
for flight test information fusion, a 
monitor/control and display system. 

 
Fig.2 The information fusion processing system 
        based a distributed network configuration 

 
It is mainly for failure checking and revising 

about inertial navigator data in the pre-
processing stage of navigation flight test data, 
and for failure checking, large error rejecting, 
revising and smoothing about assistant 
navigation sensors data. The data pre-processing 
algorithm procedure is showed in Fig.3. 

 
Fig.3 The pre-processing algorithm for navigation 

flight test data 
 
     Data reasonableness is checked against 
relative navigation parameter thresholds. Failure 
data rejecting and revising are completed by use 
of inner interpolation to pad the data after 
rejecting the data beyond the thresholds[11]. The 
failure checking equations on inertial navigator 
data are defined as follows: 

Longitude: max| |λ λ>  
Latitude:  max| |L L>

East velocity:  max| |e ev v>
North velocity:  max| |n nv v>
Platform aspect angle: max||ψ ψ>  
Longitude variable: 1 m| |i i axλ λ λ−− > Δ  
Latitude variable:  1 m| |i iL L L−− > Δ ax

    East velocity variable:  
1 max| |

i ie e ev v v
−

− > Δ

    North velocity variable:  
1 max| |

i in n nv v v
−

− > Δ

  Platform aspect variable: 1 max|| i iψ ψ ψ−− > Δ  
 The threshold method is applied with the 

same threshold method in the inertial navigator 
data for  the failure checking and isolating of 
assistant sensors according to their outputs. 

The smoothness and continuity of each 
navigation sensor’s outputs are changed under 
maneuverable flight so as to cause sudden 
changes at each navigation sensor’s outputs. So 
it is necessary to recognize maneuverable 
attitudes and abrupt changing status about 
aircraft to determine the relationship between 
maneuverable flying conditions and the special 
time periods. According to flight status or 
attitudes and actual flight status indication, it is 
estimated whether the navigation information 
concerning inertial navigators, ADC, Tacon, 
JIDS and etc. is continuous, and their random 
errors are stable during the special flight periods. 

The interval data mirror method is mainly 
applied to maneuverable flight status 
recognition, in which the data supplied by INS, 
position information supplied by GPS, Tacon 
and JIDS, atmosphere height and 
rising/descending velocity supplied by ADC are 
there and back cut off in a period of time to 
form a contrast table on maneuverable flight 
status against flight conditions, and the 
recognition function on flight status is designed. 
In the processing steps, the first step begins 
from a stable flight stage to scan the flight test 
data several times, in which the scanning period 
depends on the maneuver characteristic period 
of a test airplane. Flight status could be 
determined in terms of flight status recognition 
functions and maneuver conditions 
classification, as showed in Fig.4[12]. 
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Fig.4 The configuration of functions on navigation 

flight test data and maneuver flight status 

2.1  INS-GPS integrated algorithm model 
     For the integrated INS-GPS algorithm model, 
it is here given an optimized integrated Kalman 
filtering processing algorithm[13] as an example. 
The navigation error equations of a basic INS 
and inertial instruments are as follows: 

)1()()()()()( 199181818118 ×××× += tWtGtXtAtX&  
where the system state vectors are three 
dimension of platform angle errors, three 
dimension of velocity errors, three dimension of 
position errors, three dimension of random 
constant errors for a gyro and their first order 
Markov process errors, and the first order 
Markov process errors of an accelerometer. 

T
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The white noise vector of a system consists of 

white noises of a gyroscope, exciting white 
noises of the first order Markov process about a 
gyroscope and exciting white noises of the first 
order Markov process about an accelerometer, 
showed in eq.(3). 

[ T
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The system measuring equations may 

classified two types, position-velocity composed 
measuring and positions composed measuring. 
A position-velocity composed measuring 
equation is in accordance with eq.(4), and 
positions composed measuring is the subset of a 
composed position-velocity set. 
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(4) 

2.2  INS-TACON integrated algorithm model 
The INS-Tacon integrated algorithm model, 

which is the same with INS-GPS integrated 
measuring equations in fusion algorithm, is a 
kind of position composition. The distinction 
between them is that the former needs to add a 
measuring information solution and errors 
compensation[14], as is illustrated in Fig.5. 

 
Fig.5 INS/TACON integrated system 

2.3  INS-JIDS integrated algorithm model 
The INS-JIDS integrated navigation 

belonging to a position composed navigation, is 
similar to GPS in the positioning system, and 
locates the geometrical position of aircraft by 
relative multi-elements positioning. From the 
fusion algorithm model, the measuring error is 
equivalent to the measuring error of the INS-
GPS integrated system. The algorithm frame of 
the INS-JIDS integrated system is showed in 
Fig.6. 

 
Fig.6 INS-JIDS integrated algorithm frame 
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2.4  INS-ADC integrated algorithm model 
The INS-ADC integrated navigation fusion, a 

kind of navigation information fusion, is the 
adoption of velocities combination + altitude 
damping combination. The error introduced by 
atmosphere disturbance is the primary error in 
this integrated algorithm model. So it is 
necessary to take account of wind velocity 
compensation before the measured information 
feeding to filtering, as is showed in Fig.7. 

 
Fig.7 INS-ADC integrated information fusion frame 

2.5  INS-ADC-TACON (or JIDS) integrated 
algorithm model 

For full application of more information in 
flight test information fusion, usually more 
sensor outputs are used in fusion processing. 
The INS-ADC-TACON integrated navigation is 
adopted where ADC and TACON work 
simultaneously for the combination of positions 
and velocities at the same time. And others 
involve INS-ADC-JIDS combination model. 

2.6  Filtering algorithm flow 
For integrated Kalman filtering, the 

integrated open Kalman filter equations[15] are 
derived as follows. 

1
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where the above variables are described as 
follows: 
 
 

 
 

ˆ ( / )X k k  The real time state estimation 
at k time. 

ˆ ( / 1)X k k − The state forecasted from k-1 
to k. 

)(kK  Filtering gain array at k. 
)1/( −kkP Error covariance array 

estimated from k-1 to k. 
)/( kkP  Error covariance array 

estimated at k. 
)1( −kQ  System noise variance array. 

)(kR  Noise variance array for an 
observed system. 

The calculation flow referring to the above 
Kalman filtering algorithm is illustrated in Fig.8. 
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Fig.8 Kalman filtering flow diagram 

 
In the above information fusion algorithm 

flow the measured D-values between INS 
outputs and the outputs of GPS or other sensors 
is used as the measuring values, and then the 
errors of INS are estimated by use of integrated 
Kalman filtering so as to correct the open 
outputs of INS. The whole processing flow is 
illustrated in Fig.9. 
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Fig.9 GPS-INS integrated algorithm flow 

2.7  The realization for the optimized fixed 
interval smoothing algorithm 

From engineering practice the Rauch-Tung-
Striebel(R-T-S) fixed interval smoothing 
algorithm may be utilized in flight navigation 
test information fusion, which is simple to 
calculate, easy to be realized in engineering, and 
has been verified to be effective for post-
processing of flight test data. 

Supposing discrelized state equations and 
observing equations are as follows, 

, 1 1 1 1k k k k k k

k k k k

X X W
Z H X V

− − − −= Φ +Γ⎧
⎨

= +⎩             
(6) 

Before the optimized R-T-S interval 
smoothing the above discrelized system is 
firstly processed by use of Kalman filtering in 
time interval [0,…,N]. In the course of Kalman 
filtering the estimated state  (the 
subscript F stands for Kalman filtering variables, 
and the same for following), predicted state 

, estimated error covariance array 
, and predicted error covariance array 

 are all memorized real time. 

ˆ ( / )FX k k

ˆ ( / 1)FX k k −
( / )FP k k
( / 1)FP k k −
After finishing Kalman filtering the 

optimized R-T-S fixed interval smoothing is 
taken against the data memorized during 
filtering. Before smoothing the smoother is 
firstly initialized. Take K=N, then 

ˆ ˆ( / ) ( / )
( / ) ( / )
S F

S F

X N N X N N
P N N P N N

⎧ =⎪
⎨

=⎪⎩             
(7) 

where the subscript S indicates optimized fixed 
interval smoothing, and the same for the 
following. In the time interval [N-1,…,0] the 
recursive R-T-S fixed interval smoothing 
formula is as follows, 

The smoothing gain is 
1

1,( ) ( / ) ( 1/ )T
S F k k FK k P k k P k k−

+= Φ +        (8) 
The recursive smoothed state vectors and 

their variance array are as follows, 
ˆ ˆ ˆ ˆ( / ) ( / ) ( )( ( 1/ ) ( 1/ ))

( / ) ( / ) ( )( ( 1/ ) ( 1/ ))
S F S S F

T
S F S S F

X k N X k k K k X k N X k k

P k N P k k K k P k N P k k K

⎧ = + + − +⎪
⎨

= + + − +⎪⎩ S  
(9) 

From the above, the recursive R-T-S fixed 
interval smoothing formula[16] is an inverted 
derivation from K=N-1to K=0.  is a 
result smoothed. Because it is necessary to use 

,

ˆ ( / )SX k N

ˆ ( / )FX k k ˆ ( / 1)FX k k − , ,( / )FP k k ( / 1)FP k k −  
in recursive smoothing, the R-T-S algorithm 
should be based upon Kalman filtering. The 
fixed interval smoothing is illustrated in Fig.10. 

 
Fig.10 Fixed interval smoothing 

3  Demonstration Tests 

3.1  Static composed navigation fusion tests 
The test data originate from  

  a static IMU (inertia measurement unit) 
and atmosphere pressure altimeters installed in a 
biaxial rotating platform in the laboratory. 

  GPS data are acquired from number 002 
reference mark then translated to the biaxial 
rotating platform site by matrixing. 

  Static TACAN data are simulated by a 
computer. 

 
Fig.11 Latitudes of static tests for GPS-Composition-

Biaxial IMU 
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Fig.12 Longitudes of static tests for INS-Composition-

Biaxial IMU 

 
Fig.13 shows the velocity curves of a 

composition and biaxial IMU along the 
geocentric x axis at static condition. Fig.8 shows 
the velocity curves of a composition and GPS 
along the geocentric x axis at static condition. 

 
Fig.13 The velocity curves of a composition and biaxial 

IMU along the geocentric x axis at static condition 

 
Fig.14 The velocity curves of a composition and GPS 

along the geocentric x axis at static condition 

The accuracy of static tests about composed 
navigation is listed in table 1. 

 
Table 1  The static accuracy about integrated 

navigation systems 
 Composed Inertial 

navigation 
GPS TACAN 

Horizontal 
location errors 

(CEP) 

5.3 m 5.16 nmile/h 6.3 m 200 m 

Horizontal velocity 
measured error 

(RMS) 

0.005 m/s 9.3 m/s 0.01 m/s —— 

3.2  Dynamic composed navigation fusion 
tests 

         The dynamic test data originate from 
outputs of INS, atmosphere pressure altimeter 
and GPS in flight. Fig.15 shows the flight test 
tracks about INS, GPS, and composed 
navigation. Fig.10 shows the respective velocity 
curves about INS, GPS, and composed 
navigation along the geocentric x axis in flight. 

The test accuracy of integrated navigation 
systems at dynamic condition is listed in table 2. 

 
Fig.15 The flight test tracks about INS, GPS, and 

integrated navigation 

 

 
Fig.16 The velocity curves about INS, GPS, and 

integrated navigation along the geocentric x axis in flight 
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Table 2  The dynamic accuracy about integrated 
navigation systems 

 Composed Inertial 
navigation 

GPS 

Horizontal 
location errors 

(CEP) 

15.9 m 6.25 
nmile/h 

20 m 

Horizontal velocity measured 
error 

(RMS) 

1.2 m/s 9.5 m/s 0.5 m/s

4  Demonstration Test and Result Analysis 
   a)  It can be seen, from Fig.11 and Fig.12, 

that for INS its latitude outputs hardly change 
but its longitudes drift quickly. When the GPS 
and biaxial IMU are integrated, their composed 
navigation outputs after fusion processing 
nearly tend to be consistent with GPS. 

b)  It can be seen from Fig.13 that the static 
velocity of the biaxial IMU along x axis 
deviates heavily. But the velocities along x axis 
about the composition and GPS basically tend to 
be consistent, showed in Fig.14. 

c) From the static test results, the horizontal 
location errors (CEP) and horizontal velocity 
measured error (RMS) are far better than any 
other single locating owing to the fusion 
processing algorithm applied to composed 
navigation systems. 

d)  It can be seen, from the flight track test 
results concerning INS, GPS and composed 
navigation illustrated in Fig.15, that their 
outputs behave consistently at initial stage, but 
the location output of the INS drifts heavily 
especially in longitudinal direction. From the 
velocity test results along the geocentric x axis 
in flight about INS, GPS and composed 
navigation, their velocities vary consistently. 
However the velocity amplitude about the INS 
outputs fluctuates more than the other two 
modes in the meddle of test course because of 
in-flight maneuver in the period. 

e)  From the average results of the 
composed navigation system accuracy after a 
fusion processing, the horizontal location errors 
(CEP) is better than INS’s and GPS’s, but the 
horizontal velocity measured error (RMS) is 
better than INS’s and poorer than GPS’s. 
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