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Abstract 

In aircraft development, it is crucial to 
understand and evaluate behaviour, 
performance, safety and other aspects of 
subsystems before and after they are physically 
available for testing. Simulation models are 
used to gain knowledge in order to make 
decisions at all development stages. 

This paper describes the development of 
Saab Gripen´s vehicle systems and some 
methods and challenges related to uncertainties 
in test and model data. The ability to handle 
uncertain information and lack of information is 
the key to success in early design. The vehicle 
systems comprise fuel, environment control 
system (ECS), hydraulic, auxiliary power, 
escape, electrical power and landing gear 
system. 

1 Introduction 

The Gripen fighter aircraft (a/c), see Fig. 1, is 
the most complex and advanced aircraft Saab 
has ever built. The systems are highly integrated 
and optimized, which is a challenge when 
modifying the systems or introducing new 
systems or functions. It is vital to minimize the 
number of errors during the development, which 
can be achieved by e.g. adopting Model Based 
System Engineering (MBSE).  
Complete systems (e.g. fuel, ECS, hydraulic, 
and auxiliary power systems), subsystems (e.g. 
the fuel transfer system), equipment (e.g. valves 
and turbines), and the control unit’s hardware 
and software are integrated with 60 years of 

experience, currently from the military fighter 
Gripen, the civil aircraft Saab 340 and 2000, the 
trainer Saab 105, and UAVs. 

 
Fig. 1. The Saab Gripen fighter aircraft. 
 

In order to achieve cost-effectiveness, 
modelling and simulation have been used since 
1968 to develop the most complex vehicle 
systems. Generally speaking, modelling and 
simulation within vehicle systems are among 
other things used for: 
 Total system specification and design, e.g. 

functionality on the ground and in the air 
 Equipment specification and design 
 Software specification and design 
 Various simulators 
 Test rig design 
 System function and performance 

verification 
 System safety 
 Fault analysis 
Aircraft vehicle systems require test rigs and 
installation of the equipment in test aircraft. 
Simulation reduces the risk of detecting design 
faults late in the development work. Research 
has shown that early detection and correction of 
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design faults cost 200-1,000 times less than at 
later stages [2]. 

The paper begins with a background that 
describes the modelling and simulation history 
of a/c vehicle systems. This is followed by a 
section that describes how modelling and 
simulation have been implemented in the design 
process for development of the Gripen a/c 
vehicle systems followed by chapters on 
uncertainty and sensitivity analysis. The paper 
ends with a summarizing section containing a 
discussion and some conclusions. 

1.1 Modelling and simulation history 

In the late 1970s Schlesinger [17] defined the 
M&S activities, such as verification and 
validation and their relationship, and this has 
been improved upon by Sargent [16] with the 
real-world and simulation-world relationship 
with its analogies. 

Before the 1980s the modelling of larger 
vehicle systems models was often error prone 
due to difficulties in visualizing and modifying 
the model. 

In the 1980s the era as we know it today 
began, with tools that have friendly graphical 
user interfaces with features like “drag and 
drop” of block components and the power port 
(based on bond graph technique) concept or at 
least appears to be power port to the user. 
Boeing's EASY5 is such example of an early 
M&S tool. 

In the 1990s the co-simulation between 
tools become a common feature in commercial 
tools and heterogeneous simulation increased. 

In 1997 the first version of the multi-
domain modelling language Modelica was 
released [8]. The language has come to be 
widely used in both industry/academia and in 
different physical domains. 

In the 2000s the possibility to generate 
code from models directly to product or for 
hosted simulation [21] together with a now 
mature and M&S friendly design organization 
drastically changed the complete fundamentals 
of the when, why and impact of M&S in the 
design process. This change resulted in a new 
way of working, MBSE, with a model centric 
development approach. 

1.2 Modelling and simulation background 

One main focus of the work presented in this 
paper is to support the conceptual, preliminary 
and detailed design phases. Ullman [22] speaks 
of the design paradox, where very little is 
known about the design problem at the 
beginning but we have full design freedom. 
When knowledge about design is enhanced at an 
early stage, design freedom is retained and cost 
committal is postponed. 

By adopting MBSE already in the concept 
phase, the constantly increasing requirements to 
shorten development schedule plans and 
minimize project risks are managed, in contrast 
to development of a system in a traditional way 
with many prototypes and M&S mainly used to 
solve problem late in the development phase. 

Modelling and simulation in aircraft 
subsystem development, is today an important 
part of the design process. An increasing part of 
the system verification relies on results from 
simulation models rather than expensive testing 
in system rigs and flight tests [1]. The next step 
in M&S is models with known accuracy and 
validity range. The need for detailed system 
models and validation of system models has 
therefore increased. 

Within vehicle systems development, a 
switch is now made from a sequential document 
driven development to a model centric 
development approach, (MBSE), to produce a 
more efficient process supported by 
development environment and tools. 

One of the cornerstones in MBSE is that 
M&S results in early system knowledge 
compared to older system development where 
system knowledge is gained late from physical 
test rigs and prototypes. With MBSE many 
different concepts and design variants can be 
evaluated, thereby gradually increasing the 
system model detail and system knowledge 
during the design process as the system 
develops [23]. 

The main purpose of simulations is to 
support decisions. Early in the design phase 
decisions are based on simulation/analysis and 
experience. Measurements that can support the 
model validation, and increase the simulation 
confidence, will always be in short of supply, 
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independent of design phase, that is, the model 
will always have parts that are not validated 
against test data. For these parts, model and 
parameter uncertainty descriptions can be used 
to gain knowledge about the model. 

The need for more complete validation 
methods that complement the traditional 
validation, knowledge of a model’s maturity and 
simulation result accuracy, has emerged due to 
the intensity of M&S that MBSE has in early 
design phases. A solution for this need is 
important to succeed in system development 
where early design decisions have to be made 
supported by simulation only. 

2 MBSE for the Gripen´s vehicle systems  

The vehicle systems comprise fuel, ECS, 
hydraulic, auxiliary power, escape, electrical 
power and landing gear system. Vehicle systems 
have several modelling challenges such as 
different combinations of compressible fluids 
(air) and heavy incompressible fluids (fuel, oil) 
where acceleration vector matters, nonlinear 
effects such as turbulent flow cavitation and 
saturation and controlling software, add to the 
complexity. 

2.1 Vehicle systems design process. 

The vehicle systems design process can be 
schematically described as in Fig. 2 [20]. 
First loop, desk top simulations. 
The first loop consists of two phases: with and 
without a complete software model. First, a 
simple control logic is developed in the same 
tool as the physical system in order to assess the 
closed loop behaviour [1]. 

In the loop without a complete software 
model, the physical system performance (e.g. 
cooling effect, flow and maximum 
temperature/pressure), and dimensions, (e.g. 
pipe diameter and heat exchanger size), is 
specified for system components and to confirm 
the design choices in the concept phase. 

When complete control and monitoring 
software is available, a closed loop verification 
(software and hardware models simulated 
together) can be done by co-simulation or by 

hosted simulation [21]. The major development 
of the software takes place in this phase and 
much of the purchased system components and 
airframe structure design has already been 
frozen. In the remaining loops the major focus is 
on tuning, verification, and validation. 
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Fig. 2. The vehicle systems design process. 
 
Second loop, simulator and rig tests 
One purpose of the test rig and simulator 
activities is to verify the control software and its 
interface with other systems. Typical errors 
concern units and interfaces that are difficult to 
cover in the first loop. A first partial validation 
can be done in the test rig, where the influence 
of e.g. wiring and detailed fluid dynamics, can 
be analyzed. An important part of the rig test 
activity is to feed the models with measurement 
data to improve the model’s accuracy. 
 
Third loop, flight tests  
If all modified software functions are non-
critical, flight tests are not considered 
mandatory for opening up the flight envelope. If 
modified software functions are critical, flight 
tests are considered mandatory in order to 
secure airworthiness. The flight test should also 
provide the models with measurement data. 

3 Uncertainties 

Mastering model uncertainties in system 
development is a key factor for success. The 
main sources of deviation between the 
simulation result and the real object’s 
behaviour, [7], can be categorized as: 
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 parameter uncertainties  
 model structure uncertainties 
 model validation data uncertainties 
 numerical simulation error 
 model inputs 
The list has been extended with model inputs. 
Other examples that lead to deviation between 
the simulation result and the real object’s 
behaviour are model, data and configuration 
management errors (illegitimate errors) and 
simulation tool bugs [11]. These kinds of 
sources will not be further discussed in this 
paper. 

3.1 Parameter uncertainties 

A common way of classifying parameter 
uncertainties is in aleatory and epistemic 
uncertainties. 

Uncertainties due to statistical variations in 
parameters, are termed aleatory uncertainties 
(also referred to in the literature as variability, 
irreducible uncertainties, inherent uncertainties 
or stochastic uncertainties [13]), and result in a 
variance in the simulation results. Typical 
model parameters with aleatory uncertainties are 
fluid properties and pressure drop coefficients 
that are dependent on manufacturing tolerances.  

Uncertainties due to lack of information 
about parameters, are termed epistemic 
uncertainties (also referred to in the literature as 
reducible uncertainties and subjective 
uncertainties [13]), and also generate 
uncertainty in the simulation result. 
“Engineering design is concerned with 
gathering knowledge through experiments and 
studies that quantify and reduce the impact of 
epistemic uncertainty” [3].  
Early in the concept phase, there are more 
epistemic uncertainties than aleatory 
uncertainties. During the refinement of the 
model, most epistemic uncertainties decrease 
and some epistemic uncertainties transform into 
aleatory uncertainties. 

3.2 Model structure uncertainties 

Epistemic uncertainties can also be related to 
the model structure, i.e. the system model and 

its equations do not describe the physical reality 
with sufficient fidelity. While parameter 
uncertainty is related to the physical parameters 
themselves, model structure uncertainty refers 
to lack of knowledge about the relationships 
between parameters and the underlying physical 
phenomena [3]. 

3.3 Model validation data uncertainties 

Direct comparison between parameter values, 
model outputs and real object cannot be made. 
The real object’s behaviour is always measured, 
and hence the comparison suffers from 
uncertainties such as non-ideal sensors and 
measurement system, natural variation due to 
wear and friction, and discrepancy between the 
tested object in its testing environment and the 
real object. An example of sources of 
uncertainties in a typical vehicle system rig, Fig. 
3, is presented in Table 1. In Fig. 3 the 
surrounding represents both the surrounding 
subsystems and the ambient environment. 
 

 
 
Fig. 3. Schema of a vehicle system rig. 
 
Some uncertainties can be categorized as both 
epistemic and aleatory. For the fuel system, for 
example, it is hard to predict if soluble air will 
be a problem and if it occurs the probability is 
hard to predict and measure. 
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Table 1 Example of sources of uncertainties in a typical vehicle system rig for a fuel system. 

Notice that measurement uncertainties 
presented in measurement reports often only 
present the uncertainty due to uncertainties in 
sensors and measurement system. The complete 
picture of the measurement data uncertainty 
versus the true system value, not the rig value, 
demands an estimation of the other uncertainties 
and its effects. It is the authors’ experience that 
for the major part of the vehicle systems 
development phase, the epistemic uncertainties 
dominate the data uncertainty. Tools and 
methods for simulation result uncertainty 
assessment must therefore be able to handle 
epistemic parameter uncertainties that initially 
in the design process can be large compared to 
nominal parameter values. 

3.4 Numerical simulation error 

Normally, numerical simulation error is 
very small compared to other uncertainties 
independent of the maturity of the system 
model. In some cases, if the model stiffness is 
severe, the numerical simulation error can be 
the dominating source of uncertainty. It is, 
however, rather trivial to assess compared to the 
other sources of error. Numerical simulation 

error estimation will not be further discussed in 
this paper. The relationship between numerical 
simulation error and uncertainties is discussed 
in [14]. 

3.5 Model inputs 

So far, the discussion has been concerned with a 
single model. Of course, the simulation result 
uncertainties are also dependent on the 
uncertainty in the model input. In a simulator 
environment, which typically includes some few 
to hundreds of models, the sources of the input 
uncertainty are numerous. The models in a 
simulator are often side effects of other 
modelling efforts and might have different 
purposes, fidelity, dynamics range, accuracy 
and validation. Simulator uncertainty 
management is a prerequisite for e.g. using 
simulation results for certification support. 
Uncertainty management needs to take into 
account both the information for each model 
and how it relates and connects to the 
surrounding models. 

In theory two means are necessary to 
manage the uncertainty of the result from a 
simulator: some classifications of the model 

Rig part  Example Epistemic Aleatory  
Equipment Pump, valve, turbine Prototype status, valve area Wear, manufacturing 

tolerances 
Electronic 
Control S/W 

S/W models, control 
code,  

Prototype status - 

Electronic 
Control H/W 

Computers,  
I/O electronics 

Prototype status Manufacturing 
tolerances, influence of 
temperature 

Interfaces Pipe, wiring Simplification in interfaces 
between equipments and/or 
subsystems. Different installation 
geometry. 

Wear, manufacturing 
tolerances 

Fluid Fuel or fuel substitute The solubility of air in fuel The solubility of air in 
fuel and fluid density 

Surrounding, 
subsystems and 
environment 

Pressure source, 
ambient temperature 

Often lumped/discretized and with 
less correct or no dynamics 

Wear, manufacturing 
tolerances 

Mission profile Altitude, speed, thrust Often crudely simulated Repeatability of mission  
Sensors and 
measurement 
system 

Flow, pressure, 
temperature 

Disadvantageous location, low 
dynamic response capability, noise, 
sampling rate, calibration 

Drift, influence of 
temperature, wear, 
manufacturing tolerance 
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accuracy (meta model attribute) and a meta 
model of the model relationships in the 
simulator. 

The model accuracy classification, e.g. 
dynamics and validation, could be in terms of a 
rough scale from 1 to 5 where 1 represents low 
and 5 high. A model with dynamics 1 and 
validation 5 is a model unable to cover the 
system dynamics but stationary validated by 
intense test measurements. A model with 
dynamics 5 and validation 1 is highly dynamic 
model but not validated. The meta simulator 
model describes the signal flow connections 
between models and the influence of a model’s 
input on its outputs. 

With this two means it would be possible 
to predict a rough simulation result quality, even 
before a simulation by propagation of the 
information. Unfortunately, the real world is a 
little more complicated. It is almost impossible 
to put a validation figure on a large model. The 
validation measure can be divided into several 
aspects. The data used at the validation 
comparison can have different credibility, e.g. 
measurement data from rig vs. flight test, and 
the model can be both temporally and spatially 
validated. The temporal aspect concerns 
stationary vs. dynamic while the spatial aspect 
can be subdivided into both model and flight 
envelope. For example, a subsystem in a model 
can be dynamically validated at low altitude but 
not at high altitude and the opposite for another 
subsystem. Furthermore, validation of a model 
is not automatically conducted with high 
accuracy, only with more knowledge about the 
accuracy. 

A possible starting point for uncertainty 
management is to add rules that describe e.g. 
how the validation is done in a figure as a 
function of e.g. flight envelope parameters 
altitude and speed and model input on every 
potential output. A script can then point out 
where and when during a simulation outputs 
have been produced below a desired validation 
level. A manual action then remains to get 
insight of how indicated model outputs affect 
outputs of interest. This suggestion can 
functionally be increased with more measures 
and automatically with the model’s inputs’ 
influence on its outputs, e.g. sensitivity analysis 

(SA), to minimize manual activities. One 
significant drawback is that the complexity, 
overhead administration efforts and the required 
completeness in signals’ and models’ validation 
and accuracy status information required to 
build and maintain such an uncertainty 
management system, is today beyond the 
capabilities of available development processes, 
methods and tools. This must nonetheless be 
resolved in the near future and is an area of 
challenging research. 

For some non-CPU-intensive simulator 
simulations, probabilistic design can be a part of 
the uncertainty management [6].  

Some work in uncertainty management can 
be found in reference [12] where a broader 
aspect and on a higher level has been taken 
concerning M&S result credibility. Eight factors 
have been defined with a five-level assessment 
of credibility for each factor. 

4 Sensitivity analysis 

One way to achieve model simulation result 
quality measures is to use sensitivity analysis. 
This is applicable at all relevant engineering life 
cycle stages, as well as in the modelling and 
simulation process in Fig. 2. Sensitivity analysis 
is the study of how the variation in the output of 
a model can be apportioned to different sources 
of variation, and how the given model depends 
upon the information fed into it [15]. Put 
another way, sensitivity analysis is the 
assessment of the impact of changes in input 
values on model outputs [5]. Sensitivity analysis 
has been found useful at Saab to: 
 provide an overview of which inputs are of 

importance for the desired behaviour of a 
system model and thereby require additional 
research to increase knowledge of model 
parameters’ behaviour in order to reduce 
output uncertainty 

 study the influence of disturbances and 
uncertainties in parameters and constants 

 study the degree of robustness in a system 
 provide support during the model 

verification/validation process 
 provide support in planning rig/flight tests 
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The local sensitivity method is useful for 
large models with many parameters and 
simulation models that involve computationally 
expensive simulations and where the underlying 
equation is not accessible for manipulation. The 
number of simulations required to calculate the 
local sensitivity matrix will be equal to the 
number of inputs + 1 if the one-side difference 
approach is used and 2*inputs + 1 if the central 
difference approach is used. 

By changing one parameter at a time and 
rerunning the model, the elements of the 
sensitivity matrix can be obtained by 
linearization of the non-linear model, f equation 
(1) where the system characteristics y are 
computed from the system parameters x, around 
a nominal point, equation (2) where J is the 
Jacobian.  

f(x)y   (1) 

xJ)f(x y  y 00   (2) 

ij
j

i
ij k

x

xf
J 





)(

 (3) 

For small variations the sensitivity matrix, 
equation (3), is identical to the Jacobian matrix, 
hence:  

xJ y   (4) 

The global sensitivity [15], however, accounts 
for the global variability of the output over the 
entire range of the input variables and hence 
provides an overall view of the influence of 
inputs on the output. Using this variance-based 
SA the analysis of variance can be decomposed 
into increasing order terms, i.e. first-order terms 
(main effects) depending on a single variable 
and higher-order terms (interaction effects) 
depending on two or more variables [18]. 
Global sensitivity analysis has the drawback 
that the required number of simulations 
increases exponentially with the number of 
inputs and is therefore not always suitable for 
computationally expensive simulations. 
Furthermore, if a benign nominal design point is 
used, the interaction effects are small. 

4.1 Sensitivity analysis process 

Benefits are achieved by separating the 
modelling and simulation tool from the 
sensitivity analysis tool. One is that the model 
configuration management is not affected and 
that the sensitivity analysis tool is forced to be 
more generic to be able to perform sensitivity 
analyses on models from different domains. A 
generic sensitivity analysis process, 
implementable in a simulator environment, is 
presented in Fig. 4 with some descriptions of 
tasks and data objects. 

The task “Determine model parameters and 
states to be analysed” has the input: “Purpose of 
analysis” that identifies necessary models to be 
able to perform the sensitivity analysis. With the 
help of the input “Model description”, necessary 
model states and parameter names, are 
identified. “Model description” should also 
identify a necessary model to achieve a 
complete simulator environment, e.g. the 
atmosphere model that is a model connected to 
many others. 

The task ”Determine model parameters 
uncertainties” selects model states and model 
parameter uncertainties that will be used in the 
sensitivity analysis. The input “Model 
parameter uncertainties description” is a 
parameter uncertainty list for each model. The 
output “Model state and parameter uncertainty 
list” is a reduced list of “Model parameter 
uncertainties description” with the model states 
and parameters from “Model, parameter and 
state list”. 

The task “Prepare sensitivity analysis tool” 
prepares a batch simulation instruction for the 
task “Execute sensitivity analysis”. The input 
“Requested sensitivity method, measures and 
target criteria” identifies the sensitivity analysis 
method and measures that will be included in 
“Model parameter influence on model states”. 

The task “Execute sensitivity analysis” 
calls “Initiate models” and “Execute model” 
until all simulations are finished and calculates 
the sensitivity analysis measures. 

The task “Evaluation” evaluates the 
“Model parameter influence on model states” 
and summarizes it in a report. 
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Fig. 4. Sensitivity analysis process. 

4. 2 Sensitivity analysis in the development 
process 

Model result uncertainty measures can serve as 
stop criteria for the loop iterations [19] and as 
support for iteration planning in Fig. 2. The 
vehicle systems development process in Fig. 2 
can be redrawn, see Fig. 5, where some of the 
uses of sensitivity analysis have been explicitly 
marked out. 

Model ymym

SA

Data sheet, 
experience

Need for 
improvement of ym

Test planning of 
x and y with SA

x, x, y , yRig, flight 
test

Improve model 
with xm, xm

Before and after access to rigs 
and flight test measurements

Loop 2, 3Loop 1

 
Fig. 5. Sensitivity analysis in the vehicle 
systems design process. Subscript m stands for 
model,  for uncertainty, x represents system 
parameters and y system characteristics. 
 

Before access to rigs or flight test 
measurements, the focus is on system 
parameters because this is what can be 
controlled and the system characteristics are a 
function of these. After access the focus moves 
to system characteristics as a consequence of the 
system parameters being more or less frozen. 

Sensitivity analysis is suitable for both stages, 
before access to measurements, by pointing out 
system model parameters that need to be 
improved, to achieve a certain level of system 
characteristics accuracy, and after access as test 
planning support. 

4. 3 Measures 

In order to make it possible to get an overview 
of the sensitivities, some kind of normalized 
dimensionless sensitivity measures is needed. 
The first approach to normalize the sensitivities 
is to employ the following definition of relative 
sensitivity: 

ji

ij
ij xy

yx
k




0  (5) 

In this way, a non-dimensional value is obtained 
that indicates by how many per cent a certain 
system characteristic, i, changes when a system 
parameter, j, is changed by one per cent. Using 
this method, it is much easier to assess the 
relative importance of the different system 
parameters. Furthermore, it can be presented in 
a hierarchical fashion, so that influence at an 
aggregated level, e.g. the influence of 
uncertainty on a whole subsystem, can be 
assessed. 
The aggregated normalized sensitivity matrix 
therefore seems to be an excellent tool to ensure 
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that design efforts are properly balanced in the 
ensuring design steps, by identifying critical 
areas at an early stage of the design [9], [10]. 

Provided that the uncertainties are small 
compared to the nominal values, the variance in 
the system characteristics can be calculated as: 
 

 

 











n

j
jxijjy

n

j
jxijjy

k

VkV

1

2
,

22
,

1
,

2
,


 (6) 

 
Here Vx,j is the variance in the system 

parameters and Vy,j is the variance in the system 
characteristics and analogous to the standard 
deviation σy,j. 

An approach that provides valuable insight 
is to look at the influence of the actual 
uncertainties in parameters on the uncertainties 
in system characteristics. The effect of 
removing an uncertainty altogether can then be 
calculated, Effective Influence Matrix (EIM) 
[10].  

The Main Sensitivity Index (MSI) is 
another measure of uncertainties’ influence. It is 
defined as the ratio between the total variance in 
a system characteristic and the contribution to 
that by an uncertain parameter. The difference is 
that in the MSI matrix the values are normalized 
so the row sum is always one. The EIM and 
MSI only provides the first-order interaction 
effects, but there is also a sensitivity index 
closely linked to the MSI, the Total Sensitivity 
Index, TSI [4].  

Fig. 6 to Fig. 8 show a regulator and some 
of its system characteristics sensitivity results, 
e.g the parameter “Area” is the main uncertainty 
contributor to the characteristic time_ramp_up.  

 
Fig. 6. A part of a pressure valve regulator 
modeled in Modelica. 
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time_ramp_up s 0.01 0.039 0.00 0.19 0.00 0.81
Volume.p_kPa_g kPa 0.04 0.003 0.01 0.69 0.02 0.29  
Fig. 7. MSI. System characteristics’ deviations 
and the main sensitivity index of uncertainty 
parameters. 
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System 
characteristics Units Deviation

Normalize
d 
deviation 0.50 0.05 0.10 0.05

time_ramp_up s 0.01 0.039 0.000 0.004 0.000 0.022
Volume.p_kPa_g kPa 0.04 0.003 0.000 0.001 0.000 0.000  
Fig. 8. EIM. System characteristics’ deviations 
and the influence of the uncertainty parameters. 

5 Discussion and conclusion 

The need for uncertainty management and more 
complete validation methods that complement 
the traditional validation, knowledge of a 
model’s maturity and simulation result 
accuracy, has emerged due to the intensity of 
M&S that MBSE has in early vehicle systems 
development phases. A solution for this need is 
important to succeed in system development 
where early design decisions have to be made 
supported by simulation only. The ability to 
handle uncertain information and lack of 
information is the key to success in early design. 

Further, the local sensitivity method has 
been shown useful for large models with many 
parameters and simulation models that involve 
computationally expensive simulations. 

One side benefit of using sensitivity 
analysis is that the unexpected absence of 
sensitivity in parameters, might indicate 
modelling error, and it is therefore also a 
valuable debugging tool for models. 

Substantial challenges remain, both for the 
user and the method and process developer, 
before uncertainties can be used in system 
simulators, such as the difficulty to achieve 
required completeness in models’ validation 
status and signals uncertainties description and 
suitable validation and accuracy measures. 
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