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Abstract 

The paper offers fast aerodynamic calculation 
technology for passenger aircraft in cruise 
flight regime, based on the application of 
efficient direct methods of aerodynamic 
calculation, mathematical apparatus of 
artificial neural nets and information 
technologies. Examples are given of the 
application of the methods concerned in the 
phase of preliminary design. 

1  Introduction 
Creation of fast modules for evaluating the 
aerodynamic characteristics of passenger 
aircraft in cruise flight regime is an urgent 
problem of practical value [1-2]. Any design 
system may be conventionally divided into two 
modules: a generator of the design objects and a 
module for evaluating the design object 
characteristics. 

To begin with, it is necessary to develop a 
mathematical model of the aircraft (A/C) layout 
class involved and a module for random 
generation of aerodynamic layouts and their 
elements in the prescribed parameter range, 
using dimensionality reduction techniques. The 
ability to create objects having desired 
properties is the most important feature of the 
object generation module. The design process 
is, in this case, significantly simplified. 

Then, it is necessary to calculate the flow 
about the layouts concerned in the prescribed 
range of free stream parameters and create the 
database. It is but natural that the choice of the 
design method and the field of its application 
imposes certain requirements on the method of 
describing the data used, in particular, on the 

mathematical model structure and method of the 
aircraft surface description. 

The data obtained enable the 
approximators for the output parameters studied 
to be created [3]. In the present case the 
approximators are developed, based on the 
artificial neural nets (ANN), which allows the 
time of the design process to be significantly 
reduced. Creation of the qualitative object 
generation module is of great importance in the 
phase of the ANN learning sets production in 
the aerodynamic characteristics evaluation 
module. 

2 Description of the A/C layout mathematical 
model 
As an object of study passenger aircraft layouts 
in “wing – fuselage” and “wing – fuselage – tail 
unit” configurations (Fig. 1) are considered for 
which cruise flight aerodynamic characteristics 
are to be calculated. 

Detailed description of the aircraft surface 
is used as source information both for grid 
methods of aerodynamic calculation (CFD 
codes) and engineering approaches. To describe 
the three-dimensional aircraft surface in detail a 
huge dimension vector is used that contains 
thousands of parameters whose greater part, if 
separately considered, have no explicit meaning. 
It is impossible to use vectors of such 
dimensionality as the approximator (ANN) 
input data. To describe the aircraft surface 
requires another methods. 

The 3D surface description dimensionality 
can be reduced only in case of restricting the 
class of layouts considered. Formally, surfaces 
of the aircraft class considered should be 
described by a moderate number of parameters 
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(several hundred) which involve all the 
principal integral geometric characteristics 
routinely used to describe the layouts of the 
class considered and fully specifying the most 
essential aerodynamic and structural properties. 
The parameter dimensionality and structure are 
supposed to be the same for layouts of the class 
concerned. 

 

 

 

 
 

Fig. 1. Passenger aircraft layouts under consideration 
 

A small set of parameters may definitely 
characterize a layout only if additional aircraft 
surface assumptions have been made. In other 
words, at issue is construction of an aircraft 
surface mathematical model defined by a small 
number of parameters. The model should be 
selected so that in varying its parameters (within 
the limits prescribed) the existing aircraft and 
those under design may be described in 
sufficient detail to determine the aerodynamic 
characteristics with an adequate degree of 
accuracy and a comparative analysis of similar 
layouts different in the model parameters 
conducted. 

Generally accepted is the practice of using 
approximate mathematical models of the surface 
instead of its detailed description. In the phase 
of preliminary design and drafting approximate 
aircraft mathematical models are used that allow 
aerodynamic characteristic to be calculated with 
accuracy adequate for the stages involved. 
Thereby, the aircraft surface mathematical 
model comprises: 

• a variety of surface assumptions that 
limit the class of layouts considered and 
allow the surfaces to be specified by a 
small number of parameters; 

• a set of the model parameters that are 
explicitly determined through detailed 
surface description; 

• a range of the model parameter values. 
Wing Model (Fig. 2) is defined by 

describing its planform, selecting the dihedral 
angles, tables of airfoil coordinates in the 
selected sections, spanwise distribution of twist 
angle ε and airfoil thickness ratio C . The 
planform is specified by the total area aspect 
ratio (AR), base trapezium taper ratio (TR = 
С2/С0), relative areas of the leading edge (S1/S0) 
and trailing edge (S2/S0) extensions, leading 
edge (x1, y1) and trailing edge (x2, y2) kink 
position, quarter-chord base trapezium sweep 
angle (χ25), dihedral angles of the root (ψ0) and 
tip (ψ1) wing parts. 

 
Semispan B/2 = 1  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Wing model 

 
In forming a fuselage model the following 

assumptions have been made. The fuselage is 
composed of a nose, cylindrical and tail parts 
(Fig. 3). Each part has some fixed forms of 
upper, lower and side lines. All the fuselage 
cross sections S(x) are of the same form. The 
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cross section form difference from ellipse is 
determined by an additional form parameter. 
The fuselage lines for the nose, central and tail 

sections are described by different analytical 
functions. 
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Fig. 3. The fuselage view in longitudinal vertical section and horizontal projection
  

Tail unit model includes models of 
horizontal (HT) and vertical (VT) tails that are 
fully specified by the two end (root and tip) 
sections with symmetrical airfoils installed in 
them. The model of the relative position of the 
layout components specifies the relationship of 
the airframe base elements. 

The ranges of variation in geometric 
parameters of the wing, fuselage and tail unit 
models are chosen in conformity with the actual 
values of the existing airliner parameters. 

2  Forming the set of A/C layouts 

To form the learning set about 10000 “wing–
fuselage–tail unit” and over 12000 “wing–
fuselage” layouts have been preliminary 
generated by the vector component random 
generation within the ranges prescribed. Used is 
a method of object generation with the aid of 
replicative ANN [4] described below. Airfoil 
wing sections were selected at random from the 
base of airfoils or formed with the aid of 
replicative ANN. 

These are available to download at address 
with airfoils taken as an example, considered is 
the replicative ANN application for generating 
objects with prescribed aerodynamic and 
geometric parameters. The usage of the ANN 
concerned allows the dimensionality of space 

applied for describing the airfoil surface to be 
significantly decreased and qualitatively new 
A/C design systems to be developed [5]. 

The replicative (duplicating) ANN are one 
of the subtypes of multilayer perceptrons. The 
architecture of these nets is symmetrical (Fig. 4) 
with the first and last layers having the same 
number of neurons equal to the input vector 
length and with the mid-layer being a narrow 
throat of significantly smaller dimension. The 
first and the last layer are called an input and 
output layer, respectively, the middle one is 
called a hidden layer. 
 
 
 
 
 
 
 
 
 
 
 
 
 Output vector 

from the mid-layer 
(N numbers) 

 
 
 
 

Fig. 4. Replicative ANN 
 

The replicative ANNs were first suggested 
for solving the problems of data compression 
[4]. Consider a three-layer perceptron having 
the same number of neurons in input and output 

Input vector 
(M numbers) 

Output vector 
(M numbers) 
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layers. Let the number of the hidden mid-layer 
elements be much less then in input and output 
layers and as a result of learning the ANN can 
duplicate the same output vector as that fed to 
the input layer. The ANN concerned compresses 
the data over the area from the input layer to the 
hidden one and decompresses them from the 
hidden to the output layer. Hidden layer 
elements generate representation of each vector 
whose dimension is smaller than the length of 
the input vector (Fig. 5). In fact, the replicative 
ANNs enable data dimensions to be reduced by 
transition to the so-called “natural” coordinates. 
In case the neurons with linear transfer 
functions are used, the present approach results 
in the known method of principal components 
analysis (PCA) [6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. New airfoil generator: setting the airfoil geometry 

from the random vector in the compressed data space 
 

Generation of random objects similar to 
those on which learning occurred is another 
application of the replicative ANN. Using a 
random number transducer, points are generated 
in the N-dimensional space region restricted by 
the minimum and maximum values of the 
neuron mid-layer outputs. If these N-
dimensional vectors are to be fed to the output 
layer of the learnt replicative ANN, vectors of 
the original M-dimensional space are obtained 
corresponding to the points in the space of 
natural coordinates. The objects generated refer 
to the same class as the original ones. 

With airfoils taken as an example, the 
following problem is solved. There is a set of 
airfoils for three-layer replicative ANN learning. 
The net has an input and output layer of great 
dimensionality (59 inputs – outputs) and a 
narrow throat which is a hidden layer of much 

less dimension (6 neurons). The ANN involved 
is capable of compressing data from the input 
layer dimension to that of the hidden mid-layer. 
The task is to generate new airfoils using the 
learnt net mentioned. 

The initial set used for ANN learning 
consisted of about 300 airfoils whose shape is 
specified by 59 points. The replicative ANN 
with linear activation functions was used, i.e. 
the method of principal components was 
actually applied. 

The decompression part of this net learnt 
was used as an airfoil generator. To this effect a 
signal in the form of a 6-component vector is 
applied to the hidden layer output (the input of 
the output layer). The vector components are 
randomly distributed and limited by extreme 
values of the respective initial set components. 
That is, they lie in the dense set of compressed 
data. Thereafter, a 59-componenet vector is 
obtained from the output layer that specifies a 
new airfoil. Fig. 6 gives typical shapes of the 
airfoils obtained by the present approach. 

 

 

Random vector 
(6 numbers) 

Output vector, setting a 
new generated airfoil 

(59 numbers) 

 
 

Fig. 6. Airfoils of the set randomly generated  
in the 6-dimensional space 
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3.  Artificial neural nets tuning and learning, 
evaluation of the aerodynamic characteristics 
determination accuracy 
To determine the aerodynamic characteristics 
calculations have been made using CFD-code 
BLWF [7] in which a boundary-value problem 
is solved for full velocity potential equation. 
Viscosity is allowed for in the boundary layer 
approximation with fixed position of the 
laminar-to-turbulent transition. The method 
concerned simulates the occurrence of local 
supersonic areas and shock waves, provides 
computation flows with small separation zones 
and is reliably verified. 

The results obtained have been used to 
form the database (a variety of patterns) to be 
used for ANN learning and testing. To produce 
the aerodynamic characteristics approximators 
an ANN of a multilayer perceptron type were 
used. 

Fig. 7 gives an error density distributions 
of the drag coefficient Cd and lift coefficient CL 
evaluation. Difference in values obtained in 
direct calculation and from approximation is 
shown by a solid line. The dashed line shows 
normal distribution with the same standard 
deviation. The accuracies obtained are quite 
adequate for carrying out the aerodynamic 
layout analysis in the phase of preliminary 
design.  

Table 1 gives mean absolute and relative 
errors in evaluating drag coefficient Cd, lift 
coefficient CL and derivatives of the lift 
coefficient and pitching moment by angle of 
attack CL

a, Cm
a and HT setting angle CL

IHT and 
Cm

IHT. 
 

Characteristic Mean absolute 
error 

Mean relative 
error, % 

     CL 0.00390 0.8 

     CL
a 0.00200 1.4 

     CL
IHT 0.00026 1.1 

     Cm
a 0.00470 2.3 

     Cm
IHT 0.00076 0.9 

     Cd 0.00030 1.5 
 

Table 1 

     a 

    b 
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Fig. 7. Error density distribution of Cd and CL  
evaluation (Re = 3·107) 

4  Comparative analysis of aerodynamic 
perfection 

In solving the design problems it is necessary to 
evaluate and compare the aerodynamic 
perfection of several layouts that differ in a 
number of parameters such as sweep, aspect 
ratio, leading edge extension value and wing 
thickness distribution. As a rule, direct 
recalculation does not show to what extent one 
layout is better or worse than the other. It is very 
often impossible to define what the difference in 
characteristics is due to – the planform or wing 
shaping. And naturally, it is impossible to assess 
how well the wing shaping has been chosen 
without solving the surface shape optimization 
problem with prescribed limitations. 
Application of neuronet technologies enables 
the problems concerned to be solved and 
modules to be created which, in the process of 
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design, allow the perfection of the version 
obtained to be practically instantly compared to 
the base level.  

In the previous examples a parameter 
vector fully describing the layout was applied to 
the ANN input. Consider the case when a vector 
of smaller dimension including only parameters 
of the wing planform and its average thickness 
is applied to the input. After ANN learning an 
actual approximation function is obtained 
allowing the aerodynamic characteristics to be 
determined with a small number of parameters 
specifying the wing planform. 

Fig. 8 shows comparison of the total drag 
Cd total evaluation accuracy obtained using the 
full and shortened input vector, in the form of 
the error probability density distribution. The 
results cited show that allowance for wing 
airfoil shaping in ANN learning several times 
improves the aerodynamic characteristics 
evaluation accuracy.  

 
 

Cd BLWF – Cd ANN 
 

Fig. 8. Error probability density distribution in 
determining Cdtotal. Solid line is “long” ANN, dotted line – 

“short” ANN input vector 
 

Therewith, difference in the aerodynamic 
characteristics obtained with the use of “long” 
and “short” ANN, depending on the number of 
the input parameters, makes it possible to assess 
the quality of the choice of wing airfoil shaping 
for the layout involved. In fact, estimation of 
aerodynamic characteristics using ANN with a 
small number of input parameters gives an 
average level of aerodynamic characteristic for 
the planform and mean wing thickness ratio 
concerned based on the sample of versions used 

for ANN learning. Calculation or estimation of 
aerodynamic characteristics using ANN with 
full input vector gives aerodynamic 
characteristics of a particular version. The more 
it differs (to the better) from the average, the 
more qualitative is the choice of wing airfoil 
shaping. Based on this consideration, it is easy 
to create a module ensuring fast design system 
version sorting. 

Figs. 9-10 demonstrate results of 
application of the approach concerned for the 
wing design, with replicative ANN being used 
in the capacity of the data generator. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b 

25 χ

Fig. 9. Cdtotal distribution in variables C  – χ25 
a) initial, b) obtained 

 
Values of Cdtotal corresponding to the initial 

wing sample are given in Fig. 9a against wing 
mean thickness ratio C  and sweep at quarter 
chord χ25. After the sorting procedure only those 
wing forms were left which exceed the average 
level of lift to drag ratio at CL = 0.5 within the 
range of M numbers from 0.7 to 0.8. The 
sample obtained was used for learning the 
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replicative ANN with 41 neurons in the hidden 
layer. After learning ANN was used as a data 
generator and the aerodynamic characteristics 
were evaluated using BLWF code computation. 
3998 layouts were created. The computational 
data obtained were used for learning new ANN 
with short input vector. 

Fig. 9b gives Cdtotal values consistent with 
the new wing sample. Drag coefficient level for 
the new sample is seen to have decreased, on 
average, by 0.0030. Contour patterns in 
variables C  – χ25 are obtained for the layout 
with invariable fuselage shape and constant 
wing aspect ratio, taper ratio, leading and 
trailing edge extension values (Fig. 10). 

 

 
 

Fig. 10. View of the layout 

5  Aerodynamic drag minimization  
Application of fast models in designing 
minimum drag wing at M = 0.8 and CL = 0.5 is 
considered. In the course of design airfoil 
shapes were varied in 10 wing sections. The 
wing planform, thickness distributions and twist 
remained constant and were specified by the 
initial layout selection. The problem was solved 
according to the diagram in Fig. 11. Here σPCL 
is root-mean-square deviation in the space of the 
compressed (natural) coordinates. 

12 iterations of generation, estimation and 
choice of the minimum drag layout have been 
performed. Fig. 12a shows variation in the total 
drag coefficient Cdtotal where the layout number 
is plotted on abscissa axis. The first number 
corresponds to the initial layout. Drag reduction 
is seen to occur during the first 7 – 8 iteration. 
Changes in the components of drag coefficient 
are shown in Fig. 12b (induced Cdind), Fig. 13a 
(profile CdFP) and Fig. 13b (wave Cdwave). 

 
 Initial layout selection from database 

 
 
 
 

Generation in the neighborhood (±0.1σPCA) 
layout 100000 random layouts 

 
 
 
 

Drag estimation of the layouts generated using 
ANN approximator 

 
 
 

Layout selection with minimum drag

 
 

Drag coefficient computation using BLWF 

 
 
 
 
 

Output 

Fig. 11. Diagram of the problem solution 
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Fig. 12. Variations in total and induced drag coefficients 
 

Fig. 14 shows spanwise distribution of the 
wing twist ε and thickness C . Shapes of 
aerodynamic airfoils in wing sections Y = 0.1; 
0.5; 1.0 obtained for the initial layout No. 0 and 
layouts Nos. 8 and 9 are shown in Fig. 15. The 
layout overall view is shown in Fig. 16. Fig.17 
gives isobar patterns. 
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Fig. 13. Variations in pressure and wave drag coefficients 
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Fig. 14. Spanwise distributions of twist and airfoil  
section thickness 

 
 

 
 
 

Fig. 15. Airfoil shapes obtained 

 
 

8.0 
 
 
 

7.9 
 
 
 

7.8 

CdFP 

Cdwave 

8×10–4 

 
 

6 
 
 
 

4 
 
 

2 

Niter 
0            2           4            6            8           10          12 

ε 

3 
 

 
2 

  
 
 

1 
 
 
 

0 
 
 
 

-1 

0.15
 
 
 
 

0.13 
 
 
 
 

0.11 
 
 
 
 

0.09 

C  

0               0.2             0.4               0.6              0.8               1. 

Y  

X
 

Z  

0    0.1 
0    0.5 
0    1.0 
 

8    0.1 
8    0.5 
8    1.0 
 

9    0.1 
9    0.5 
9    1.0 



 FAST AERODYNAMIC DESIGN TECHNOLOGIES

 

 

 

 

 
Fig. 16. Overall view of the layout 

 

 
 

Fig. 17. Isobar pattern (M= 0.8, α = 0.65°) 

Total time for CPU to perform one 
iteration on PC amounted to 11.3 seconds, with 
generation of 100 000 layouts taking 1.1 
seconds, evaluation of aerodynamic 
characteristics using fast model of 100 000 
layouts – 3.2 seconds and BLWL code 
computation of one the best layout – 7 seconds. 
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