
26TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

AN ADAPTABLE METHODOLOGY FOR AUTOMATION
APPLICATION DEVELOPMENT

Christian Van der Velden*, Cees Bil*, Xinghuo Yu** and Adrian Smith***

*School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University,
Melbourne, Australia

**School of Electrical and Computer Engineering, RMIT University,
Melbourne, Australia

***451° Consulting, Australia

Keywords: Knowledge Based Engineering, Design Automation, Routing

Abstract

The automation of engineering processes
through Knowledge Based Engineering and
Design Automation methods and technologies
can provide significant savings in project
scheduling and cost, increasing competitiveness
in a changing aerospace market. In this paper
we present outcomes of a research project
aimed at improving engineering automation
capability through development of a tool for
automatic rule based path-finding for the
complex engineering task of aircraft electrical
harness and pipe routing.

1 Introduction
The benefits of employing automation
technologies in engineering are clear from the
literature [1], [2]. Automated solutions can be
used to reduce low level and repetitive tasks,
integrate tools and datasets, and simplify and
standardise more complicated processes,
achieving significant savings in development
lead time and cost. Gathering and
implementing knowledge electronically can also
ensure knowledge retention within
organisations, independent of changes in
personnel.

Knowledge Based Engineering (KBE) and
Design Automation are two sets of
methodologies and technologies for automating
engineering processes through software. KBE
refers to the capture and modelling of rules and
engineering knowledge for implementation in
intelligent systems which automate processes

and emulate human decision making. KBE
applications are typically reusable, dynamic,
generative, generic, and integrated. By
comparison, Design Automation refers to the
automation of relatively straight forward,
sequential steps in an engineering process.
Resultant Design Automation applications are
generally applicable to specific situations with
limited reuse, and often contain hard coded
rules and knowledge.

The decision to implement either a KBE or
Design Automation solution to satisfy an
industry need depends on a number of factors.
While KBE solutions generally offer more
flexible and intelligent results, development
schedules and costs are often inhibiting. Design
Automation solutions, although often lacking
dynamic capability, can often represent a more
practical solution to a problem in terms of
technical feasibility, time and cost, and with
reduced risk.

A flexible methodology for the
development of engineering automation
applications of varying complexity from high
level KBE to lower level Design Automation is
proposed. This methodology is based on the
premise that Design Automation and KBE
application development methodologies are not
mutually exclusive, instead the former
represents a subset of processes required for the
later. Whereas these two development
techniques with seemingly opposing
requirements are generally treated
independently by industry and academia, the

1

C. VAN DER VELDEN, C. BIL, X. YU, A. SMITH

proposed methodology links them together in a
practical way.

The methodology associates the many
processes required for development of a full
KBE application with a set of governing
attributes which are used to distinguish between
the two types of applications. These
distinguishing characteristics relate to
capabilities of target systems. System
developers specify the attributes desired of
automated solutions, and based on their
selection, sub-processes of the full methodology
are either invoked or omitted, resulting in a
comprehensive development processes without
unnecessary low-value tasks.

In this paper a brief overview of the
proposed methodology is presented, and is
applied to the complex domain of aerospace
electrical harness routing. A software tool for
automating the layout of aircraft electrical
harness and pipes is developed.

2 Knowledge Based Engineering in
Aerospace
KBE and Design Automation solutions have
been implemented in the aerospace and
automotive industries since the early 1980’s
through the implementation of customised
Computer Aided Design (CAD) based
applications for automating rule based design
tasks. Many of these early systems were
developed using the ICAD system from KTI
(and later Dassault Systemes) [3].

Over the two to three decades that
followed, new methodologies and technologies
were introduced, and after a short decline in the
early 1990’s, the use of KBE and Design
Automation began to gain momentum in
engineering industries worldwide. In this time,
the technology has developed far beyond
applications solely for implementation on CAD
systems, incorporating automated analysis
techniques and the automatic generation of
manufacturing data for CAM systems.

Since the early 1990’s, the aerospace
industry has migrated to a wholly digital
approach to development of aircraft, with the

Boeing 777 wide body, twin engine passenger
airliner the first developed entirely in a virtual
environment [4].

As a result of technology improvements
making virtual product development possible,
large aerospace Original Equipment
Manufacturers (OEMs) such as Boeing, Airbus,
BAE Systems, Lockheed Martin, Northrop
Grumman, and others, all implement design
automation at some level in product
development.

Over time as these engineering
organisations grow and mature, a considerable
base of engineering knowledge and expertise of
product development capability is established.
This base provides the company with the
resources, technical capability and confidence to
attain a share of work in new projects. Such
knowledge is a valuable asset and must be
managed effectively to remain competitive.

Experienced companies establish standard
methodologies for design and analysis
processes, using proprietary (often empirical)
data. Other techniques include development of
handbooks, best practice guides and software
templates. This knowledge, which can be
articulated with relative ease, is explicit in
nature. However, unavoidably, much of a
company’s knowledge asset resides in the
expertise and experience of the engineering staff
themselves. This knowledge is tacit in nature,
often difficult to express in words or on paper,
and requires a deep understanding of the
problem domain. This presents a problem of
retaining tacit knowledge as engineers retire or
change companies to pursue personal careers.
Great care must be taken to mitigate impact to
the company’s knowledge base caused by such
staff losses. Effective mechanisms must
therefore exist to capture this knowledge.
Development and deployment of such
techniques for capturing knowledge remains one
of the significant challenges facing knowledge
engineers today.

It is important to recognize that not all
processes are suitable for engineering
automation. Some tasks, especially those
requiring tacit human judgment, will always
require some level of user input, and the effort

2

 AN ADAPTABLE METHODOLOGY FOR AUTOMATION
APPLICATION DEVELOPMENT

required to automate such processes often does
not outweigh the benefit gained by automated
capability. Processes that are well suited to
automation typically exhibit one or more of the
following characteristics [2]:
• Low level, repetitive, and/or highly manual

tasks,
• Integration of tools and datasets (e.g. CAD /

Computer Aided Engineering (CAE) /
Computer Aided Manufacturing (CAM)),

• Automated documenting and report
generation,

• Simplification and/or standardization of
more complex processes.

Two main implementations of automated
engineering solutions are commonly used in
industry today. The first involves a formally
identified task with well defined requirements,
built by a team of developers. There must be a
business case for developing such solutions, i.e.
provide a positive return on investment (the
ratio of the number hours required to perform
the task completely manually, versus the
number of hours to develop an automated
solution and complete the task automatically)
[2]. Outputs from these processes undergo
rigorous testing and are formally released to
engineers for use in design and analysis tasks.
Resulting applications generally exhibit
qualities of KBE applications.

The second type of automated solution is
typically much smaller in scale, aiming to
automate a particular task faced on the
engineering floor. Such tasks generally require
a large amount of manual work, such as manual
manipulation of datasets, and passing
information between different tools. These
automated solutions are often developed by
design and analysis engineers working on an
individual basis. Many automated solutions are
created by engineers who are not proficient in
computer programming. Tools used to develop
these automated methods can include
spreadsheets, macros, databases, and APIs using
simplified scripting languages. Engineers use
these tools because of their familiarity and
understanding of their capability and scope.

The development of such applications can
provide solutions for problems which surface on
the engineering floor with short notice. The
ability to quickly code solutions to deal with
such problems can greatly reduce the time taken
to complete tasks and eliminate or reduce
bottlenecks in the development lifecycle. These
solutions are especially suited to tasks with high
levels of repetition, or those subject to change
numerous times during development.

These smaller applications are typically
developed for a specific purpose, with hard-
coded rules or knowledge, and reusability is not
a key factor in their development, resembling a
Design Automation approach as opposed to
KBE.

Significant productivity improvements can
be made by encouraging engineers to implement
automation principles in everyday engineering
design and analysis. This can be facilitated by
introducing engineers to a structured process for
automating engineering tasks, providing
appropriate levels of training in development
tools, and providing awareness of existing
infrastructure such as generic code libraries for
performing common tasks.

3 Adaptable Methodology for Automation
Application Development
Whereas established KBE application
development methodologies such as
CommonKADS [5], [6], [7], MOKA [8], [9],
[10] and others [11] can be very time
consuming and complicated to implement,
many of the principles incorporated are
important to ensure sufficient coverage of the
domain. Most KBE methodologies consist of
approximately seven key phases which
generally include the following activities:

1) Problem identification
2) Feasibility analysis
3) Knowledge acquisition
4) Knowledge modelling
5) System development
6) Validation
7) Deployment / ongoing support

3

C. VAN DER VELDEN, C. BIL, X. YU, A. SMITH

Various methodologies refer to these
phases in different ways, or incorporate one or
more of the above phases into a single phase,
but the list above forms the core of the majority
of KBE development methodologies. Indeed,
these seven phases are fundamental to the
proposed methodology.

The main addition of this proposed
methodology to previous KBE application
development methodologies is an additional
step implemented in the feasibility analysis
phase to assess the level of complexity required
of the application to satisfactorily meet
requirements of the task to be automated.

To determine this level of complexity, a
series of simple questions are posed to the
knowledge engineer regarding the nature of the
identified task and features desired of an
application to automate the processes. Based on
the responses to these questions, sub-processes
of the seven key phases are invoked or filtered
from the full KBE methodology as required to
reduce unnecessary steps. This proposed
methodology is termed “Adaptable
Methodology for Automation Application
Development” (AMAAD).

3.1 Complexity Analysis
The key feature separating AMAAD from
existing methodologies is the Complexity
Analysis step in the Identify phase that relates
desired features of automation applications to
sub-processes in the full KBE methodology.

Each sub-process in the seven AMAAD
lifecycle phases is associated with the capability
extended to resultant applications through a set
of key attributes that distinguish between KBE
and Design Automation applications.

Table 1 below compares characteristics of
KBE and Design Automation applications. The
majority of characteristics in this list directly
oppose one another. The task of the Complexity
Analysis is to determine which of these
characteristics should apply to the desired
automation application, thus specifying the
methodology required for the its development.
As the required complexity of the automation
application is reduced, sub-processes relating to

the reduction in system complexity become
redundant and are filtered from the AMAAD,
thus producing a customised methodology for
developing the automation application to fulfil
the identified needs.

Table 1. Characteristics of KBE and Design Automation

applications

KBE DESIGN AUTOMATION
Reusable Problem specific, limited reuse
Generic Hard-coded knowledge
Generative Non-reconfigurable.
Integrated solution Standalone applications
Detailed development
required

Shorter development times

High level, more abstract Lower level, more detailed

Based on the differentiating characteristics

shown in Table 1 and the discussion of
differences between KBE and Design
Automation applications above, a set of six
attributes are selected to describe the level of
complexity of automation applications:
Reusable, Generic, Generative, Integrated,
Detailed, and High level. These attributes are
either required of identified automated solutions
or not.

To determine the required complexity of an
automation application, a series of simple yes or
no questions relating to each attribute are posed
to the system developer or knowledge engineer.
For each negative response, the related sub-
processes are removed from the development
methodology. The six complexity analysis
questions are listed below with the related
attribute in parentheses.

Q1: Will the application be used to
automate a task for a single project, or a similar
task on an ongoing basis? (Reusable)

Q2: Will the task be encountered in
different fields or on projects where rules will
vary? (Generic)

Q3: Are inputs to the system likely to
change often? (Generative)

Q4: Will the software communicate with
existing systems? (Integrated)

Q5: Does the task require a large amount
of engineering rules and knowledge? (Detailed)

Q6: Of this knowledge, is there a lot of
expert only knowledge required? (High Level)

4

 AN ADAPTABLE METHODOLOGY FOR AUTOMATION
APPLICATION DEVELOPMENT

A software applet was written to facilitate
the Complexity Analysis step and output the
resulting customised application development
methodology for the specific automated solution
to be developed (Fig. 1).

Fig. 1. AMAAD software tool

At this stage in the AMAAD development,
the majority of sub-processes for the seven
phases have been translated from corresponding
MOKA Route Map phases for implementing the
MOKA methodology [10]. Techniques for
modelling knowledge have also been adapted
from the CommonKADS methodology [5]

4 AMAAD Applied to Aerospace Harness
Routing
This section provides a practical example of
applying the AMAAD methodology to the
domain of aerospace harness routing. Due to
space limitations, not all sub-processes will be
detailed in this paper. A brief overview is given
below.

4.1 Problem Background
The aerospace electrical harness routing task is
a complex problem that is faced on each aircraft
development program. The increasing
complexity of aircraft electrical systems in
recent years has led to an increase in the number
and size of electrical harnesses required to
connect subsystems and equipment throughout
the airframe. Wiring looms are typically
comprised of hundreds of harnesses, which are

generally manually routed by experienced
engineers using personal knowledge and
experience of the problem domain.

By way of example, the Airbus A380
aircraft has the equivalent of approximately 800
kilometres of electrical cables, the majority of
which are designed manually. The design and
assembly of the electrical wiring system has
been the cause of major delays in delivery of
this aircraft to customers [12].

The installation of wireless systems
onboard aircraft as an alternative to wired
systems is not a trivial matter, evidenced by
Boeing’s decision to install a wired
entertainment system on the Boeing 787
Dreamliner aircraft rather than the originally
proposed completely wireless configuration, due
to weight, complexity and bandwidth problems
[13]. Indeed the majority of aircraft systems
will remain hard wired for some time to come

Also adding to the size and complexity of
the problem, subsystem design (including the
wiring system) is often conducted in parallel
with principal structural design in large scale
projects. Therefore changes in structure and
subsystem layout occurring over the
development phase can impact wiring looms,
requiring time-consuming and expensive
rework.

Major aerospace companies often have
proprietary standards and practices for harness
routing, which often varies for different aircraft
development programs depending on
requirements.

The generic process for harness routing
involves manually creating a set of points in the
CAD structural model at which the harness will
be clamped to the main structure. Following
this, the spine of the harness is passed through
these points; ensuring sufficient clearance from
structure, subsystems, moving parts, areas of
high heat, and harnesses of certain categories.
The process can be largely trial and error, and
often the only way to determine whether
sufficient clearance has been allowed, is to
make manual measurements in the CAD model
which can be time consuming.

These characteristics make the routing task
a prime candidate for process automation.

5

C. VAN DER VELDEN, C. BIL, X. YU, A. SMITH

4.2 Methodology

4.2.1 Problem Identification and Analysis
The first phase of the AMAAD methodology,
“1: Identify”, consists of problem identification
and an initial investigation of feasibility and
scope of a possible automated solution.

The first sub-process of the Identify phase
translated from [10] is “1.1: Clarify Motivations
& Objectives”. Under this sub-task, a number
of smaller activities are defined to explore the
possibility of developing an automated solution
to address a capability gap in a business process.

The business opportunity proposed is a
system to automatically route electrical
harnesses through aircraft structures. It is
anticipated that this system will implement
path-finding methods from existing domains
including Integrated Circuit routing and
Artificial Intelligence (AI) in computer games,
modified for use in an aerospace context. The
objectives can be stated as:

“The automatic definition of routes for
electrical harnesses or other medium through
obstacles including structure and systems, that
satisfy relevant design rules and constraints,
with a reduced lead time compared to the
equivalent manual process.”

The second task, “1.2 Define Role &
Scope” from [10], investigates current processes
for completing the task and further investigates
suitability of an automation system. These
requirements are translated into a more formal
definition of the proposed system in terms of
scope and boundary.

4.2.2 Complexity Analysis
Following task and scope identification, the
third sub-task of the Identify phase, “1.3
Complexity Analysis”, is conducted to establish
attributes required of the automated solution and
the sub-processes from the full methodology to
be followed for its development.

The AMAAD software tool is used to
facilitate this step, guiding the user through the
complexity questions. Based on the initial
objectives and scope the system, the required
attributes of the system are: Reusable, Generic
and Generative, drawing positive responses

from the corresponding complexity questions.
These required complexities are detailed as
follows.
• The automated routing application will be

designed with reusability as a major
requirement. It is required to accept any
arbitrary set of geometry (in a given
format) and is not case-specific.

• The application will be generically
applicable to any number of different
routing domains with addition of new rule
libraries (e.g. electrical harnesses,
hydraulic/pneumatic pipes, fuel lines, etc.).

• In the event of changes in geometry,
minimal effort will be required to
reproduce paths. Session files for sets of
harnesses will be stored, such that when
geometry is modified, an update process
can be run and the routing job re-executed.

The remaining attributes: Integrated,
Detailed and High Level are not required by the
proposed automated solution.
• The application is not required to integrate

into existing frameworks and is designed
to be independent of existing software
proprietary formats. Geometry will be
described in a discrete neutral format, and
results output as a platform-independent
CAD model.

• The majority of rules to be implemented
within the system can be reduced to
instances of a number of rule types,
reducing the requirement for a detailed
knowledge base.

Based on these complexity results, a
customised methodology for the application
development is output from the AMAAD
software applet. All processes relating to
Integrated, Detailed and High Level attributes
from the methodology.

4.3 Knowledge Modelling
The representation of such knowledge in KBE
applications is one of the most critical tasks in
developing automated solutions. The fourth
phase, “4: Knowledge modelling” organises
knowledge required to describe and solve the

6

 AN ADAPTABLE METHODOLOGY FOR AUTOMATION
APPLICATION DEVELOPMENT

routing problem into a model for
implementation in software.

Knowledge exists in a number of forms
ranging in complexity. In the CommonKADS
methodology, on which a significant portion of
AMAAD is based, knowledge is considered to
be of three primary types: domain, inference
and task knowledge [5].

4.3.1 Modelling Domain Knowledge
Domain knowledge consists of the static
concepts, relations and facts required to reason
about performing tasks in a given problem
domain [5]. Domain knowledge components
describe the basic information necessary to
define a problem and find its solutions. Domain
knowledge elements are used in inferences and
tasks to construct or derive more useful
information.

A number of key concepts comprise the
automated path-finding problem domain
including: the representation of obstacles within
a search space, definition of paths, rules
governing path placement, and the search
technique used.

All data defining a specific problem is
incorporated into a single object, termed a
“maze”, which contains geometric data, and the
definition of routed paths. The software
engineering representation of the maze concept
is a class, which is instantiated and populated
with input geometry and path requirements
when a specific case of a routing problem is
executed. The maze class is a collection of a
number of parameters describing a problem
instance.
• Geometry is described in a discrete,

regular, rectangular format. The
representation of obstacles within the maze
itself is defined in a three dimensional
array of “maze nodes”, characterised by an
address and obstacle type.

• Paths to be routed are defined by end
points, the type of path, and the governing
rule library. Additional to these properties,
completed paths are specified by a list of
nodes connecting the two end points
through the matrix of maze nodes.

• Lists of nodes indicate areas where rules
were implemented within the search space.
This is used for analysing sensitivity of the
solution to particular rules and is described
in more detail in the following section.

As defined in the system requirements, the
automated routing tool supports path-finding in
numerous routing domains. Rules are used to
describe constraints governing path placement
for these domains, and are of several different
types. In knowledge engineering, it is desirable
to define a standard form for rules from which
many instances can be created. Multiple
instances of these rule types with different
properties describe each domain and are
hierarchically represented in rule libraries.

One of the most common rule types
implemented across a number of domains is the
clearance rule, that specifies a minimum or
maximum distance the routed path must
maintain from obstacles of certain types. These
rules, termed min/max clearance rules, can be
formulated as shown below with parameters in
bold representing the rule properties.

“Paths with type RoutedType have
relationship Min/Max clearance with obstacles
of type SubjectType with an area of influence of
Radius around the path.”

A weight and decay property is assigned to
each rule of this type, determined internally by
the system. Min/Max Clearance type rules are
implemented in the system with the properties
shown in Table 2.

Table 2. Properties for specification of Min/Max

Clearance rule

RULE
PROPERTY DESCRIPTION
RoutedType Harness type being routed
Min/Max Whether clearance is min or max
SubjectType Obstacle to be encountered for rule to

activate
Radius Rule area of effect around harness
Decay Gradient term forcing higher influence of

rule closer to rule subject
Weight Value applied to cost function for node

immediately adjacent

7

C. VAN DER VELDEN, C. BIL, X. YU, A. SMITH

4.3.2 Modelling Inference Knowledge
Inference knowledge consists of the functions or
operations on domain knowledge to perform
basic tasks. From a logic point of view,
inference functions describe how domain
knowledge can be combined to derive new
information [5].

Inference knowledge is defined by the
operation to be handled by the inference (e.g.
“compute”, “evaluate” or “verify”), and a role
that describes the type of domain knowledge
implemented in the function (e.g. “parameter”,
“formula”) and in what capacity, either static or
dynamic [5].

The specific variables accepted by
inference functions are not included in their
definition, but are related through ontologies
(described below). For example, the main
inference function implemented in the
automated routing tool is the “Route Paths”
function, the structure of which is given in Fig.
2. This function has a relatively simple
structure to perform a calculation operation,
accepting an input parameter and details of the
formula to be computed, and returning a
modified version of the same parameter.

The grey text labels in Fig. 2 are not
included in the general definition of the
inference, but are included for clarity to indicate
the common context in which the inference us
used in the routing tool.

The internal procedures invoked by
inference functions are not relevant from a
knowledge modelling perspective, and are

considered at the system development phase of
application development.

Fig. 2. Structure of “Route Path” inference

4.3.3 Modelling Task Knowledge
Task, or control, knowledge describes the
hierarchical decomposition of top level tasks
into a series of sub-tasks steps executed by a
sequence of inference functions.

The solution of an instance of a routing
problem has three primary tasks: firstly, input
geometry obstacles are read into the system,
secondly, paths are computed, and thirdly,
results are written. Further decomposition of
these tasks is given in Fig. 3.

4.3.4 Ontologies
The relationships and interactions between the
three levels of knowledge is significant in the
CommonKADS methodology [5]. These
relationships and interactions are specified
through a number of ontologies, constructed
from different viewpoints and levels of
abstraction. These ontologies are organised into
a multi-level structure with each level
representing a type of interaction [5].

The set of ontologies specifying
interactions of domain knowledge and the
“Route Path” inference is given in Fig. 4.

Fig. 3. Structure of “Solve Routing Problem” task

8

 AN ADAPTABLE METHODOLOGY FOR AUTOMATION
APPLICATION DEVELOPMENT

Fig. 4. Relationship between knowledge components and inference structure.

5 Automated Routing Tool for Electrical
Harnesses and Pipes

This section describes the routing automation
tool resulting from the customised AMAAD
processes described above.

5.1 System Description
The routing system described in this paper
supports path-finding from numerous routing
domains including electrical harnesses,
hydraulic and pneumatic pipes, and fuel lines.
Engineering knowledge of each particular
routing domain must be accurately represented
in the system for results to be valid. Effective
knowledge capture processes are therefore
important to obtain an accurate and complete
coverage of all rules applicable.

The automated routing system includes a
rule editor for modelling domain rules. The

editor consists of a simple form containing a set
of controls for defining rule types, conditions
for validity, area of influence, and action to be
taken. Sets of rules for different routing
domains and path types are stored in separate
libraries in comma separated format.

Rules supported by the system currently
include: bend radius, path profile, min/max
clearance rules, turn penalty rules to restrict
unnecessary deflections, restrictions on
movement (1D, 2D and 3D movement), and
clamping rules. The implementation of some of
these rules within the solver is discussed below.

Solver settings, import and export options
and hard-coded rules are defined within a
database termed the “knowledge base” which
can be customised for different routing
applications. These are accessed through a
“knowledge editor” included in the routing tool.

9

C. VAN DER VELDEN, C. BIL, X. YU, A. SMITH

5.2 Test Model
Functionality of the automated routing tool will
be described with reference to a test case
consisting of a simplified model of an internal
weapon storage area, typical of new generation
fighter aircraft such as F-22 Raptor and F-35
Lightning II.

Weapon bays are complicated and densely
populated assemblies consisting of complex
metallic structure, payload envelope, and
various subsystems and equipment with
hundreds of interconnecting electrical harnesses
and pipes. Fig. 5 shows one of the weapon bays
of the F-35 Lightning II [14]. The photo shows
a complex weave of harnesses and pipes
throughout the length of the bay. As discussed
above, the route for each harness is determined
manually on CAD workstations. It does not
take a lot of imagination to see that design of
such a complicated loom is a very time
consuming and resource intensive task.

Fig. 5. Weapons bay of F-35 Lightning II [14]

The test case for the routing tool is a

simplified version of the weapon bay assembly
shown in Fig. 5 above. The test model was
developed, based on observations of the CAD
model of the F-35 weapon bay structure and
subsystems. The test geometry consisting of
principal structure (excluding bay doors),
arbitrary subsystems, and sample payload was

modelled using CAD software and is shown in
Fig. 6.

Fig. 6. Test case geometry

Geometry obstacles are represented in the
routing tool as a discrete, grid-based maze
object with maze nodes characterised by an
integer address (in Cartesian coordinates) and
node obstacle type (e.g. principal structure,
subsystems, payload, harness/pipe, searchable
space, etc.). The categorisation of nodes within
the solver is significant as it allows various
obstacle types to be treated independently by
rules implemented in the path-finding
algorithm.

5.3 Path Discovery

5.3.1 Routing Automation
The routing problem is encountered in
numerous fields including electronics (e.g.
microprocessors and printed circuit boards),
navigation systems, and computer game AI.
Many algorithms have been developed in these
fields, but few have been tailored and applied to
the aerospace domain.

10

 AN ADAPTABLE METHODOLOGY FOR AUTOMATION
APPLICATION DEVELOPMENT

The design of microprocessors employs
powerful path-finding algorithms including
maze routers, channel and switchbox routers,
and line routers [15]. These algorithms are
driven by technology improvements in
component manufacture including the reducing
size of interconnecting wires and number of 2D
layers available for routing. Commercial
software packages for multilayered printed
circuit board design are also available,
employing similar techniques.

Improving AI in computer games is
another area which continues to drive intelligent
path-finding development. The way in which
non-player characters (NPCs) move and react in
the game environment largely determines the
realism of the gaming experience. To this end,
numerous algorithms have been developed
incorporating various behavioural techniques
including shortest path, stealthy movement for
avoiding detection, cautious movement using
cover to avoid damage, etc. [16].

Developments in these fields have
provided an excellent base of knowledge which
can be utilized for automating the layout of
aircraft electrical harnesses and pipes. The
routing tool implements path-finding techniques
from microprocessor routing and game AI
domains, together with knowledge based
techniques for capturing and modelling design
rules. This enables the model to be constrained
sufficiently to produce paths that accurately
satisfy requirements, minimizing the amount of
manual work required.

5.3.2 Path-finding Algorithm
The algorithm implemented in the automated
routing system extends the popular A* search
algorithm used in shortest path problems in
game AI [16] and other problems.

In the basic A* algorithm, path movement
is determined by evaluating a cost function for
each node interrogated (Equation 1). Node cost,
f(n), is equal to the sum of the shortest distance
from the source node, g(n), and the estimated
cost to the goal using a heuristic function, h(n).
At each iteration of the search, the lowest cost
node is selected as the new node to expand.
Provided the heuristic function that calculates

the remaining distance does not overestimate
the distance to the target, the algorithm is both
optimal and complete meaning that the shortest
path will always be returned [17]. Example
heuristic functions are discussed in [18].

() () (nhngnf +)= (1)

To tailor the algorithm to the complex rule-
based domain of electrical harness design, the
cost function is extended to include additional
terms representing rules in domain libraries
(Equation 2). In this extended cost function, the
g(n) and h(n) terms are determined in the same
way as normal A*. Min / max clearances rules
are implemented through the i(n) term which
modifies the total node cost, depending on the
searched node’s proximity to particular obstacle
types, causing the path to favour obstacles of a
particular type and avoid others. The magnitude
of the i(n) term is determined by performing a
local search within a given radius for each node
interrogated in the main search. A separate i(n)
term is added for each clearance-type rule in the
library, k.

() () () () ()nTninhngnf
k

N
N +++= ∑

=1

(2)

For example, a rule may specify that
harnesses must be routed close to principal
structure for clamping. Such a rule would
reduce the cost for nodes that are close to
structural obstacles, resulting in a lower cost
solution closer to structure. Other rules may
state that harnesses must have a certain
clearance from heat zones, moving parts and
cables with particular electromagnetic
sensitivities. Such rules increase node cost for
nodes near these obstacle types, resulting in a
lower cost solution away from these areas.

A turn penalty term, T(n), is also
introduced for models with complex geometry,
minimising unnecessary deflections in the path.
The contribution of the T(n) term is determined
from the turn deflection angle. Mild turns are
penalised less than harsh or backwards turns.

In the test case given in this paper, a set of
12 paths were routed, separated into three
categories with four harnesses in each. Domain

11

C. VAN DER VELDEN, C. BIL, X. YU, A. SMITH

rules implemented for this routing job included
a structural maximum clearance rule,
minimising the length of unsupported runs for
clamping purposes, and clearance rules for
harnesses of the same type to be run together.

5.4 Results Output
The system delivers resultant paths in three
way, described below.

5.4.1 Two Dimensional View
The first output method is a set of simple 2D
diagrams of routed paths and input geometry
along the three major axis, given in the
automated routing tool itself. This first glance
provides users with a quick indication of the
quality of the routing job, allowing users to
determine whether paths were placed in the
desired region of the solution space. For
example, if a model features a number of cut-
outs and lightening holes which are not properly
constrained, the path may follow the outside of
the structure rather than the inside. This simple
preview can reduce time analysing sets of
results which clearly require refinement.
Several statistics relating to path quality are also
displayed, including path length, number of
turns, solution time, and number of nodes
searched.

5.4.2 CAD Model Output
The second output method is a series of CAD-
readable wire-frame IGES models consisting of
straight segments connected with a user defined
bend radius. The path models can be imported
and integrated into the existing CAD geometry
assembly, and detail added as necessary for a
complete digital representation of the routed
part using CAD software tools (e.g. thickness,
detail to terminals, etc.).

The CAD output for the test case described
above is given in Fig. 7. The results clearly
indicate successful implementation of the
clearance rules, with all paths maintaining close
clearance to primary structure and harnesses of
the same category.

Fig. 7. CAD output

5.4.3 Discrete Model Output
The third output method is a discrete model
comprised of several layers including input
geometry, routed paths and knowledge
implemented in the automated routing process.
The purpose of this output method is to assist
users in understanding the justification for path
placement.

Geometry obstacles encountered in the
search space are included for referencing rule
implementation against input geometry.
Geometry is represented by hexahedral elements
colour-coded according to obstacle type.
Routed path spines are represented in wire-
frame using bar elements. Additional layers
represent rules and search characteristics used in
determining path placement, communicating
design justification to the user. These layers
include 3D maps showing locations where
individual rules were implemented in the search
space, allowing users to determine regions
where particular rules are significant for any
manual touching up required. A map of all
nodes interrogated by the algorithm is also
given, allowing users to determine whether the
algorithm is considering the correct area in the
search space, or whether additional constraints
are necessary. The discrete model output for the
test case is given in Fig. 8.

12

 AN ADAPTABLE METHODOLOGY FOR AUTOMATION
APPLICATION DEVELOPMENT

Fig. 8. Discrete model output

The discrete model is viewed using third
party Finite Element Modelling (FEM)
software. Various components of the solution
can be activated independently using
visualisation options available in the FEM
software to view the interaction of particular
rules. The two images above highlight different
characteristics of the solution. The top image
shows all nodes interrogated by the solver,
referenced against input geometry. The bottom
image shows all points on the reference
geometry where the structural clearance rule
was implemented. As expected, the majority of
nodes searched were in the vicinity of points
where this rule was implemented, as it was a
lower cost solution for points close to primary
structure. Similar outputs are available for
points where the various path clearance rules
were implemented.

5.4.4 Discussion
After conducting a number of test runs with the
selected harness endpoints with various rule
combinations, it was found that quality of
resultant paths is closely coupled with the
weight factor applied to individual rules. Thus a
process for “tuning” the rule library for
individual models is required to produce
optimal results, which can be a time consuming
process. Despite this, the system works very
well as a proof of concept application. The
solution time is sufficiently small that a number
of solutions can be generated for various
combinations of rules and weightings in a
relatively short time compared to manual
practices, allowing a large number of results to
be assessed for suitability relatively quickly.

Further improvements to the system would
focus on implementing an optimisation process
for tuning rule weights, leading to higher quality
results without the manual trial and error
process for applying various rule combinations.
Further work would also develop more effective
methods for quantitatively assessing path
quality.

6 Conclusion
Presented in this paper was a new methodology
linking KBE and Design Automation
application development phases through a
simple complexity analysis process. Proposed
solutions for processes identified for automation
are assessed for the desired level of complexity
in terms of several key attributes, and a
customised set of steps for the application
development is given.

This methodology was applied to the
aerospace path-finding domain, and the
development of software tool for automating the
layout design of electrical harnesses and pipes
in aircraft was described. The resulting routing
tool successfully implements path-finding
principles from microprocessor routing and
game AI domains, to produce routed paths
satisfying user defined design rules and
constraints. Knowledge and rule editors
simplify the knowledge capture process,

13

C. VAN DER VELDEN, C. BIL, X. YU, A. SMITH

extending capability to domain experts to
implement new routing methods and rules for
application to new domains. The benefits of
using such a tool in industry are clear, with
solution times of a few minutes per path for
detailed, high resolution models (depending on
the number of rules applied, and the degree to
which the model is constrained). The
comparative manual design process can take
upwards of three days.

In the competitive aerospace industry,
project success requires rapid mobilization of
resources to respond quickly to problems faced
by both customers, and internally on the
engineering floor. Implementation of KBE and
Design Automation methods and technologies
to develop automated solutions can provide this
capability, delivering savings in time and cost,
and gaining a competitive edge in the global
engineering market.

References
[1] Cooper, S., Fan, I., and Li, G. “Achieving

Competitive Advantage through Knowledge-Based
Engineering” Department of Enterprise Integration,
Cranfield University, 2001.

[2] Smith, A. L., and Bardell, N. S. “A Driving Need for
Design Automation within Aerospace Engineering”.
11th Australian International Aerospace Congress,
Melbourne, Australia, 2005.

[3] “Dassault Systemes Acquires KTI”, Dassault
Systems Website, [Online 2007] URL:
http://www.3ds.com/news-events/press-room/release/
796/1/

[4] “The Boeing 777 Program Background” [Online
2007] URL: http://www.boeing.com/commercial/
777family/background.html

[5] Schreiber, G., Welinga, B., de Hoog, R., Akkermans,
Hans., Van de Velde, W., “A Comprehensive
Methodology for KBS Development”, IEEE Expert,
1994.

[6] Kingston, J., “Applying KADS to KADS: knowledge
based guidance for knowledge engineering” ,
Artificial Intelligence Applications Institute,
University of Edinburgh, 1995.

[7] Kingston, J., “Designing Knowledge Based Systems:
The CommonKADS Design Model”, Artificial
Intelligence Applications Institute, University of
Edinburgh, 1997.

[8] Oldham, K., Kneebone, S., Callot, M., Murton, A.,
Brimble, R., “MOKA - A Methodology and tools

Oriented to Knowledge-based engineering
Applications” , Volume 8, Proceedings of the
Conference on Integration in Manufacturing,
Göteborg, Sweden, 1998.

[9] Brimble, R, Oldham, K, Callot, M and Murton, A.
“MOKA: A Methodology for Developing KBE
Applications”. Proceedings of the 8th European
Conference on Product Data Technology, Norway,
1999.

[10] MOKA Consortium “MOKA Route Map”, 2000.
[Online 2008] URL: http://web2.eng.coventry.ac.uk/
moka/resources/Routemap/

[11] Studer, R., Benjamins, R., Fensel, D.,“Knowledge
Engineering: Principles and Methods” IEEE
Transactions on Data Knowledge Engineering Vol.
25, 1998, pp. 161–197.

[12] “Airbus confirms further A380 delay and launches
company restructuring plan”, Airbus Website. [Online
3 October 2006] URL: http://www.airbus.com/en/
presscentre/pressreleases/ressreleases_items/06_10_0
3_a380_delays_company_res tructuring_plan.html .

[13] Gates, D., “Boeing Cuts 787 Wireless System” The
Seattle Times, Jan 2007. [Online 2008]
http://seattletimes.nwsource.com/html/businesstechn
ology/2003540074_boeing25.html

[14] “F-35A Manufacturing”, F-35 Joint Strike Fighter
Program Website [Online 2007]. URL:

http://www.jsf.mil/gallery/gal_photo_sdd_f35amanf.htm
[15] Groeneveld, P., “Electronic Design Automation, Part

1”. Technische Universiteit Eindhoven, The
Netherlands, 2005.

[16] McCloskey, J., Miller, J., Prasad, A., Linden, L. “AI
In First Person Shooter Games” [Online 2008] URL:
http://emunic.emich.edu/~evett/GameProgramming/L
ectureNotes/FPS.pdf

[17] Russel, R., and Norvig, P., Artificial Intelligence A
Modern Approach, 2nd ed., Prentice Hall, New
Jersey, 2003, Chap. 4.

[18] Haslum, P., and Gener, H., “Admissible Heuristics
for Optimal Planning” Proceeding of the 5th
International Conference on AI Planning and
Scheduling, AIAA Press, 2000, pp. 140-149.

Copyright Statement
The authors confirm that they, and/or their company or
institution, hold copyright on all of the original material
included in their paper. They also confirm they have
obtained permission, from the copyright holder of any
third party material included in their paper, to publish it as
part of their paper. The authors grant full permission for
the publication and distribution of their paper as part of
the ICAS2008 proceedings or as individual off-prints
from the proceedings.

14

http://www.3ds.com/news-events/press-room/release/ 796/1/
http://www.3ds.com/news-events/press-room/release/ 796/1/
http://www.boeing.com/commercial/ 777family/background.html
http://www.boeing.com/commercial/ 777family/background.html
http://web2.eng.coventry.ac.uk/ moka/resources/Routemap/
http://web2.eng.coventry.ac.uk/ moka/resources/Routemap/
http://www.airbus.com/en/ presscentre/pressreleases/ressreleases_items/06_10_03_a380_delays_company_res tructuring_plan.html
http://www.airbus.com/en/ presscentre/pressreleases/ressreleases_items/06_10_03_a380_delays_company_res tructuring_plan.html
http://www.airbus.com/en/ presscentre/pressreleases/ressreleases_items/06_10_03_a380_delays_company_res tructuring_plan.html
http://seattletimes.nwsource.com/html/businesstechnology/2003540074_boeing25.html
http://seattletimes.nwsource.com/html/businesstechnology/2003540074_boeing25.html
http://www.jsf.mil/gallery/gal_photo_sdd_f35amanf.htm
http://emunic.emich.edu/~evett/GameProgramming/LectureNotes/FPS.pdf
http://emunic.emich.edu/~evett/GameProgramming/LectureNotes/FPS.pdf

	Abstract
	Introduction
	Knowledge Based Engineering in Aerospace
	Adaptable Methodology for Automation Application Development
	Complexity Analysis

	AMAAD Applied to Aerospace Harness Routing
	Problem Background
	Methodology
	Problem Identification and Analysis
	Complexity Analysis

	Knowledge Modelling
	Modelling Domain Knowledge
	Modelling Inference Knowledge
	Modelling Task Knowledge
	Ontologies

	Automated Routing Tool for Electrical Harnesses and Pipes
	System Description
	Test Model
	Path Discovery
	Routing Automation
	Path-finding Algorithm

	Results Output
	Two Dimensional View
	CAD Model Output
	Discrete Model Output
	Discussion

	Conclusion
	References
	Copyright Statement

