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Abstract 

The automation of engineering processes 
through Knowledge Based Engineering and 
Design Automation methods and technologies 
can provide significant savings in project 
scheduling and cost, increasing competitiveness 
in a changing aerospace market.  In this paper 
we present outcomes of a research project 
aimed at improving engineering automation 
capability through development of a tool for 
automatic rule based path-finding for the 
complex engineering task of aircraft electrical 
harness and pipe routing. 

1   Introduction 
The benefits of employing automation 
technologies in engineering are clear from the 
literature [1], [2].  Automated solutions can be 
used to reduce low level and repetitive tasks, 
integrate tools and datasets, and simplify and 
standardise more complicated processes, 
achieving significant savings in development 
lead time and cost.  Gathering and 
implementing knowledge electronically can also 
ensure knowledge retention within 
organisations, independent of changes in 
personnel. 

Knowledge Based Engineering (KBE) and 
Design Automation are two sets of 
methodologies and technologies for automating 
engineering processes through software.  KBE 
refers to the capture and modelling of rules and 
engineering knowledge for implementation in 
intelligent systems which automate processes 

and emulate human decision making.  KBE 
applications are typically reusable, dynamic, 
generative, generic, and integrated.  By 
comparison, Design Automation refers to the 
automation of relatively straight forward, 
sequential steps in an engineering process.  
Resultant Design Automation applications are 
generally applicable to specific situations with 
limited reuse, and often contain hard coded 
rules and knowledge. 

The decision to implement either a KBE or 
Design Automation solution to satisfy an 
industry need depends on a number of factors.  
While KBE solutions generally offer more 
flexible and intelligent results, development 
schedules and costs are often inhibiting.  Design 
Automation solutions, although often lacking 
dynamic capability, can often represent a more 
practical solution to a problem in terms of 
technical feasibility, time and cost, and with 
reduced risk. 

A flexible methodology for the 
development of engineering automation 
applications of varying complexity from high 
level KBE to lower level Design Automation is 
proposed. This methodology is based on the 
premise that Design Automation and KBE 
application development methodologies are not 
mutually exclusive, instead the former 
represents a subset of processes required for the 
later.  Whereas these two development 
techniques with seemingly opposing 
requirements are generally treated 
independently by industry and academia, the 
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proposed methodology links them together in a 
practical way. 

The methodology associates the many 
processes required for development of a full 
KBE application with a set of governing 
attributes which are used to distinguish between 
the two types of applications.  These 
distinguishing characteristics relate to 
capabilities of target systems.  System 
developers specify the attributes desired of 
automated solutions, and based on their 
selection, sub-processes of the full methodology 
are either invoked or omitted, resulting in a 
comprehensive development processes without 
unnecessary low-value tasks. 

In this paper a brief overview of the 
proposed methodology is presented, and is 
applied to the complex domain of aerospace 
electrical harness routing.  A software tool for 
automating the layout of aircraft electrical 
harness and pipes is developed. 

2   Knowledge Based Engineering in 
Aerospace 
KBE and Design Automation solutions have 
been implemented in the aerospace and 
automotive industries since the early 1980’s 
through the implementation of customised 
Computer Aided Design (CAD) based 
applications for automating rule based design 
tasks.  Many of these early systems were 
developed using the ICAD system from KTI 
(and later Dassault Systemes) [3].   

Over the two to three decades that 
followed, new methodologies and technologies 
were introduced, and after a short decline in the 
early 1990’s, the use of KBE and Design 
Automation began to gain momentum in 
engineering industries worldwide.  In this time, 
the technology has developed far beyond 
applications solely for implementation on CAD 
systems, incorporating automated analysis 
techniques and the automatic generation of 
manufacturing data for CAM systems. 

Since the early 1990’s, the aerospace 
industry has migrated to a wholly digital 
approach to development of aircraft, with the 

Boeing 777 wide body, twin engine passenger 
airliner the first developed entirely in a virtual 
environment [4]. 

As a result of technology improvements 
making virtual product development possible, 
large aerospace Original Equipment 
Manufacturers (OEMs) such as Boeing, Airbus, 
BAE Systems, Lockheed Martin, Northrop 
Grumman, and others, all implement design 
automation at some level in product 
development.   

Over time as these engineering 
organisations grow and mature, a considerable 
base of engineering knowledge and expertise of 
product development capability is established.  
This base provides the company with the 
resources, technical capability and confidence to 
attain a share of work in new projects.  Such 
knowledge is a valuable asset and must be 
managed effectively to remain competitive. 

Experienced companies establish standard 
methodologies for design and analysis 
processes, using proprietary (often empirical) 
data.  Other techniques include development of 
handbooks, best practice guides and software 
templates.  This knowledge, which can be 
articulated with relative ease, is explicit in 
nature.  However, unavoidably, much of a 
company’s knowledge asset resides in the 
expertise and experience of the engineering staff 
themselves.  This knowledge is tacit in nature, 
often difficult to express in words or on paper, 
and requires a deep understanding of the 
problem domain.  This presents a problem of 
retaining tacit knowledge as engineers retire or 
change companies to pursue personal careers.  
Great care must be taken to mitigate impact to 
the company’s knowledge base caused by such 
staff losses.  Effective mechanisms must 
therefore exist to capture this knowledge.  
Development and deployment of such 
techniques for capturing knowledge remains one 
of the significant challenges facing knowledge 
engineers today. 

It is important to recognize that not all 
processes are suitable for engineering 
automation.  Some tasks, especially those 
requiring tacit human judgment, will always 
require some level of user input, and the effort 
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required to automate such processes often does 
not outweigh the benefit gained by automated 
capability.  Processes that are well suited to 
automation typically exhibit one or more of the 
following characteristics [2]: 
• Low level, repetitive, and/or highly manual 

tasks, 
• Integration of tools and datasets (e.g. CAD / 

Computer Aided Engineering (CAE) / 
Computer Aided Manufacturing (CAM)), 

• Automated documenting and report 
generation, 

• Simplification and/or standardization of 
more complex processes. 
 

Two main implementations of automated 
engineering solutions are commonly used in 
industry today.  The first involves a formally 
identified task with well defined requirements, 
built by a team of developers.  There must be a 
business case for developing such solutions, i.e. 
provide a positive return on investment (the 
ratio of the number hours required to perform 
the task completely manually, versus the 
number of hours to develop an automated 
solution and complete the task automatically) 
[2].  Outputs from these processes undergo 
rigorous testing and are formally released to 
engineers for use in design and analysis tasks.  
Resulting applications generally exhibit 
qualities of KBE applications. 

The second type of automated solution is 
typically much smaller in scale, aiming to 
automate a particular task faced on the 
engineering floor.  Such tasks generally require 
a large amount of manual work, such as manual 
manipulation of datasets, and passing 
information between different tools.  These 
automated solutions are often developed by 
design and analysis engineers working on an 
individual basis.  Many automated solutions are 
created by engineers who are not proficient in 
computer programming.  Tools used to develop 
these automated methods can include 
spreadsheets, macros, databases, and APIs using 
simplified scripting languages.  Engineers use 
these tools because of their familiarity and 
understanding of their capability and scope.   

The development of such applications can 
provide solutions for problems which surface on 
the engineering floor with short notice.  The 
ability to quickly code solutions to deal with 
such problems can greatly reduce the time taken 
to complete tasks and eliminate or reduce 
bottlenecks in the development lifecycle.  These 
solutions are especially suited to tasks with high 
levels of repetition, or those subject to change 
numerous times during development. 

These smaller applications are typically 
developed for a specific purpose, with hard-
coded rules or knowledge, and reusability is not 
a key factor in their development, resembling a 
Design Automation approach as opposed to 
KBE. 

Significant productivity improvements can 
be made by encouraging engineers to implement 
automation principles in everyday engineering 
design and analysis.  This can be facilitated by 
introducing engineers to a structured process for 
automating engineering tasks, providing 
appropriate levels of training in development 
tools, and providing awareness of existing 
infrastructure such as generic code libraries for 
performing common tasks. 

3   Adaptable Methodology for Automation 
Application Development 
Whereas established KBE application 
development methodologies such as 
CommonKADS [5], [6], [7], MOKA [8], [9], 
[10] and others [11] can be very time 
consuming and complicated to implement, 
many of the principles incorporated are 
important to ensure sufficient coverage of the 
domain.  Most KBE methodologies consist of 
approximately seven key phases which 
generally include the following activities: 

1) Problem identification  
2) Feasibility analysis 
3) Knowledge acquisition 
4) Knowledge modelling 
5) System development  
6) Validation  
7) Deployment / ongoing support 
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Various methodologies refer to these 
phases in different ways, or incorporate one or 
more of the above phases into a single phase, 
but the list above forms the core of the majority 
of KBE development methodologies.  Indeed, 
these seven phases are fundamental to the 
proposed methodology. 

The main addition of this proposed 
methodology to previous KBE application 
development methodologies is an additional 
step implemented in the feasibility analysis 
phase to assess the level of complexity required 
of the application to satisfactorily meet 
requirements of the task to be automated.   

To determine this level of complexity, a 
series of simple questions are posed to the 
knowledge engineer regarding the nature of the 
identified task and features desired of an 
application to automate the processes.  Based on 
the responses to these questions, sub-processes 
of the seven key phases are invoked or filtered 
from the full KBE methodology as required to 
reduce unnecessary steps.  This proposed 
methodology is termed “Adaptable 
Methodology for Automation Application 
Development” (AMAAD). 

3.1  Complexity Analysis  
The key feature separating AMAAD from 
existing methodologies is the Complexity 
Analysis step in the Identify phase that relates 
desired features of automation applications to 
sub-processes in the full KBE methodology.   

Each sub-process in the seven AMAAD 
lifecycle phases is associated with the capability 
extended to resultant applications through a set 
of key attributes that distinguish between KBE 
and Design Automation applications. 

Table 1 below compares characteristics of 
KBE and Design Automation applications.  The 
majority of characteristics in this list directly 
oppose one another.  The task of the Complexity 
Analysis is to determine which of these 
characteristics should apply to the desired 
automation application, thus specifying the 
methodology required for the its development.  
As the required complexity of the automation 
application is reduced, sub-processes relating to 

the reduction in system complexity become 
redundant and are filtered from the AMAAD, 
thus producing a customised methodology for 
developing the automation application to fulfil 
the identified needs. 

 
Table 1. Characteristics of KBE and Design Automation 

applications 
 

KBE DESIGN AUTOMATION 
Reusable Problem specific, limited reuse 
Generic  Hard-coded knowledge 
Generative Non-reconfigurable. 
Integrated solution Standalone applications 
Detailed development 
required 

Shorter development times 

High level, more abstract  Lower level, more detailed 
 
Based on the differentiating characteristics 

shown in Table 1 and the discussion of 
differences between KBE and Design 
Automation applications above, a set of six 
attributes are selected to describe the level of 
complexity of automation applications: 
Reusable, Generic, Generative, Integrated, 
Detailed, and High level.  These attributes are 
either required of identified automated solutions 
or not. 

To determine the required complexity of an 
automation application, a series of simple yes or 
no questions relating to each attribute are posed 
to the system developer or knowledge engineer.  
For each negative response, the related sub-
processes are removed from the development 
methodology.  The six complexity analysis 
questions are listed below with the related 
attribute in parentheses. 

Q1: Will the application be used to 
automate a task for a single project, or a similar 
task on an ongoing basis? (Reusable) 

Q2: Will the task be encountered in 
different fields or on projects where rules will 
vary? (Generic) 

Q3: Are inputs to the system likely to 
change often? (Generative) 

Q4: Will the software communicate with 
existing systems? (Integrated) 

Q5: Does the task require a large amount 
of engineering rules and knowledge? (Detailed) 

Q6: Of this knowledge, is there a lot of 
expert only knowledge required? (High Level) 
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A software applet was written to facilitate 
the Complexity Analysis step and output the 
resulting customised application development 
methodology for the specific automated solution 
to be developed (Fig. 1). 

 

 
 

Fig. 1. AMAAD software tool   
 

At this stage in the AMAAD development, 
the majority of sub-processes for the seven 
phases have been translated from corresponding 
MOKA Route Map phases for implementing the 
MOKA methodology [10].  Techniques for 
modelling knowledge have also been adapted 
from the CommonKADS methodology [5] 

4   AMAAD Applied to Aerospace Harness 
Routing 
This section provides a practical example of 
applying the AMAAD methodology to the 
domain of aerospace harness routing.  Due to 
space limitations, not all sub-processes will be 
detailed in this paper.  A brief overview is given 
below. 

4.1  Problem Background 
The aerospace electrical harness routing task is 
a complex problem that is faced on each aircraft 
development program.  The increasing 
complexity of aircraft electrical systems in 
recent years has led to an increase in the number 
and size of electrical harnesses required to 
connect subsystems and equipment throughout 
the airframe.  Wiring looms are typically 
comprised of hundreds of harnesses, which are 

generally manually routed by experienced 
engineers using personal knowledge and 
experience of the problem domain. 

By way of example, the Airbus A380 
aircraft has the equivalent of approximately 800 
kilometres of electrical cables, the majority of 
which are designed manually.  The design and 
assembly of the electrical wiring system has 
been the cause of major delays in delivery of 
this aircraft to customers [12]. 

The installation of wireless systems 
onboard aircraft as an alternative to wired 
systems is not a trivial matter, evidenced by 
Boeing’s decision to install a wired 
entertainment system on the Boeing 787 
Dreamliner aircraft rather than the originally 
proposed completely wireless configuration, due 
to weight, complexity and bandwidth problems 
[13].  Indeed the majority of aircraft systems 
will remain hard wired for some time to come 

Also adding to the size and complexity of 
the problem, subsystem design (including the 
wiring system) is often conducted in parallel 
with principal structural design in large scale 
projects. Therefore changes in structure and 
subsystem layout occurring over the 
development phase can impact wiring looms, 
requiring time-consuming and expensive 
rework. 

Major aerospace companies often have 
proprietary standards and practices for harness 
routing, which often varies for different aircraft 
development programs depending on 
requirements. 

The generic process for harness routing 
involves manually creating a set of points in the 
CAD structural model at which the harness will 
be clamped to the main structure.  Following 
this, the spine of the harness is passed through 
these points; ensuring sufficient clearance from 
structure, subsystems, moving parts, areas of 
high heat, and harnesses of certain categories.  
The process can be largely trial and error, and 
often the only way to determine whether 
sufficient clearance has been allowed, is to 
make manual measurements in the CAD model 
which can be time consuming. 

These characteristics make the routing task 
a prime candidate for process automation. 
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4.2  Methodology 

4.2.1 Problem Identification and Analysis 
The first phase of the AMAAD methodology, 
“1: Identify”, consists of problem identification 
and an initial investigation of feasibility and 
scope of a possible automated solution. 

The first sub-process of the Identify phase 
translated from [10] is “1.1: Clarify Motivations 
& Objectives”.  Under this sub-task, a number 
of smaller activities are defined to explore the 
possibility of developing an automated solution 
to address a capability gap in a business process. 

The business opportunity proposed is a 
system to automatically route electrical 
harnesses through aircraft structures.  It is 
anticipated that this system will implement 
path-finding methods from existing domains 
including Integrated Circuit routing and 
Artificial Intelligence (AI) in computer games, 
modified for use in an aerospace context.  The 
objectives can be stated as: 

“The automatic definition of routes for 
electrical harnesses or other medium through 
obstacles including structure and systems, that 
satisfy relevant design rules and constraints, 
with a reduced lead time compared to the 
equivalent manual process.” 

The second task, “1.2 Define Role & 
Scope” from [10], investigates current processes 
for completing the task and further investigates 
suitability of an automation system.  These 
requirements are translated into a more formal 
definition of the proposed system in terms of 
scope and boundary. 

4.2.2 Complexity Analysis  
Following task and scope identification, the 
third sub-task of the Identify phase, “1.3 
Complexity Analysis”, is conducted to establish 
attributes required of the automated solution and 
the sub-processes from the full methodology to 
be followed for its development. 

The AMAAD software tool is used to 
facilitate this step, guiding the user through the 
complexity questions.  Based on the initial 
objectives and scope the system, the required 
attributes of the system are: Reusable, Generic 
and Generative, drawing positive responses 

from the corresponding complexity questions.  
These required complexities are detailed as 
follows. 
• The automated routing application will be 

designed with reusability as a major 
requirement.  It is required to accept any 
arbitrary set of geometry (in a given 
format) and is not case-specific. 

• The application will be generically 
applicable to any number of different 
routing domains with addition of new rule 
libraries (e.g. electrical harnesses, 
hydraulic/pneumatic pipes, fuel lines, etc.). 

• In the event of changes in geometry, 
minimal effort will be required to 
reproduce paths.  Session files for sets of 
harnesses will be stored, such that when 
geometry is modified, an update process 
can be run and the routing job re-executed. 
 

The remaining attributes: Integrated, 
Detailed and High Level are not required by the 
proposed automated solution. 
• The application is not required to integrate 

into existing frameworks and is designed 
to be independent of existing software 
proprietary formats.  Geometry will be 
described in a discrete neutral format, and 
results output as a platform-independent 
CAD model. 

• The majority of rules to be implemented 
within the system can be reduced to 
instances of a number of rule types, 
reducing the requirement for a detailed 
knowledge base. 

 

Based on these complexity results, a 
customised methodology for the application 
development is output from the AMAAD 
software applet.  All processes relating to 
Integrated, Detailed and High Level attributes 
from the methodology. 

4.3  Knowledge Modelling 
The representation of such knowledge in KBE 
applications is one of the most critical tasks in 
developing automated solutions.  The fourth 
phase, “4: Knowledge modelling” organises 
knowledge required to describe and solve the 
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routing problem into a model for 
implementation in software. 

Knowledge exists in a number of forms 
ranging in complexity. In the CommonKADS 
methodology, on which a significant portion of 
AMAAD is based, knowledge is considered to 
be of three primary types: domain, inference 
and task knowledge [5]. 

4.3.1 Modelling Domain Knowledge 
Domain knowledge consists of the static 
concepts, relations and facts required to reason 
about performing tasks in a given problem 
domain [5].  Domain knowledge components 
describe the basic information necessary to 
define a problem and find its solutions.  Domain 
knowledge elements are used in inferences and 
tasks to construct or derive more useful 
information. 

A number of key concepts comprise the 
automated path-finding problem domain 
including: the representation of obstacles within 
a search space, definition of paths, rules 
governing path placement, and the search 
technique used. 

All data defining a specific problem is 
incorporated into a single object, termed a 
“maze”, which contains geometric data, and the 
definition of routed paths.  The software 
engineering representation of the maze concept 
is a class, which is instantiated and populated 
with input geometry and path requirements 
when a specific case of a routing problem is 
executed.  The maze class is a collection of a 
number of parameters describing a problem 
instance. 
• Geometry is described in a discrete, 

regular, rectangular format.  The 
representation of obstacles within the maze 
itself is defined in a three dimensional 
array of “maze nodes”, characterised by an 
address and obstacle type. 

• Paths to be routed are defined by end 
points, the type of path, and the governing 
rule library.  Additional to these properties, 
completed paths are specified by a list of 
nodes connecting the two end points 
through the matrix of maze nodes. 

• Lists of nodes indicate areas where rules 
were implemented within the search space.  
This is used for analysing sensitivity of the 
solution to particular rules and is described 
in more detail in the following section. 
 

As defined in the system requirements, the 
automated routing tool supports path-finding in 
numerous routing domains.  Rules are used to 
describe constraints governing path placement 
for these domains, and are of several different 
types.  In knowledge engineering, it is desirable 
to define a standard form for rules from which 
many instances can be created.  Multiple 
instances of these rule types with different 
properties describe each domain and are 
hierarchically represented in rule libraries. 

One of the most common rule types 
implemented across a number of domains is the 
clearance rule, that specifies a minimum or 
maximum distance the routed path must 
maintain from obstacles of certain types.  These 
rules, termed min/max clearance rules, can be 
formulated as shown below with parameters in 
bold representing the rule properties. 

“Paths with type RoutedType have 
relationship Min/Max clearance  with obstacles 
of type SubjectType with an area of influence of 
Radius around the path.” 

A weight and decay property is assigned to 
each rule of this type, determined internally by 
the system.  Min/Max Clearance type rules are 
implemented in the system with the properties 
shown in Table 2. 

 
Table 2.  Properties for specification of Min/Max 

Clearance rule 
 

RULE 
PROPERTY DESCRIPTION  
RoutedType  Harness type being routed 
Min/Max Whether clearance is min or max 
SubjectType  Obstacle to be encountered for rule to 

activate 
Radius  Rule area of effect around harness 
Decay  Gradient term forcing higher influence of 

rule closer to rule subject 
Weight  Value applied to cost function for node 

immediately adjacent 
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4.3.2 Modelling Inference Knowledge 
Inference knowledge consists of the functions or 
operations on domain knowledge to perform 
basic tasks.  From a logic point of view, 
inference functions describe how domain 
knowledge can be combined to derive new 
information [5]. 

Inference knowledge is defined by the 
operation to be handled by the inference (e.g. 
“compute”, “evaluate” or “verify”), and a role 
that describes the type of domain knowledge 
implemented in the function (e.g. “parameter”, 
“formula”) and in what capacity, either static or 
dynamic [5]. 

The specific variables accepted by 
inference functions are not included in their 
definition, but are related through ontologies 
(described below).  For example, the main 
inference function implemented in the 
automated routing tool is the “Route Paths” 
function, the structure of which is given in Fig. 
2.  This function has a relatively simple 
structure to perform a calculation operation, 
accepting an input parameter and details of the 
formula to be computed, and returning a 
modified version of the same parameter. 

The grey text labels in Fig. 2 are not 
included in the general definition of the 
inference, but are included for clarity to indicate 
the common context in which the inference us 
used in the routing tool.   

The internal procedures invoked by 
inference functions are not relevant from a 
knowledge modelling perspective, and are 

considered at the system development phase of 
application development. 

 

 
 

Fig. 2. Structure of “Route Path” inference  

4.3.3 Modelling Task Knowledge 
Task, or control, knowledge describes the 
hierarchical decomposition of top level tasks 
into a series of sub-tasks steps executed by a 
sequence of inference functions. 

The solution of an instance of a routing 
problem has three primary tasks: firstly, input 
geometry obstacles are read into the system, 
secondly, paths are computed, and thirdly, 
results are written.  Further decomposition of 
these tasks is given in Fig. 3. 

4.3.4 Ontologies  
The relationships and interactions between the 
three levels of knowledge is significant in the 
CommonKADS methodology [5].  These 
relationships and interactions are specified 
through a number of ontologies, constructed 
from different viewpoints and levels of 
abstraction.  These ontologies are organised into 
a multi-level structure with each level 
representing a type of interaction [5].   

The set of ontologies specifying 
interactions of domain knowledge and the 
“Route Path” inference is given in Fig. 4. 

 

 
Fig. 3. Structure of “Solve Routing Problem” task 
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Fig. 4. Relationship between knowledge components and inference structure. 
 
5   Automated Routing Tool for Electrical 
Harnesses and Pipes 

This section describes the routing automation 
tool resulting from the customised AMAAD 
processes described above. 

5.1 System Description 
The routing system described in this paper 
supports path-finding from numerous routing 
domains including electrical harnesses, 
hydraulic and pneumatic pipes, and fuel lines.  
Engineering knowledge of each particular 
routing domain must be accurately represented 
in the system for results to be valid.  Effective 
knowledge capture processes are therefore 
important to obtain an accurate and complete 
coverage of all rules applicable. 

The automated routing system includes a 
rule editor for modelling domain rules.  The 

editor consists of a simple form containing a set 
of controls for defining rule types, conditions 
for validity, area of influence, and action to be 
taken.  Sets of rules for different routing 
domains and path types are stored in separate 
libraries in comma separated format. 

Rules supported by the system currently 
include: bend radius, path profile, min/max 
clearance rules, turn penalty rules to restrict 
unnecessary deflections, restrictions on 
movement (1D, 2D and 3D movement), and 
clamping rules. The implementation of some of 
these rules within the solver is discussed below. 

Solver settings, import and export options 
and hard-coded rules are defined within a 
database termed the “knowledge base” which 
can be customised for different routing 
applications.  These are accessed through a 
“knowledge editor” included in the routing tool. 
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5.2  Test Model 
Functionality of the automated routing tool will 
be described with reference to a test case 
consisting of a simplified model of an internal 
weapon storage area, typical of new generation 
fighter aircraft such as F-22 Raptor and F-35 
Lightning II. 

Weapon bays are complicated and densely 
populated assemblies consisting of complex 
metallic structure, payload envelope, and 
various subsystems and equipment with 
hundreds of interconnecting electrical harnesses 
and pipes.  Fig. 5 shows one of the weapon bays 
of the F-35 Lightning II [14].  The photo shows 
a complex weave of harnesses and pipes 
throughout the length of the bay.  As discussed 
above, the route for each harness is determined 
manually on CAD workstations.  It does not 
take a lot of imagination to see that design of 
such a complicated loom is a very time 
consuming and resource intensive task. 
 

 
 

Fig. 5. Weapons bay of F-35 Lightning II [14] 
 
The test case for the routing tool is a 

simplified version of the weapon bay assembly 
shown in Fig. 5 above.  The test model was 
developed, based on observations of the CAD 
model of the F-35 weapon bay structure and 
subsystems.  The test geometry consisting of 
principal structure (excluding bay doors), 
arbitrary subsystems, and sample payload was 

modelled using CAD software and is shown in 
Fig. 6. 

 

 

 
 

Fig. 6. Test case geometry 
 

Geometry obstacles are represented in the 
routing tool as a discrete, grid-based maze 
object with maze nodes characterised by an 
integer address (in Cartesian coordinates) and 
node obstacle type (e.g. principal structure, 
subsystems, payload, harness/pipe, searchable 
space, etc.).  The categorisation of nodes within 
the solver is significant as it allows various 
obstacle types to be treated independently by 
rules implemented in the path-finding 
algorithm. 

5.3  Path Discovery 

5.3.1 Routing Automation  
The routing problem is encountered in 
numerous fields including electronics (e.g. 
microprocessors and printed circuit boards), 
navigation systems, and computer game AI.  
Many algorithms have been developed in these 
fields, but few have been tailored and applied to 
the aerospace domain. 
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The design of microprocessors employs 
powerful path-finding algorithms including 
maze routers, channel and switchbox routers, 
and line routers [15].  These algorithms are 
driven by technology improvements in 
component manufacture including the reducing 
size of interconnecting wires and number of 2D 
layers available for routing.  Commercial 
software packages for multilayered printed 
circuit board design are also available, 
employing similar techniques. 

Improving AI in computer games is 
another area which continues to drive intelligent 
path-finding development.  The way in which 
non-player characters (NPCs) move and react in 
the game environment largely determines the 
realism of the gaming experience.  To this end, 
numerous algorithms have been developed 
incorporating various behavioural techniques 
including shortest path, stealthy movement for 
avoiding detection, cautious movement using 
cover to avoid damage, etc. [16]. 

Developments in these fields have 
provided an excellent base of knowledge which 
can be utilized for automating the layout of 
aircraft electrical harnesses and pipes.  The 
routing tool implements path-finding techniques 
from microprocessor routing and game AI 
domains, together with knowledge based 
techniques for capturing and modelling design 
rules.  This enables the model to be constrained 
sufficiently to produce paths that accurately 
satisfy requirements, minimizing the amount of 
manual work required. 

5.3.2 Path-finding Algorithm  
The algorithm implemented in the automated 
routing system extends the popular A* search 
algorithm used in shortest path problems in 
game AI [16] and other problems.  

In the basic A* algorithm, path movement 
is determined by evaluating a cost function for 
each node interrogated (Equation 1).  Node cost, 
f(n), is equal to the sum of the shortest distance 
from the source node, g(n), and the estimated 
cost to the goal using a heuristic function, h(n).  
At each iteration of the search, the lowest cost 
node is selected as the new node to expand.  
Provided the heuristic function that calculates 

the remaining distance does not overestimate 
the distance to the target, the algorithm is both 
optimal and complete meaning that the shortest 
path will always be returned [17].  Example 
heuristic functions are discussed in [18]. 

( ) ( ) (nhngnf + )=  (1) 

To tailor the algorithm to the complex rule-
based domain of electrical harness design, the 
cost function is extended to include additional 
terms representing rules in domain libraries 
(Equation 2).  In this extended cost function, the 
g(n) and h(n) terms are determined in the same 
way as normal A*.  Min / max clearances rules 
are implemented through the i(n) term which 
modifies the total node cost, depending on the 
searched node’s proximity to particular obstacle 
types, causing the path to favour obstacles of a 
particular type and avoid others.  The magnitude 
of the i(n) term is determined by performing a 
local search within a given radius for each node 
interrogated in the main search.  A separate i(n) 
term is added for each clearance-type rule in the 
library, k. 

( ) ( ) ( ) ( ) ( )nTninhngnf
k

N
N +++= ∑

=1

 
(2) 

For example, a rule may specify that 
harnesses must be routed close to principal 
structure for clamping.  Such a rule would 
reduce the cost for nodes that are close to 
structural obstacles, resulting in a lower cost 
solution closer to structure.  Other rules may 
state that harnesses must have a certain 
clearance from heat zones, moving parts and 
cables with particular electromagnetic 
sensitivities.  Such rules increase node cost for 
nodes near these obstacle types, resulting in a 
lower cost solution away from these areas. 

A turn penalty term, T(n), is also 
introduced for models with complex geometry, 
minimising unnecessary deflections in the path.  
The contribution of the T(n) term is determined 
from the turn deflection angle.  Mild turns are 
penalised less than harsh or backwards turns. 

In the test case given in this paper, a set of 
12 paths were routed, separated into three 
categories with four harnesses in each.  Domain 
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rules implemented for this routing job included 
a structural maximum clearance rule, 
minimising the length of unsupported runs for 
clamping purposes, and clearance rules for 
harnesses of the same type to be run together. 

5.4   Results Output 
The system delivers resultant paths in three 
way, described below. 

5.4.1 Two Dimensional View 
The first output method is a set of simple 2D 
diagrams of routed paths and input geometry 
along the three major axis, given in the 
automated routing tool itself.  This first glance 
provides users with a quick indication of the 
quality of the routing job, allowing users to 
determine whether paths were placed in the 
desired region of the solution space.  For 
example, if a model features a number of cut-
outs and lightening holes which are not properly 
constrained, the path may follow the outside of 
the structure rather than the inside.  This simple 
preview can reduce time analysing sets of 
results which clearly require refinement.  
Several statistics relating to path quality are also 
displayed, including path length, number of 
turns, solution time, and number of nodes 
searched. 

5.4.2 CAD Model Output 
The second output method is a series of CAD-
readable wire-frame IGES models consisting of 
straight segments connected with a user defined 
bend radius.  The path models can be imported 
and integrated into the existing CAD geometry 
assembly, and detail added as necessary for a 
complete digital representation of the routed 
part using CAD software tools (e.g. thickness, 
detail to terminals, etc.). 

The CAD output for the test case described 
above is given in Fig. 7.  The results clearly 
indicate successful implementation of the 
clearance rules, with all paths maintaining close 
clearance to primary structure and harnesses of 
the same category. 

 

 
 

 
 

Fig. 7. CAD output 
 

5.4.3 Discrete Model Output  
The third output method is a discrete model 
comprised of several layers including input 
geometry, routed paths and knowledge 
implemented in the automated routing process.  
The purpose of this output method is to assist 
users in understanding the justification for path 
placement. 

Geometry obstacles encountered in the 
search space are included for referencing rule 
implementation against input geometry.  
Geometry is represented by hexahedral elements 
colour-coded according to obstacle type.  
Routed path spines are represented in wire-
frame using bar elements.  Additional layers 
represent rules and search characteristics used in 
determining path placement, communicating 
design justification to the user.  These layers 
include 3D maps showing locations where 
individual rules were implemented in the search 
space, allowing users to determine regions 
where particular rules are significant for any 
manual touching up required.  A map of all 
nodes interrogated by the algorithm is also 
given, allowing users to determine whether the 
algorithm is considering the correct area in the 
search space, or whether additional constraints 
are necessary.  The discrete model output for the 
test case is given in Fig. 8. 
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Fig. 8. Discrete model output 
 

The discrete model is viewed using third 
party Finite Element Modelling (FEM) 
software.  Various components of the solution 
can be activated independently using 
visualisation options available in the FEM 
software to view the interaction of particular 
rules.  The two images above highlight different 
characteristics of the solution.  The top image 
shows all nodes interrogated by the solver, 
referenced against input geometry.  The bottom 
image shows all points on the reference 
geometry where the structural clearance rule 
was implemented.  As expected, the majority of 
nodes searched were in the vicinity of points 
where this rule was implemented, as it was a 
lower cost solution for points close to primary 
structure.  Similar outputs are available for 
points where the various path clearance rules 
were implemented. 

5.4.4 Discussion 
After conducting a number of test runs with the 
selected harness endpoints with various rule 
combinations, it was found that quality of 
resultant paths is closely coupled with the 
weight factor applied to individual rules.  Thus a 
process for “tuning” the rule library for 
individual models is required to produce 
optimal results, which can be a time consuming 
process.  Despite this, the system works very 
well as a proof of concept application.  The 
solution time is sufficiently small that a number 
of solutions can be generated for various 
combinations of rules and weightings in a 
relatively short time compared to manual 
practices, allowing a large number of results to 
be assessed for suitability relatively quickly. 

Further improvements to the system would 
focus on implementing an optimisation process 
for tuning rule weights, leading to higher quality 
results without the manual trial and error 
process for applying various rule combinations.  
Further work would also develop more effective 
methods for quantitatively assessing path 
quality. 

6   Conclusion 
Presented in this paper was a new methodology 
linking KBE and Design Automation 
application development phases through a 
simple complexity analysis process.  Proposed 
solutions for processes identified for automation 
are assessed for the desired level of complexity 
in terms of several key attributes, and a 
customised set of steps for the application 
development is given. 

This methodology was applied to the 
aerospace path-finding domain, and the 
development of software tool for automating the 
layout design of electrical harnesses and pipes 
in aircraft was described.  The resulting routing 
tool successfully implements path-finding 
principles from microprocessor routing and 
game AI domains, to produce routed paths 
satisfying user defined design rules and 
constraints.  Knowledge and rule editors 
simplify the knowledge capture process, 
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extending capability to domain experts to 
implement new routing methods and rules for 
application to new domains.  The benefits of 
using such a tool in industry are clear, with 
solution times of a few minutes per path for 
detailed, high resolution models (depending on 
the number of rules applied, and the degree to 
which the model is constrained).  The 
comparative manual design process can take 
upwards of three days. 

In the competitive aerospace industry, 
project success requires rapid mobilization of 
resources to respond quickly to problems faced 
by both customers, and internally on the 
engineering floor.  Implementation of KBE and 
Design Automation methods and technologies 
to develop automated solutions can provide this 
capability, delivering savings in time and cost, 
and gaining a competitive edge in the global 
engineering market. 
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