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Abstract

The objective of this paper is to illustrate that
the standard form or Linear Fractional Transfor-
mation LFT framework is a unique and power-
ful framework to treat with nonlinear aircraft be-
haviour during flight control law synthesis and
analysis. Within this paper, a precise and as small
as possible LFT for a nonlinear 3-DOF aircraft
with time varying parameters is derived. This
LFT is validated both in a linear and nonlinear
framework.1

1 Introduction

A standard form P(s)−∆ or LFT representation
of an uncertain or varying nonlinear system is
a special system model where all well known
and fixed linear system dynamics are put together
in the so–called nominal transfer function P(s)
while the uncertain and varying parameters, as
well as the nonlinearities, are stocked in the so–
called perturbation matrix ∆. Both are intercon-
nected via artificial inputs and outputs of the ma-
trix P(s) as shown in Figure 1.

The LFT form is needed for several purposes:

1Corresponding author : carsten.doll@onera.fr, Tel.:
+33 (0)5.62.25.29.20, Fax: +33 (0)5.62.25.25.64
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Fig. 1 The interconnection structure of an LFT

1. The most well known need is the use of
LFTs during robustness analysis of de-
signed control laws, especially using µ–
analysis methods [7]. These LFTs are built
to be able to account for parametric (or
real) uncertainties as well as dynamic (or
complex) uncertainties.

2. LFTs can also be used during robust con-
trol law designs, especially using H∞ ap-
proaches [5]. They are often built to
take into account dynamic uncertainties or
weighting functions.

3. LFTs are more and more used to model
Linear Parameter Varying LPV systems,
especially in the case of gain scheduling
approaches [9]. These last LFTs are nor-
mally constructed such that the measur-
able scheduling variables appear in the ∆–
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matrix.

4. And finally, control law design and anal-
ysis in the presence of nonlinearities, es-
pecially in the presence of actuator satu-
rations, gained a lot of interest in the last
years [12]. Specific ways to model these
saturations as LFTs were proposed. Anti–
windup controller schemes are also pro-
posed.

These four types of LFTs are different. The more
physical parameters are used in an LFT for anal-
ysis purposes, the less conservative the analysis
results will be. That is why analysis LFTs will
make appear more and more uncertainties. On
the other hand, the LFTs used for design pur-
poses can use aggregated and/or artificial vari-
ables which can be computed from the physical
parameters [8]. Hence, the size of an analysis
LFT is often bigger than the one of a design LFT.
However, the µ–analysis algorithms still have nu-
merical problems when the size of the LFT is
too big, where the need stems from to come up
with precise LFTs of minimal size. It is usually
very easy to develop an LFT like in Fig. 1, but to
find its minimal realization is much more com-
plicated [1]. For this purpose a MATLAB toolbox
for LFT generation2 was developed at ONERA
[10]. It is usually not possible to obtain the mini-
mal realization just by numerical post–realization
order reduction. Already during the realization
process, you have to pay attention to the way
how you proceed [13, 6] which will be high-
lighted within this paper. For a straightforward
implementation into Matlab/Simulink c©, specific
blocks have recently been added to the above
toolbox. They allow the use of the linearization
tools of Matlab and the simulation of LTI/LPV
systems in standard form under Simulink3. Spe-
cial blocks for actuator saturations and trigono-
metrical nonlinearities have also been added at

2Download is possible from
http://www.cert.fr/dcsd/idco/perso/Magni/index.html

3Download is possible from
http://www.cert.fr/dcsd/biannic/idco/perso/Biannic/index.html

ONERA [2]. The use of these blocks will be
demonstrated within this paper.

The paper is organized as follows. First, the
proposed overall modelling procedure for nonlin-
ear systems under LFT form is introduced. Then,
the different steps are explained in more detail.
The replacement of nonlinear tabulations as well
as the substitution of exponential and trigono-
metrical functions by rational expressions is de-
tailed. The advantage of using multivariate or-
thogonal functions [11] to come up with low or-
der high fidelity expressions is illustrated. Sym-
bolic processing, i.e. symbolic linearization and
pre-processing, will then be highlighted before
the LFT for the nonlinear aircraft with time vary-
ing parameters will be built. Finally, the LFT is
validated by means of pole-charts, by frequency
plots and by comparing time simulations of the
LFT model with respect to simulations of the
nonlinear 3-DOF aircraft.

2 The overall LFT modelling procedure

The LFR Toolbox for MATLAB has been devel-
oped at ONERA [10] in order to generate easily
various LFTs of minimal or at least small size
starting from a given model. Let us concentrate
on LFT for analysis purposes. For conservative-
ness reasons, all physical dependencies have to
be taken into account during the modeling phase,
such that only completely independent parame-
ters appear in the ∆–matrix.

The recommended analysis LFT generation pro-
cedure [6] is as follows:

1. Express tabulated data, irrational and
trigonometrical functions by rational ex-
pressions

2. Write the nonlinear equations:

ẋ = f (x,u) (1)

as symbolic expressions using all analytic
dependencies using for example the Matlab
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Symbolic Toolbox c© or the Maple c© envi-
ronment.

3. Derive them symbolically with respect to
the state variables x and u around a chosen
equilibrium point (x0, u0). The system will
be of the following form:

δẋ =
∂ f
∂x

∣∣∣∣
x=x0,u=u0

δx+
∂ f
∂u

∣∣∣∣
x=x0,u=u0

δu

δẋ = Aδx+Bδu (2)

Without any lack of generality, we assume
D = 0:

y = C x+0u

The matrices A, B and C are function of the
remaining symbolic variables, especially
the equilibrium point and the uncertain pa-
rameters.

4. Improve conditioning by normalizing all
remaining symbolic variables, i.e. all vari-
ables shall be of the same magnitude.

5. Generate the LFT properly speaking from
a symbolic expression. This crucial step
called symbolic pre–processing was al-
ready illustrated in [6].

6. Maybe apply numerical order reduction
with for example minlfr

7. Normalize parameter variations such
that δi ∈ [−1, 1] using the function
normalizelfr

Here, the steps concerning more specifically the
modelling of nonlinear systems will be illus-
trated.

3 The nonlinear 3–DOF aircraft model

The following well known flight mechanical
equations describe the 3–DOF motion of an air-
craft, see for example [3]:

α̇ = q− 1
2m

ρSV CL−
Fmot

mV
sinα+

g
V

cosγ

q̇ =
Mtot

Iyy
(3)

Θ̇ = q

with g the gravity, ρ the air density and α the an-
gle of attack, q the pitch rate, Θ the pitch angle,
γ = Θ−α the flight path angle, m the mass of
the aircraft, S its reference surface, Iyy its iner-
tia around the y–axis, V the airspeed, CL the lift
coefficient, Fmot the thrust and Mtot the pitching
moment w.r.t. the centre of gravity xcg where:

Mtot = Maero +(zmot− zre f )Fmot

− (xre f − xcg)Faero,z

xre f and zre f define the reference point of the air-
craft in the body axis and zmot the vertical dis-
tance of the engines w.r.t. this reference point.
The aerodynamic moment is given by

Maero =
1
2

ρS lV 2CM

with l the aerodynamic mean chord and CM the
moment coefficient. Faero,z is the resulting force
in the z–axis:

Faero,z =
1
2

ρSV 2 (−CL cosα−CD sinα)

with CD the drag coefficient.

CM, CL are given as nonlinear look up tables
in function of Ma and CD is given as a nonlin-
ear look up table in function of Ma and α. See
section 4.1 for more details how these tables are
replaced by polynomial expressions. The Mach
number Ma is defined as:

Ma =
V
c

(4)

with c the sound speed. c is given by:

c(T (h)) =
√

1.4 ·287.053 ·T (h) (5)

as a function of the atmosphere temperature T
which is itself a function of the flight altitude
h according to the International Standard Atmo-
sphere ISA. The air density ρ is also depending
on h via an exponential function:

ρ(h) = e−x(h) (6)

See more details on the replacement of irrational
functions in section 4.2.
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4 Treatment of nonlinearities

4.1 Replacement of nonlinear tabulations

Nonlinear tabulations are replaced by polynomial
approximations of the functional relation

y = f (x1, x2, . . . , xn) (7)

between the variables xi and the output y.

4.1.1 Classical Least Mean Square Error ap-
proach

The most common approach to find the func-
tional relation of Eq. (7) is the Least Mean Square
Error LMSE approach, see for example [11]. The
user has to choose the polynomial structure of an
estimated interpolation function:

f̂ =
M

∑
0

am xk1
1 · · · x

kn
n (8)

where am are the polynomial coefficients. The
user has to choose the maximum order ki for
each variable xi and to select the M monomials
xk1

1 · · · xkn
n . A first shot solution would consist in

choosing the full combinatoric of xk1
1 · · · xkn

n with
a high number M. The user then calculates the
unknown polynomial coefficients am by minimiz-
ing the mean square error between y and ŷ using
the following cost function:

JLMSE = (y−P a)T (y−Pa) (9)

with the well known result:

a =
(
PT P

)−1
PT ŷ (10)

This approach is already available within the LFR
Toolbox via the data2lfr or data2sym func-
tions.

4.1.2 Predicted Mean Square Error approach

This method proposed by Morelli [11] uses a
mixed criterion

JPMSE = JLMSE +σM (11)

penalising not only the mean square error but at
the same time a term proportional to the total
number of terms M included in the model where
σ is a weighting parameter. This is a convex op-
timization problem. It is called predicted mean
square error PMSE. The idea is hence to deter-
mine not only the polynomial coefficients a but
also automatically the polynomial structure of ŷ
with minimal number of monomials. This can be
achieved by applying orthogonal functions [11].
With this property, Eq. (10) can be decoupled and
finally evaluated row wise as:

aj =
pT

j ŷ
pT

j p j
(12)

The cost function JLMSE of Eq. (9) can therefore
be simplified to:

JLMSEorth = yT y−
M

∑
j=1

a2
j pT

j p j (13)

With the form of Eq. (13) the individual contri-
bution of each monomial to the cost function can
be quantified. The monomials can also be ranked
in descending order in terms of their contribution
to reduce the error. If their contribution is under a
threshold ε, they are not used within the polyno-
mial f̂ . The user has just to choose the maximum
order ki of the polynomial expression as well as
the weighting parameter σ and the threshold ε.

4.1.3 PMSE–LFT based approach

Based on the method described in section 4.1.2
a new cost function will be proposed in the fol-
lowing which penalises not only the total number
of terms, but additionally the sum of encountered
exponents. In the framework of LFT modeling,
this has the advantage that e.g. five monomials of
order one contribute less to the LFT size than one
single term of order six. It is thus worth penal-
ising the contribution of this one term of higher
order more severely than the sum of the number
of the lower order terms. This fact is expressed
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in the resulting cost function JPMSE−LFT :

JPMSE−LFT = JPMSE + cexp

M

∑
l=1

{
n

∑
j=1

exp(x j)

}
(14)

where exp(x j) is the exponent of the variable
x j. The constant cexp has to be adapted accord-
ing to the desired ratio of weighting the differ-
ent contributions to the cost function. Finally,
the cost function JPMSE−LFT can be modified to a
cost function not considering the total number of
terms at all, but purely punishing the sum of ex-
ponents encountered in the final expression. This
leads to the cost function JLFT :

JLFT = JLMSE + cexp

M

∑
l=1

{
n

∑
j=1

exp(x j)

}
(15)

The function strident applying the PMSE,
PMSE–LFT and the pure LFT approach will be
added to the next release of the LFR-Toolbox.

4.1.4 Example

For the drag coefficient CD(Ma,α) of the con-
sidered aircraft the polynomial expression is de-
termined using the 4 preceding methods. Tab. 1
gives an overview over the obtained results. It
can be seen that the complexity and the total
number of terms considerably decrease from a
LMSE approach via PMSE and PMSE-LFT to
a purely LFT size optimized approach. At the
same time, the accuracy decreases only slightly.
A trade off has to be made between an accept-
able loss in accuracy on the one hand side and an
acceptable LFT size on the other hand.

Method Number Sum Maximum
of terms exponents error

LMSE (all terms) 33 156 5.4026e-003
PMSE 32 154 5.5578e-003

PMSE-LFT 27 120 6.1668e-003
LFT 25 108 6.2141e-003

Table 1 Comparison of the different interpolation
results

4.2 Substitution of irrational functions

All irrational functions have also to be replaced
by rational approximations.

The square root function in Eq. (5) for the
sound speed is replaced by the following 6th or-
der polynomial expression:

c = kc,0 +kc,1 h+kc,4 h4 ++kc,5 h5 +kc,6 h6 (16)

found by the function strident. The expo-
nential function in Eq. (6) for the air density is
replaced by a 2nd order polynomial expression:

ρ = kρ,0 + kρ,1 h+ kρ,2 h2 (17)

4.3 Substitution of trigonometrical functions

Concerning the trigonometrical functions, the
following Taylor series can be applied:

sinα = α− α3

3
+

α5

5
(18)

cosα = 1− α2

2
+

α4

4
− α6

6

in order to limit the errors to 10−3% at α = 40o.
This means that in the worst case, α will appear
9 times for a sinus term and 12 times for a cosine
term. For small α the following approximations
could be used :

sinα = α (19)
cosα = 1

The special LFT blocks for use with Simulink
sineLFR, . . . use the approach proposed by
Cumer et al[4] for trigonometrical dependencies.

5 The symbolic linearization and the con-
struction of the LFT

In order to obtain the linearized system around a
trim condition, Eq. (3) are symbolically derived
with respect to the two states α and q and the
elevator deflection δm using the following Matlab
code:
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A11 = diff(alphadot,’alpha’);
A12 = diff(alphadot,’q’);
A13 = diff(alphadot,’Theta’);
A21 = diff(qdot,’alpha’);
A22 = diff(qdot,’q’);
A23 = diff(qdot,’Theta’);
A31 = diff(thetadot,’alpha’);
A32 = diff(thetadot,’q’);
A33 = diff(thetadot,’Theta’);
B1 = diff(alphadot,’dm’);
B2 = diff(qdot,’dm’);
B3 = diff(thetadot,’dm’);

The 3–DOF system is then symbolically built
with the following code:

Asys = [A11 A12 A13;
A21 A22 A23;
A31 A32 A33];

Bsys = [B1;
B2;
B3];

Csys = [eye(3,3);
-1 0 1];

Dsys = zeros(4,1);
sys_lon = [Asys Bsys;

Csys Dsys];

The LFT is finally obtained with the following
functions:

ABCD_lon = sym2lfr(sys_lon);
lft_lon = abcd2lfr(ABCD_lon,3);

where sym2lfr transforms the symbolic system
into an lfr object. abcd2lfr puts this object
into the typical transfer function P−∆ form of
Fig. 1 knowing that there are 3 states. Using the
LMSE expression of Table 1 for CD, the LFT size
is given by:

>> size(lft_lon)

Uncertainty blocks
globally(510 x 510):

Name Dims
V 31x31
alpha 84x84
centxcg 3x3
dm 19x19
fmotd 1x1
fmotg 1x1
iyy 3x3
mach 325x325
masse 6x6
q 19x19
zp 18x18

When using the LFT expression of Tab. 1, the
LFT size can be considerably reduced to:

Uncertainty blocks
globally(137 x 137):
Name Dims
V 9x9
alpha 33x33
centxcg 3x3
dm 1x1
fmotd 1x1
fmotg 1x1
iyy 3x3
mach 61x61
masse 6x6
q 1x1
zp 18x18

without almost no loss in precision. Ongoing
studies will illustrate how this LFT size can still
be reduced by physical means or a more sophis-
ticated symbolical pre-processing.

6 Validation of the LFT

6.1 Linear validations

Multiple flight cases are studied within the flight
domain of Fig. 2 depending on calibrated air-
speed Vc and altitude on the borders of the flight
domain. Additionally, flight cases within the
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Fig. 2 The flight domain of the considered aircraft

flight domain with Ma = 0.3 and Ma = 0.8 have
been considered.

In the worst case, the ∆ matrix is defined as
follows:

zp = 23000;
V = 215.4;
Vcas = 300;
masse = 155000;
centxcg = 0.40;
alpha = 1.4*degrad;
dm = -0.94*degrad;
fmotd = 1.73*degrad;
fmotg = 1.73*degrad;
mach = 0.69;
theta = 1.4*degrad;

The matrices A and B of the numerically lin-
earized nonlinear system Eq. (2) are:

A(∆0) =

 −1.1106 0.9814 0
−0.8495 −0.6440 0

0 1 0


B(∆0) =

 −0.1063
−4.3250

0


while the following Matlab sequence:

Delta_nom = [V,alpha,theta,

centxcg,dm,fmotd,
fmotg,iyy,mach,
masse,q,zp];

name = {’V’,’alpha’,’theta’,
’centxcg’,’dm’,’fmotd’,
’fmotg’,’iyy’,’mach’,
’masse’,’q’,’zp’};

sys_lft = uplft(lft_lon,name,
Delta_nom)

closes the LFT via ∆. sys_lft.a and
sys_lft.b are the resulting state space matri-
ces:

A′(∆0) =

 −1.1013 0.9815 0
−0.8454 −0.6400 0

0 1 0


B′(∆0) =

 −0.1056
−4.2997

0


The error is less than 2% in the coefficients of A
and B. For the eigenvalues holds:

λA =−0.8773±0.8828 i
λA′ =−0.8706±0.8813 i

with an error of 2%. In all other cases, the er-
rors are smaller. In order to confirm these re-
sults, the Bode diagrams for all cases are shown
in Fig. 3. The frequency plots of 7 cases based
on the LFT systems (black lines) and the cor-
responding linearized systems are almost super-
posed (red lines).

6.2 Nonlinear validation

In order to simulate the family of LTI systems
given by the LFT, the Sim LFR LTI/LTV
block for Simulink developed by [2] is used. See
Fig. 4 for the interconnection structure. Just α

and q are varying significantly during the simula-
tion period due to a deflection ∆δm around trim
condition. The α entering the ∆ matrix is hence
the sum of the initial trim value α0 and ∆α stem-
ming from the integration of the LFT. The trim-
ming point evolves with the time. The linearized

7
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Fig. 3 The comparison of the Bode plots using
the at ∆0 fixed LFT (black) and those ones us-
ing the linearized nonlinear time varying system
(red)

system is continuously adapted to a new flight
condition. For q holds the same.

alpha_q
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simLFR−a

Del(t)

u

y

Sim LFR 

LTI/LTV

q_0

0

alpha_0

−C− Demux

u

1

alpha

q

Fig. 4 The block-diagram for the simulation of
the LFT

The simulation of the LFT system is com-
pared to the simulation of the nonlinear system.
The time responses of 7 cases are given in Fig. 5.
They superpose perfectly. The LFT framework
is hence an adequate framework to simulate or to
analyze a nonlinear system as an LFT represents
the continuum of its linearized systems.

7 Conclusions

First, the proposed overall modelling procedure
for nonlinear systems under LFT form was intro-
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duced. The replacement of nonlinear tabulations
as well as the substitution of exponential and
trigonometrical functions by rational expressions
were detailed. In this context, the advantage
of multivariate orthogonal functions was illus-
trated. Symbolic linearization and pre-processing
have then be highlighted before having built the
LFT for the nonlinear aircraft with time vary-
ing parameters. Finally, the LFT was validated
by means of pole-charts, by frequency plots and
nonlinear time plots.

8 In memory of Jean–François Magni

This article pays homage to Jean–François Magni
who died suddenly on January 4th,2008 at the
age of 53 years. His research interests cov-
ered the pole and eigenstructure assignment tech-
niques where he was the first to study neces-
sary and sufficient conditions and the tractabil-
ity for the challenging problem of pole assign-
ment by static and fixed-order output feedback.
More recently, his research has focused on multi-
objective and gain scheduling controller design
for linear parameter varying systems using modal
techniques. He always desired to offer practical
tools to design engineers. The LFR toolbox used
in this article was his latest achievement. We en-
deavour to update and to extend it in his memory.
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