Abstract

In this study, the direct method including evaluation criteria of handling qualities as optimization method’s constraints are carried out to complement problems of the indirect method that assesses whether a flight control system designed by existing optimization techniques satisfies handling qualities or not. For the direct method, co-evolutionary augmented Lagrangian method is used. F-16 longitudinal flight control system is performed the optimization with the performance index and constraints.

Moreover, present optimization technique can optimize flight condition one by one. In case of performing optimization for several flight conditions, it should be executed as many times as flight conditions. Although reliability of the optimization result can be high in that case, it is required considerable time for the optimization. To solve this problem, an optimization method is constructed with gain scheduling. Then we study techniques that have lower reliability about performances than one of the former but computation time is able to abridge.

1 Introduction

Although the classical PID controller has been widely used in flight control of various kinds of vehicles, its gain adjust tends to depend on designer’s experience or trial and error. An optimization based PID controller design is a very attractive issue in that it provides a systematic design procedure and guarantees consistent controller performance especially in gain scheduling. If the controller’s structure cannot be changed, an optimization of a PID controller is to find the best gain set, which conforms to designer’s intention.

An optimization method based on the line search, like Sequential Quadratic Programming (SQP), has fast convergence but it has a weakness that a cost function must be continuously differentiable. In order to overcome this weakness, researchers have applied various kinds of stochastic optimization techniques to design controller. Park has applied the Co-Evolutionary Augmented Lagrangian Method (CEALM) for an autopilot design and the Particle Swarm Optimization (PSO) on an airship control[1, 2]. Krishinakumar done a control system optimization using the Genetic Algorithm (GA)[3]. Chen has studied an optimal PID control employing the GA[4].

In order to apply a real aircraft designed flight control system, stability of the system must be verified. Also, modifications of the control loop are required to improve stability of an unstable flight control system. In this manner verified standards for control loop correction and performance evaluation are required to improve a flight control system’s stability. Even though a variety of studies and standard about performance evaluations and improvements of aircrafts are suggested, it is difficult to select controller design and evaluation standard suitable for each aircraft. MIL-STD-1797A made by U.S. Department of Defense states flying qualities to perform appropriate mission and stability grades for high-fidelity aircrafts at each flight condition. It also provides suitable
evaluation standards divided into longitudinal and lateral direction[5].

Many researchers have carried out studies to evaluate the system’s performance after design of aircraft’s flight control system using aforementioned various kinds of optimization methods. The flight control system designed using this way, however, cannot guarantee to satisfy performance evaluation standards every time. So, the necessity of manners to complement these problems is raised.

This paper is composed of five sections as follows. Section 2 explains the definition of flying and handling qualities (FQ and HQ) and standards about longitudinal direction specified by MIL-STD-1797A and MIL-F-8785C. Optimization techniques are described briefly in Section 3. Next, the simulation model is constructed in Section 4. Then simulation results are given. The objective of Section 5 is to conclude the paper.

2 FQ and HQ of aircraft

FQ and HQ of an aircraft are a measure that indicates how an aircraft’s response is easy, predictable, and effective about pilot commands for performing a mission[7].

2.1 Classification for evaluation of FQ and HQ

FQ and HQ specified by MIL-F-8785C are introduced in this section[6]. Airplane’s class is divided into four classes by weight and size like Table 1 in MIL-F-8785C. It also classifies levels of FQ and flight phase in Table 2 and 3.

Table 1. Classification of airplanes[6]

Class I	Small, light airplanes - Light utility, Primary trainer, Light observation
Class II	Medium weight, low-to-medium maneuverability airplanes - Heavy utility/search and rescue - Light or medium transport/cargo/tanker - Early warning/electronic countermeasures/airborne command, control, or communications relay
Class III	Large, heavy, low-to-medium maneuverability airplanes - Heavy transport/cargo/tanker, Heavy bomber
Class IV	High maneuverability airplane

2.2 Longitudinal HQ

They are explained referred to [6] and [8].

2.2.1 Phugoid stability

The phugoid is a long-period (low frequency) mode in which forward speed (kinetic energy) and altitude (potential energy) are interchanged. It has the frequency under 1 rad/sec generally. The requirements for the phugoid are expressed in terms of damping ratio for stable phugoid and time-to-double-amplitude, \(T_2 \), for unstable phugoid. It is expressed as Eq. (1). No distinction is made between classes of airplane.

\[
T_2 = \frac{0.693}{\zeta_p \omega_p}
\]

(1)

If the phugoid is unstable, \(\zeta_p < 0 \).
Unconventional response-types, such as attitude-command, usually do not exhibit phugoid characteristics at all. For conventional or angle of attack command response-type, equivalent systems have been shown to work quite well when phugoid-type dynamics do appear in the augmented response. The frequency range of match should be expanded to include the phugoid characteristics. Eq. (2) is shown equivalent system that includes phugoid and short-period mode.

\[
\frac{\theta}{\delta} = K_s \left(\frac{1}{s^2 + 2\zeta_s \omega_s s + \omega_s^2} \right) \left(\frac{1}{s^2 + 2\zeta_p \omega_p s + \omega_p^2} \right)
\]

(2)

The phugoid alone can be matched say in the range 0.01 to 1 rad/sec using Eq. (3).

\[
\frac{\theta}{\delta} \approx K_s \left(\frac{1}{s^2 + 2\zeta_s \omega_s s + \omega_s^2} \right)
\]

(3)

Natural frequency requirements of the phugoid mode do not exist, but it is recommended that they separate with short-period mode natural frequency. Typically phugoid mode should be satisfied following condition to stabilize the velocity of airplane about perturbations.

Level 1: \(\zeta_p \) at least 0.04
Level 2: \(\zeta_p \) at least 0.0
Level 3: \(T_p \) at least 55 seconds

2.2.2 Short-period flying qualities

The short-period is a relatively rapid mode that governs the transient changes in angle of attack, pitch, flight path and normal load factor that occur following rapid control or gust inputs. Forward speed remains relatively constant during short-period oscillations. The mode is usually a stable under-damped second order oscillation.

Requirements of the short-period response are short-period frequency, acceleration sensitivity, and short-period damping. The equivalent short-period damping ratio, \(\zeta_p \), shall be within the limits of Table 5.

<table>
<thead>
<tr>
<th>Level</th>
<th>Category A and C flight phases</th>
<th>Category B flight phases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>1</td>
<td>0.35</td>
<td>1.30</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

2.2.3 Control Anticipation Parameter

Control Anticipation Parameter (CAP) is defined the ratio of the instantaneous angular acceleration in pitch to the steady-state change in load factor when the pilot applies a step input to the longitudinal control. It is given as Eq. (4).

\[
CAP = \left(\frac{L_n}{W \omega_n^2} \right) = \frac{\omega_n^2}{n/\alpha}
\]

(4)

This theory is based on the fact that in order to make precise adjustments to the flight-path, pilot must infer from the initial attitude response of the vehicle, the ultimate response of the flight-path. If CAP is too small, pilot tends to over-control and rates the pitch response as sluggish. If CAP is too large, pilot tends to understand his desired flight-path corrections, and rate the response as fast, abrupt, and too sensitive.

2.2.4 Bandwidth criteria

From the frequency response of the pitch attitude to longitudinal controller the bandwidth frequency is the frequency where the phase margin is 45°, or where the gain margin is 6 dB.

The bandwidth hypothesis is that the pilot can adequately follow input commands with frequencies up to the bandwidth. If he tries aggressively to follow higher-frequency commands, he will approach instability. The phase roll-off, or slope at high frequency, that causes this characteristic is essentially the same as equivalent time delay and is measured using a parameter called \(\tau_p \). Thus bandwidth criterion does contain the physical elements that underlie the pilot-induced oscillations or the flying qualities cliffs. Time delay of bandwidth criteria does not fix a constant value. So, it is determined by transfer function of each aircraft. Time delay \(\tau_p \) is expressed in Eq. (5) where \(\omega_{n0} \) denotes the frequency at phase of -180° and
\(\phi_{2\omega_{180}} \) is the phase angle at frequency of double of \(\omega_{180} \). If time delay is large, airplane has bad closed-loop characteristics.

\[
\tau_p = -\frac{\phi_{2\omega_{180}} + 180°}{57.3 \times 2 \omega_{180}}
\]

(5)

2.2.5 Neal-Smith criterion

Neal-Smith criterion evaluates flight performances based on frequency response analysis. Pilot compensator is designed to improve flight performances and vibration characteristics in low frequency ranges. Flight performance analysis is based on analysis of open-loop characteristics with respect to the pitch command. Compensation is defined as the phase angle of the pilot’s compensation measured at the specified bandwidth frequency and the resonance is presented in dB. Fig. 1 shows this criterion, and the bandwidth, minimum droop and maximum resonance corresponded with flight phases and levels of flying qualities are given in Table 6 and 7.

\[
\text{Fig. 1. Neal-Smith criterion[8]}
\]

Table 6. Bandwidth of the Neal-Smith criterion[8]

<table>
<thead>
<tr>
<th>Flight phase</th>
<th>Bandwidth (rad/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A</td>
<td>3.5</td>
</tr>
<tr>
<td>Category B</td>
<td>1.5</td>
</tr>
<tr>
<td>Category C</td>
<td>1.5</td>
</tr>
<tr>
<td>Landing</td>
<td>2.5</td>
</tr>
</tbody>
</table>

\[
\text{Table 7. Minimum droop and maximum resonance of the Neal-Smith criterion[8]}
\]

<table>
<thead>
<tr>
<th>Level</th>
<th>Minimum droop(dB)</th>
<th>Maximum resonance(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>-3</td>
<td>9</td>
</tr>
</tbody>
</table>

2.2.6 Gibson’s dropback criterion

Excessive lead in the Neal-Smith criterion results in excessive lag requirements for the pilot but the bandwidth and equivalent systems criteria do not adequate cover the effects of excessive phase lead. The dropback criterion had been added to the bandwidth criterion to catch the excessive lead cases.

Dropback is characteristics of the pitch attitude response and is positive if the attitude decrease to a lower state value after the removal of the control input. The opposite case is known as negative dropback or overshoot. The pitch rate’s overshoot ratio defines the level of dropback. Dropback time is illustrated like Fig. 2 and expressed as follows:

\[
T_{\Delta \theta} = \frac{\Delta \theta}{q_{ss}}
\]

\[
\gamma \approx \frac{1}{T_{\theta 25} + 1}
\]

\[
T_{\theta 25} = T_{\Delta \theta} \approx T_{\Delta \theta} + \frac{2 \gamma}{\omega_{\theta 25}}
\]

(6)

3 Optimization method

A general constrained minimization problem is formulated as Eq. (8) where \(x = (x_1, x_2, \cdots, x_n) \) is a vector of variables, \(f(x) \) is a cost function, \(h(x) = [h_1(x), h_2(x), \cdots, h_m(x)]^T \) is a set of \(m \) equality constraints, and
\[g(x) = \begin{bmatrix} g_1(x), g_2(x), \ldots, g_k(x) \end{bmatrix}^T \] is a set of \(k \) inequality constraints. All \(f(x), h(x) \) and \(g(x) \) can be either linear or nonlinear, continuous or discontinuous[11].

\[
\begin{align*}
\min & \quad f(x) \\
\text{subject to} & \quad h(x) = 0 \\
& \quad g(x) \leq 0
\end{align*}
\] (7)

Methods for solving constrained optimization problems exist several ways as following[9].

- Methods based on preserving feasibility of solutions.
- Methods based on penalty functions.
- Methods based on a search for feasible solutions.
- Hybrid methods: combinations of stochastic evolutionary methods and deterministic optimization procedures.
- Other methods: co-evolution approach, multi-objective optimization.

Using these optimization methods, robustness of levels that are able to obtain from modern control theory can be guaranteed. Besides design procedure of control systems is systematic and automatic. It can be designed optimal control system for minimizing given performance index. In this study, we design flight control system that satisfies FQ, HQ and other constraints using CEALM which is the best performance about convergence of solutions among above methods.

3.1 CEALM

The CEALM is based on evolution strategies for selection, recombination and mutation of two populations with opposite objectives to solve saddle-point problems[10]. Using the augmented Lagrangian formulation, a constrained problem can be regarded as a mini-max game between the parameter vector and the multiplier vector by duality.

A mini-max game with payoff function \(F = F(u, v) \) is to be minimized by \(u \) and maximized by \(v \). It is represented as follows:

\[
\begin{align*}
\min & \quad F(u,v) = \max_v F(u',v) = F(u^*,v^*) = F^*
\end{align*}
\] (8)

The saddle-point solution satisfies the pair of following saddle-point inequalities:

\[
F(u^*,v) \leq F(u^*,v^*) \leq F(u,v^*)
\] (9)

The mini-max game can be interpreted in the context of co-evolution as

\[
\text{fitness of } x_i = \max_j F(x_i, y_j)
\]

\[
\text{fitness of } y_j = -\max_i F(x_i, y_j)
\] (10)

For convex problems, there exists a saddle-point solution, which corresponds to the optimal value of the parameter vector and the Lagrangian multiplier. For non-convex problems, the augmented Lagrangian method is used to obtain convexity. Fig. 3 shows a flowchart of co-evolution for saddle-point problems[11].

4 Simulation modeling and result

F-16 model using in this paper is designed a control system, which assigns all gains to optimization parameters consisted of inner loop’s Stability and Control Augmentation Systems (SCAS) and outer loop’s autopilot, to minimize given performance index and to satisfy given constraints. In general design process SCAS is designed first and then gain of outer loop is determined. In case of using optimization techniques, however, all gains are determined at once through parameter optimization. Optimization is executed after that linearization of the nonlinear model at trim point is performed and then appropriate perfo-
mance index and constraint are determined considering SCAS design, autopilot’s structure determination, system’s dynamic characteristic and objective of control system[12].

4.1 Longitudinal linear flight control system

The outer loop control system is designed to track the guidance command by considering the designed SCAS as the inner loop. Assume that the guidance command of longitudinal flight control system is the velocity and altitude. Generally, thrust controls the velocity and pitch angle change by elevator deflection controls the altitude. Applying longitudinal control concepts the velocity control system is designed PID controller to reduce errors between reference velocity and aircraft’s velocity and the altitude control system is using PI controller. The pitch attitude control system consists of PID controller to track the pitch attitude angle provided for tracking altitude command.

Schematic diagram is shown in Fig. 4.

A and B matrices of \(\dot{x} = Ax + Bu \) at \(h = 10000 \text{ ft} \) and \(V_i = 700 \text{ ft/sec} \) are obtained by performing linearization with longitudinal nonlinear model. They are given as following.

\[
A = \begin{bmatrix}
-0.0179 & 25.7107 & -32.1700 & -0.0637 & 0 & 0.3432 \\
-0.0001 & -1.0502 & 0 & 0.9310 & 0 & 0 \\
0 & 0 & 0 & 1.0000 & 0 & 0 \\
0 & -700.0000 & 700.0000 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1.0000 \\
\end{bmatrix}
\]

(11)

\[
B = \begin{bmatrix}
0.2832 \\
-0.0022 \\
0 \\
0 \\
-0.2628 \\
64.9400 \\
\end{bmatrix}
\]

(12)

4.2 Performance index and constraint

Performance index of F-16 longitudinal flight control system using CEALM is as follow:

\[
\min J = \int_t^{t_f} \left(w_1 \dot{x}_1^2 + w_2 \dot{x}_2^2 \right) dt
\]

(13)

where \(w_1 \) and \(w_2 \) denote weighting, \(\dot{x}_1 \) and \(\dot{x}_2 \) are altitude errors and velocity errors.

To optimize the control system, we can consider many constraints. Used constraints for the optimization are given in Eq. 14 ~ 18.

\[
\text{max} \left[\text{Re} \left(P_i \right) \right]_j \leq 0
\]

(14)

\[
\left[GM_d - \left| GM \right| \right]_j \leq 0
\]

(15)

\[
\left[PM_d - \left| PM \right| \right]_j \leq 0
\]

(16)

\[
\%OS_d - \%OS \geq 0
\]

(17)

\[
\left[T_{\text{ss}j} - T_{\text{s}} \right]_j \geq 0
\]

(18)

where \(j = 1, 2 \). They denote the velocity control system and altitude control system. \(P_i \) is \(i \)th pole of the designed control system. \(GM_d \), \(PM_d \), \(%OS_d \), and \(T_{\text{ss}j} \) is desired gain margin, phase margin, \%overshoot, and settling time.

Moreover, criteria related with longitudinal HQ should be supplemented as constraints. F-16 fighter should satisfy HQ criteria corresponding to Class IV, Level 1, and Category B. They are described detail in Section 2. Eq. (19) ~ (24) summarize them.

Phugoid stability \(\zeta_p \geq 0.04 \)

(19)

Short period \(0.3 \leq \zeta_p \leq 2.0 \)

(20)

\[0.28 \leq \text{CAP} \leq 3.6 \]

(21)

Bandwidth criteria \(0 \leq \tau_c \leq 0.1 \Rightarrow \omega_{\text{ny}} \geq 1.4 \text{ rad/sec} \)

\[0.1 \leq \tau_c \Rightarrow \omega_{\text{ny}} \geq 4 \tau_c + 1 \text{ rad/sec} \]

(22)

Dropback time \(T_{\text{db}} \leq 0.25 \text{ sec} \)

(23)
OPTIMIZATION FOR FLIGHT CONTROL SYSTEM WITH CONSTRAINTS SUPPLEMENTED HANDLING QUALITIES

Neal-Smith criterion \(BW \geq 1.5 \text{ rad/sec} \)
\[\text{droop} \geq -3 \text{ dB} \]
\[\text{resonance} \leq 3 \text{ dB} \] (24)

where constraint in Eq. (23) is more rigorous value according to Category A for precise tracking. So, we do not contain dropback time as a constraint of the optimization and only evaluate it for HQ after the optimization.

4.3 Simulation results

4.3.1 Optimization without considering HQ
To compare with results of this study, we execute optimization of F-16 longitudinal flight control system at a trim condition \(h = 10000 \text{ ft} \) and \(V_t = 700 \text{ ft/sec} \) without considering HQ as constraints. Reference altitude and velocity command are 5 ft and 0 ft/sec. Desired values and obtained gains are tabulated in Table 8 and 9.

Using these obtained gains, we check robustness and HQ. They are shown in Table 10. As you can see it, all values related with robustness satisfy design requirements. For HQ, phugoid stability, short-period FQ, CAP and bandwidth criteria satisfy design requirements. However, dropback time and Neal-Smith criterion do not satisfy them. It is possible that dropback time is not satisfied because its requirement is not adequate for Category B. Simulation results are given in Fig. 5 ~ 8. Responses of the aircraft follow reference commands quite well. Fig. 6 and 7 denote responses of short-period and phugoid low order equivalent systems (LOES).

4.3.2 Optimization considering HQ
Neal-Smith criterion is adequate for pilot-in-the-loop concept but our model does not include pilot model. By reason of it, Eq. (24) also does not consider as a constraint of the optimization and evaluate it for HQ after the optimization.

All design requirements of robustness are same with Table 8. HQ requirements are Eq. (19) ~ (23). We only change trim conditions and simulate 9 cases. Due to limitation of paper, results of same trim condition with Section 4.3.1 are only illustrated. As you can see in Table 12, design requirements related with robustness are better than results of Section 4.3.1. In this case, Neal-Smith criterion and dropback time also do not satisfy. Mismatches of short-period mode and droop of Neal-Smith criterion, however, are reduced than ones of Section 4.3.1. They are shown in Fig. 9 ~ 12.

<table>
<thead>
<tr>
<th>Table 8. Desired values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired Value</td>
</tr>
<tr>
<td>Gain Margin</td>
</tr>
<tr>
<td>Phase Margin</td>
</tr>
<tr>
<td>%Overshoot</td>
</tr>
<tr>
<td>Settling Time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 9. Obtained gains without considering HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitude Controller</td>
</tr>
<tr>
<td>SAS</td>
</tr>
<tr>
<td>SAS</td>
</tr>
<tr>
<td>Velocity Controller</td>
</tr>
<tr>
<td>Velocity Controller</td>
</tr>
<tr>
<td>Velocity Controller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 10. Analysis of robustness and HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robustness</td>
</tr>
<tr>
<td>Phase Margin</td>
</tr>
<tr>
<td>%Overshoot</td>
</tr>
<tr>
<td>%Overshoot</td>
</tr>
<tr>
<td>Settling Time</td>
</tr>
<tr>
<td>Settling Time</td>
</tr>
<tr>
<td>Handling Qualities</td>
</tr>
<tr>
<td>Phugoid</td>
</tr>
<tr>
<td>Mismatch</td>
</tr>
<tr>
<td>Short-period</td>
</tr>
<tr>
<td>CAP</td>
</tr>
<tr>
<td>Mismatch</td>
</tr>
<tr>
<td>Dropback</td>
</tr>
<tr>
<td>Neal-Smith</td>
</tr>
<tr>
<td>Neal-Smith</td>
</tr>
<tr>
<td>Neal-Smith</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
</tbody>
</table>
Table 11. Obtained gains considering HQ

<table>
<thead>
<tr>
<th>Attitude Controller</th>
<th>K_p</th>
<th>1.0229805</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_i</td>
<td></td>
<td>0.0000484</td>
</tr>
<tr>
<td>Velocity Controller</td>
<td>K_p</td>
<td>18.0942788</td>
</tr>
<tr>
<td>K_i</td>
<td></td>
<td>0.0061321</td>
</tr>
<tr>
<td></td>
<td>K_d</td>
<td>28.0351966</td>
</tr>
<tr>
<td>SAS</td>
<td></td>
<td>-149.5342099</td>
</tr>
<tr>
<td></td>
<td>K_v</td>
<td>-26.3404038</td>
</tr>
<tr>
<td></td>
<td>K_{dp}</td>
<td>0.6110085</td>
</tr>
<tr>
<td></td>
<td>K_{dv}</td>
<td>0.0433254</td>
</tr>
<tr>
<td></td>
<td>K_{dp}</td>
<td>0.9516431</td>
</tr>
</tbody>
</table>

Table 22. Analysis of robustness and HQ

<table>
<thead>
<tr>
<th>Robustness</th>
<th>h</th>
<th>V_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain Margin(dB)</td>
<td>27.4767</td>
<td>Inf</td>
</tr>
<tr>
<td>Phase Margin(deg)</td>
<td>52.6878</td>
<td>79.2470</td>
</tr>
<tr>
<td>%Overshoot (%)</td>
<td>0.5824</td>
<td>0.0842</td>
</tr>
<tr>
<td>Settling Time(sec)</td>
<td>4.7700</td>
<td>5.3800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Handling Qualities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phugoid</td>
<td>ζ_p</td>
</tr>
<tr>
<td>Mismatch</td>
<td>14.4583</td>
</tr>
<tr>
<td>Short-period</td>
<td>ζ_s</td>
</tr>
<tr>
<td>CAP</td>
<td>1.6797</td>
</tr>
<tr>
<td>Mismatch</td>
<td>1.9252</td>
</tr>
<tr>
<td>Dropback</td>
<td>T_{dp} (sec)</td>
</tr>
<tr>
<td>Neal-Smith</td>
<td>BW (rad/sec)</td>
</tr>
<tr>
<td>Droop (dB)</td>
<td>-13.8211</td>
</tr>
<tr>
<td>Resonance (dB)</td>
<td>-</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>τ_p (sec)</td>
</tr>
<tr>
<td>ω_{res} (rad/sec)</td>
<td>2.5873</td>
</tr>
</tbody>
</table>

Fig. 5. Time response of the aircraft

Fig. 6. Response of short-period LOES

Fig. 7. Response of phugoid LOES

Fig. 8. Bandwidth criteria

Fig. 9. Time response of the aircraft (HQ)
In this section, we derive equation of each gain through least-square curve fitting based on the previously obtained gains. The purpose of this approach is to get the gain satisfying HQ easily at other trim condition without optimization. Basic form of the equation is expressed as following.

\[F(h, V_t) = a_1 h^1 + a_2 h^2 V_t + a_3 h V_t^2 + a_4 V_t^3 + a_5 h^2 + a_6 h V_t + a_7 h + a_8 V_t \]

(25)

The result of least-square curve fitting is sensitive against to initial guess values. By reason of this, we found adequate initial guess values through trial and errors. Using least-square curve fitting function in MATLAB, we obtained following equations.

\[K_{p_1}(h, V_t) = -1.666 \times 10^{-11} h + 8.2528 \times 10^{-11} V_t^2 + 1.598 \times 10^{-11} V_t^3 + 1.5784 \times 10^{-12} h^2 + 9.2232 \times 10^{-13} V_t^2 + 2.2001 \times 10^{-12} V_t^3 \]

(26)

\[K_{p_2}(h, V_t) = -2.0003 \times 10^{-9} h + 9.9912 \times 10^{-10} V_t^2 + 1.5017 \times 10^{-11} V_t^3 + 1.5258 \times 10^{-12} h^2 + 8.4666 \times 10^{-13} V_t^2 + 2.0568 \times 10^{-12} V_t^3 \]

(27)

\[K_{d_1}(h, V_t) = -1.8839 \times 10^{-11} h + 9.0382 \times 10^{-12} V_t^2 + 1.5902 \times 10^{-11} V_t^3 + 1.5356 \times 10^{-12} h^2 + 9.3181 \times 10^{-13} V_t^2 + 2.2117 \times 10^{-12} V_t^3 \]

(28)

\[K_{d_2}(h, V_t) = -1.6537 \times 10^{-12} h + 1.0768 \times 10^{-13} V_t^2 + 1.5785 \times 10^{-13} V_t^3 + 1.7076 \times 10^{-14} h^2 + 1.3718 \times 10^{-14} V_t^2 + 2.5239 \times 10^{-14} V_t^3 \]

(29)

\[K_{i_{\theta_1}}(h, V_t) = -1.3718 \times 10^{-9} h + 5.947 \times 10^{-11} V_t^2 + 1.6998 \times 10^{-11} V_t^3 + 1.3823 \times 10^{-12} h^2 + 9.6391 \times 10^{-13} V_t^2 + 2.3387 \times 10^{-13} V_t^3 \]

(30)

\[K_{i_{\theta_2}}(h, V_t) = -1.1884 \times 10^{-9} h - 6.229 \times 10^{-11} V_t^2 + 6.4833 \times 10^{-11} V_t^3 + 4.8562 \times 10^{-12} h^2 + 5.0699 \times 10^{-12} V_t^2 + 6.0008 \times 10^{-12} V_t^3 \]

(31)

\[K_{i_{\phi_1}}(h, V_t) = 1.9906 \times 10^{-10} h - 9.5274 \times 10^{-11} V_t^2 - 2.3774 \times 10^{-11} V_t^3 - 1.5126 \times 10^{-12} h^2 + 8.4597 \times 10^{-13} V_t^2 + 2.0615 \times 10^{-12} V_t^3 \]

(32)

\[K_{i_{\phi_2}}(h, V_t) = 1.1131 \times 10^{-11} h - 1.924 \times 10^{-11} V_t^2 + 1.5339 \times 10^{-11} h^2 - 8.8578 \times 10^{-12} V_t^2 + 2.6321 \times 10^{-12} V_t^3 + 2.315 \times 10^{-12} V_t^4 + 5.8332 \times 10^{-13} h^2 + 5.6493 \times 10^{-13} V_t^2 \]

(33)

\[K_{a_1}(h, V_t) = 5.2964 \times 10^{-10} h - 1.4354 \times 10^{-10} V_t^2 + 7.4915 \times 10^{-11} h^2 - 5.41 \times 10^{-12} V_t^2 - 8.1385 \times 10^{-13} V_t^3 + 2.5224 \times 10^{-13} h^2 - 6.239 \times 10^{-13} V_t^2 - 0.00012684 V_t^3 \]

(34)

\[K_{a_2}(h, V_t) = -2.054 \times 10^{-9} h - 4.4949 \times 10^{-10} V_t^2 - 6.4489 \times 10^{-10} h^2 - 5.0088 \times 10^{-11} V_t^2 - 4.6548 \times 10^{-11} h^2 - 1.5645 \times 10^{-11} V_t^3 + 3.4554 \times 10^{-12} V_t^3 - 2.4443 \times 10^{-12} h^2 - 5.7034 \times 10^{-12} V_t^3 \]

(35)

To evaluate the results of least-square curve fitting, we execute them at other trim point, i.e. \(h = 16000 \text{ ft} \) and \(V_t = 560 \text{ ft/sec} \). All constraints related with HQ are satisfied except for Neal-Smith criterion and droopback time. They are given in Table 13. Besides, phase margin of altitude does not satisfy the design requirements, too.
Table 33. Analysis of robustness and HQ(curve fitting)

<table>
<thead>
<tr>
<th>Robustness</th>
<th>(h)</th>
<th>(V_t)</th>
<th>Inf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain Margin (dB)</td>
<td>6.0248</td>
<td>31.2982</td>
<td>78.7256</td>
</tr>
<tr>
<td>Phase Margin (deg)</td>
<td>0.2831</td>
<td>1.4967</td>
<td>9.4100</td>
</tr>
<tr>
<td>%Overshoot (%)</td>
<td>6.9700</td>
<td>7.1092</td>
<td>1.9200</td>
</tr>
<tr>
<td>Settling Time (sec)</td>
<td>2.6479</td>
<td>10.9402</td>
<td>12.3194</td>
</tr>
<tr>
<td>Handling Qualities</td>
<td>(\zeta_p)</td>
<td>(T_{db}) (sec)</td>
<td></td>
</tr>
<tr>
<td>Phugoid</td>
<td>0.5071</td>
<td>1.2095</td>
<td></td>
</tr>
<tr>
<td>Short-period</td>
<td>2.7616</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Mismatch</td>
<td>12.3194</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dropback</td>
<td>-13.9679</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Neal-Smith</td>
<td>-0.0127</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1.8924</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

5 Conclusions

We studied the optimization for flight control system with constraints supplemented HQ. Robustness of the result considering HQ is improved even if short-period damping ratio is decreased. Besides, HQ are satisfied.

In addition to the optimization, research about gain scheduling was executed. In case of performing optimization for several flight conditions, it is performed as many times as flight conditions. To solve this problem, we carried out the equation of each gain through least-square curve fitting. Although some gains obtained by curve fitting had large discrepancy compared with optimal gains, they satisfied all constraints related with handling qualities. By reason of this, we know that equations got through least-square curve fitting are able to use to calculate gains fast even if its performance is degraded.

A major drawback of the equation of each gain is the existence of difference between scheduled gain and optimal gain at the same trim point referred to obtain the equation. Besides, dissatisfaction of several requirements of robustness is existed. Furthermore, optimization considering handling qualities has a burden that is the computation time.

References

Copyright Statement

The authors confirm that they, and/or their company or institution, hold copyright on all of the original material included in their paper. They also confirm they have obtained permission, from the copyright holder of any third party material included in their paper, to publish it as part of their paper. The authors grant full permission for the publication and distribution of their paper as part of the ICAS2008 proceedings or as individual off-prints from the proceedings.