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Abstract  

The purpose of this work is to simulate several 

aeroelastic responses of an aircraft wing in the 

time domain in order to compare the influence 

of some numerical parameters. The main 

objective is to provide knowledge of using these 

parameters to increase accuracy with the 

minimum increase of computational effort on 

numerical flutter simulations. For the 

simulations proposed, a numerical model of a 

finite flexible wing is firstly developed and 

implemented computationally. 

The aeroelastic response is obtained in 

time domain as a result of the numeric 

integration of the motion equations of the 

structure. These equations represent the wing 

structural dynamics excited by aerodynamics 

non-stationary loads. The structure is modeled 

by Finite Element Method (using NASTRAN®), 

and the aerodynamics is modeled using non-

stationary vortex-lattice method (using 

FORTRAN90 language). The coupling of both 

models meshes is done using a surface spline 

method. 

The main parameters analyzed deal with 

the mesh and integration step. 

Conclusions indicate the best ways to 

improve aeroelastic model accuracy. 

1  Introduction 

Aeroelastic phenomena are characterized by the 

coupling of elastic, inertia and aerodynamic 

forces [11] [12]. Basically it relates structural 

flexibility with non-stationary aerodynamic 

flow [11]. 

With constant aircraft optimization, 

structures tend to be lighter, commonly leading 

to more flexibility, where flutter analysis 

becomes essential [11]. 

The flutter can be studied in frequency 

domain [13], where flutter critical speed can be 

determined with some accuracy, and in the time 

domain, where the aeroelastic response in time 

can be found [14]. 

Flutter numerical simulations demand a 

huge computational effort. This problem 

becomes more serious in time domain 

simulations. 

The proposed method to reduce 

computational effort is to determine which 

numerical parameters are critical, and what are 

their influences over simulation time. This work 

will provide information for future studies to 

balance in a convenient way the computational 

effort and the accuracy of results. 

The parameters analyzed are: mesh 

refinement spanwise and chordwise, wake 

length, wake model, integration step, and wing 

airfoil. 

The greatest accuracy can be achieved 

using the most refined mesh, with the maximum 

wake length, and minimum time interval, but, 

this model would be extremely slow to simulate. 

This work compiles lots of information useful to 

preview time spent on future aeroelastic 

simulations. 

2  The Numerical Model 

2.1 The Wing Simulated 

A real wing with experimental modal analysis 

data available [3] was taken as reference for this 

entire work. The wing is rectangular with a 

2.980m span and 0.220m chord, with no sweep 
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and no dihedral. Its structure is composed by a 

Styrofoam core, unidirectional carbon fiber span 

and a bi-directional kevlar shell [2]. The airfoil 

is a Selig S1223 [2] [10]. A material properties 

table and details of the finite element model 

used to represent wing structure can be found in 

reference [4]. 

The mathematical model to represent this 

wing is composed by: 

- A finite element structural mesh for 

modal analysis, adjusted to obtain the same 

natural frequencies as the experiment [3] [4]; 

- A vortex-lattice mesh for non-stationary 

aerodynamic analysis. 

2.2 Finite Element Structural Model 

The matrix equation used to describe the 

harmonic oscillatory motion, not excited and not 

damped, of a flexible linear structure [1] is 

given by: 

[ ] ( ){ } [ ] ( ){ } 0=+ txKtxM ɺɺ  (1) 

where: [ ]M  = Mass matrix; 

 [ ]K  = Elastic matrix; 

 ( ){ }tx  = Displacements vector, as xxxxx 

function of time. 

In case of a structure excited by forces { }F  

dependant on structure geometry, structure 

displacement velocity and time, equation (1) can 

be rewritten as: 

[ ] ( ){ } [ ] ( ){ } ( ) ( )( ){ }txtxtFtxKtxM ɺɺɺ ,,=+  (2) 

However, finite element models usually 

have a large number of degrees of freedom, 

what leads to a high order of [ ]M  and [ ]K . 

To simplify the model order the structure 

harmonic motion can be described as a linear 

composition of the natural modes. It is known 

that only the low frequencies are relevant. So, 

equation (2) becomes: 

( ){ } ( ){ } ( ) ( )( ){ }2 ˆ , ,
T

t t F t x t x tη ω η   + = Φ   
ɺɺ ɺ  (3) 

where: 2ω    = Matrix with the natural 

frequencies in the diagonal; 

 ( ){ }tη  = Modal displacement vector, as 

function of time. 

 [ ]T
Φ̂  = Matrix with one natural mode 

per row, which is the transposed of the classic 

eigenvalue solution [ ]Φ , normalized with 

respect to the inertia matrix according to: 

[ ][ ]
1

2

ˆ M
−

 Φ = Φ   (4) 

The transformation between ( ){ }tx  and 

( ){ }tη  is: 

( ){ } ( ){ }ˆx t tη = Φ   (5) 

( ){ } ( ){ }ˆx t tη = Φ 
ɺɺɺɺ  (6) 

2.3 Vortex-Lattice Aerodynamic Model 

The vortex-lattice method consists in divide the 

wing platform in several panels. Each panel has 

a closed vortex ring, respecting Helmholtz 

theorem [5]. 

 

Fig. 1 – The vortex-lattice panels, vortex ring and 

reference vectors. 

where: V∞

�
 = Free flow velocity; 

 b
�

 = Panel span; 

 L
�

 = Lift; 

 CP  = Control point. 

The lift of the wing is a composition of the 

lift of all panels. The equation used to calculate 

panel lift is obtained from Bernoulli equation 

[5] and prepared to be used in an iterative 

process [4] [6] as:  

( ) ( ) ( ) ( )
pn pn w

t t t
L t V b S N N

t
ρ ρ∞

Γ −Γ − ∆ 
= Γ × + ⋅ 

∆ 

�� � �  
(7) 

where: L  = Lift as a scalar number; 
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 ( )tΓ  = Vortex ring intensity (vorticity), 

as function of time; 

 
pn

S  = Panel area; 

 pnN
�

 = Unitary vector normal to panel 

plane; 

 wN
�

 = Unitary vector normal to wing 

plane. 

In order to solve the aerodynamic model, 

and find the components of all aerodynamic 

forces perpendicular to the wing, it is necessary 

to determine the vorticity distribution over the 

wing. 

In each control point of the aerodynamic 

model, the velocity induced by all vortex ring 

can be found imposing that the velocity 

component perpendicular to the wing should be 

zero to guarantee that there is no airflow 

crossing wing surface. The following equation 

is obtained: 

1 1

wing wake

i

n n

i i j j i pc ik

j k

N V N V V V∞
= =

 
⋅ Γ = − ⋅ + + 

 
∑ ∑
� � � � �

 (8) 

where: iN
�

 = Unitary vector normal to panel i ; 

 iΓ  = Vortex ring intensity of panel i ; 

 
ipcV
�

 = Control point velocity due to 

flexible motion of the structure; 

 i jV  = Induced velocity of o wing panel 

j  on the control point of panel i ; 

 i kV  = Induced velocity of a wake panel 

k  on the control point of panel i ; 

 wingn  = Number of panels in wing mesh; 

 waken  = Number of panels in wake mesh; 

Using equation (8) for all wing panels, a 

linear system is obtained. Its solution is the 

vorticity distribution. 

 

Fig. 2 – Kutta condition 

Kutta condition states that the intensity of 

the vortex at the trailing edge should be zero 

[7]. To satisfy Kutta condition each first panel 

of the wake must have the same intensity of the 

wing panel in front of it (Fig. 2).. 

The induced velocities i jV  and i kV  are 

calculated according to the Biot-Savart law [7] 

[5] (Fig. 3 and equation (9)). 

 

Fig. 3 – Biot-Savrat law, simplified to a 

straight vortex segment [5]. 

( )1 2 2
1 22

21 2
4

r r rr
V r r

r rr rπ

 ×Γ
= − ⋅ −  ×  

� � ��
� � �

� �� �  (9) 

The induced velocities i jV  and i kV  for the 

entire ring are just the sum of the induced 

velocities of each segment of the ring calculated 

with equation (9). 

2.4 Surface Spline Method for Coupling 

Meshes 

The coupling of aerodynamic and structural 

models is important, since the forces obtained in 

the aerodynamic mesh (equation (7)) should be 

used in equation (3), that is written in structural 

mesh. At the same time, the motion obtained on 

the solution of equation (3) should be 

transported to aerodynamic mesh to solve the 

load distribution (equations (7), (8) and (9)). 

The surface spline interpolation method [8] 

is very useful in this case. Interpolating the 

structural mesh to find the same mode shapes in 

aerodynamic mesh for control points and for 

vortex ring vertices, it is possible to do the 

following conversions [4] [6]: 

jΓ

jΓj kΓ = Γ

wake 

wing 

V
�

1r
� 2r

�

Γ

h

1β
2β

1

2
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{ } [ ]{ }a sz G z=  (10) 

{ } [ ]{ }a sz G z=ɺ ɺ  (11) 

{ } [ ] { }
T

s aF G F=  (12) 

where: { }z  = Vector of nodal displacements 

normal to the wing plane; 

 { }zɺ  = Vector of nodal velocities normal 

to the wing plane; 

 { }F  = Vector of forces normal do the 

wing plane; 

 s  = subscript relative to structural mesh; 

 a  = subscript relative to aerodynamic 

mesh; 

 [ ]G  = transformation matrix. The 

procedure to determine this matrix in found in 

references [4] [6] and [8]; 

Since the modal matrix is a matrix 

composed of several vectors of structural 

displacements, equation (3) can be rewritten as: 

( ){ } ( ){ } ( ) ( )( ){ }2 ˆ , ,
T

a a
t t F t x t x tη ω η   + = Φ   ɺɺ ɺ  (13) 

where: { }ˆ
T

aΦ  = transposed of the modal matrix 

written in coordinates of the control points of 

the aerodynamic mesh. 

2.5 Integration Method 

Finally, equation (13) can describe the physics 

of the aeroelastic model, relating aerodynamic 

forces and inertia forces. However, it can’t be 

solved analytically, since the vector { }aF , 

containing the forces, can’t be described as a 

mathematical equation. It is result of all the 

procedure described in section 2.3. 

A numerical integration is used to solve 

equation (13). The predictor-corrector method 

was used in form PECLE, described by Lambert 

[9], using the collection of methods Adams-

Bashforth for predictor step and Adams-

Moulton for corrector step [9] [4] [6]. This 

method is used solve first order differential 

equations. Therefore equation (13) should 

reduced to: 

( ) ( )( ){ }
1 2

2

2 1
ˆ , ,

T

a a

X X

X F t x t x t Xω

=

   = Φ −   

ɺ

ɺ ɺ

 (14) 

 

Fig. 4 – Predictor-corrector in form PECLE 

where: IT  = Iteration number; 

 X  = Left hand side of system equation 

(14); 

 f  = Right hand side of system equation 

(14). 

3  Simulations and Results 

The main objective of this work was to 

qualify, for the methods described in section 2, 

which are the most significant parameters to 

accuracy and computational effort. 

The results were organized in different 

sections, from 3.1 to 3.6. These parameters were 

not studied together to avoid mistaken 

conclusions. 

Results concerning time spent in 

computational simulation should be considered 

comparatively, since the absolute value is 

applicable only to a machine with the same 

specification of the computer where calculations 

were performed (AMD Athlon™ XP 2400+ 

2.00GHz, 512 Mb RAM). 

3.1 Integration step 

According to the simulations performed with 

different steps of time in the integration process, 

one can note (Fig. 5 and Fig. 6) that this 

parameter affects mostly the frequency of the 

harmonic motion. 

Prediction of 

( )X IT  

Calculation 

of ( )f IT  

Correction of 

( )X t  

Calculation 

of the error 

Calculation 

of ( )f IT  
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The error in frequency can be noted by the 

difference in phase at instant 0.3s (Fig. 5 and 

Fig. 6). 

If accuracy in frequency is not so important 

for the case studied, time step may be increased 

reducing computational effort. This effect is 

presented in Fig. 7. 

For these simulations, the following 

parameters were used: 

- flat plate airfoil 

- air density: 1.225kg/m
3
 

- wing angle of attack: 5º 

- speed: 100m/s 

- wake truncation length: 1.0m 

- simulation total time: 0.300s 

- number of panels chordwise: 8 

- number of panels spanwise: 13 

- wake model: flat 
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Fig. 5 – Behavior of 1
st
 bending mode for  

different integration steps. 
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Fig. 6 – Behavior of 1
st
 torsion mode for  

different integration steps. 
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Fig. 7 – Variation of computational time according  

to the integration step. 

 

3.2 Spanwise Refinement 

Several simulations were performed to compare 

the aeroelastic response in time for different 

spanwise refinements keeping 4 panels 

chordwise. 

The results can be seen in Fig. 8 and Fig. 9. 

One can note that all results are very close. A 

small difference is shown in the equilibrium 

value. 

The main conclusion is that the spanwise 

refinement has a small effect on the 

displacement of the deformed wing. However, 

increased mesh refinement comes at a 

considerably computational effortas may be 

seen from Fig. 10. 

For these simulations, the following 

parameters were used: 

- flat plate airfoil 

- air density: 1.225kg/m
3
 

- wing angle of attack: 5º 

- speed: 100m/s 

- wake truncation length: 1.0m 

- simulation total time: 0.300s 

- number of panels chordwise: 4 

- integration step: 0.0001s 

- wake model: flat 
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Fig. 8 – Behavior of 1
st
 bending mode for an  

aerodynamic mesh with 4 panels chordwise  

and different cases of spanwise refinement. 
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Fig. 9 – Behavior of 1
st
 torsion mode for an  

aerodynamic mesh with 4 panels chordwise  

and different cases of spanwise refinement. 
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Fig. 10 – Variation of computational time according  

to the mesh spanwise refinement. 

3.3 Chordwise Refinement 

Several simulations were performed to compare 

the aeroelastic response in time for different 

chordwise refinements keeping 13 panels 

spanwise. 

The results can be seen in Fig. 11 and Fig. 

12. One can note that for 8 and 10 panels 

chordwise, the response behavior is very close. 

As the number of panels chordwise 

increases, the accuracy of load distribution 

chordwise gets better. This affects directly the 

excitation of the torsion modes and 

consequently, the flutter phenomenon. 

Fig. 13 shows the time spent in these 

simulations. The behavior of computational 

effort is almost linear. 

The obvious conclusion is the importance 

of the chordwise refinement, since the linear 

variation of computational effort is not critical 

and the gain in accuracy with the refinement is 

very significant. 

For these simulations the following 

parameters were used: 

- flat plate airfoil 

- air density: 1.225kg/m
3
 

- wing angle of attack: 5º 

- speed: 100m/s 

- wake truncation length: 1.0m 

- simulation total time: 0.300s 

- number of panels spanwise: 13 

- integration step: 0.0001s 

- wake model: flat 
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Fig. 11 – Behavior of 1
st
 bending mode for an  

aerodynamic mesh with 13 panels spanwise  

and different cases of chordwise refinement. 
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Fig. 12 – Behavior of 1
st
 torsion mode for an  

aerodynamic mesh with 13 panels spanwise  

and different cases of chordwise refinement. 
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Fig. 13 – Variation of computational time according  

to the mesh chordwise refinement. 

3.4 Wake Length 

The wake is created along the simulation, and 

the first point created gets farther from the wing 

at each iteration. Considering that distant wake 

points does not affect the wing load, a 

truncation process was used to reduce the 

number of elements in the wake mesh. 

The complete wake, without any 

truncation, was used as reference to calculate 

the error in aeroelastic response for truncated 

cases. The parameter used to calculate the error 

is the value of the exponential behavior of the 

aeroelastic response. 

For a wake of only 4.0m (134.23% of 

span) the results are very close to the complete 

wake (22.5 m) 

Fig. 14 to Fig. 17 show the results 

obtained. Clearly, the wake truncation is a good 

option to enhance accuracy and reduction of 

computational effort. The model with a 4.0m 

truncated wake reaches solution in 4.56 hours, 

while the complete wake model spent 13.61 

hours with almost no gain in accuracy. 

For these simulations were used: 

- flat plate airfoil 

- air density: 1.225kg/m
3
 

- wing angle of attack: 5º 

- speed: 75m/s 

- simulation total time: 0.300s 

- number of panels chordwise: 8 

- number of panels spanwise: 13 

- integration step: 0.00008s 

- wake model: flat 
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Fig. 14 – Error on intensity of exponential  

behavior of the damped harmonic motion for the 1
st
  

bending mode, according to the wake length 
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Fig. 15 – Variation of computational  

time according to wake length 
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Fig. 16 – Behavior of 1
st
 bending mode for cases with 

complete wake (no truncation) and 4.0 meters wake. 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−3

time [s]

1
º 

to
rs

io
n

 m
o

d
e

complete wake
4,0m wake

 

Fig. 17 – Behavior of 1
st
 torsion mode for cases with 

complete wake (no truncation) and 4.0 meters wake. 

 

3.5 Wake Model 

Two types of wake models were studied. The 

first one was called “flat” wake. In this model 

the motion of the wake is determined only by 

the free flow speed. So, in a stationary 

simulation the wake geometry is flat. In non-

stationary simulation the geometry of the wake 

is a history of the trailing edge positions along 

time. 

The second model is called free wake. In 

this model the wake position is influenced by 

the velocity induced by all vortex rings of the 

model. This results in much more computational 

effort and has no advantage in terms of 

accuracy. The flat wake model reaches the 

solution in just 3.56 hours, while free wake 

model spent 89.06 hours with no significant 

changes in solution. The results can be seen in 

Fig. 18 and Fig. 19. 

For these simulations, the following 

parameters were used: 

- flat plate airfoil 

- air density: 1.225kg/m
3
 

- wing angle of attack: 5º 

- speed: 75m/s 

- wake truncation length: 4.0m 

- simulation total time: 0.150s 

- number of panels chordwise: 8 

- number of panels spanwise: 13 

- integration step: 0.00008s 
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Fig. 18 – Behavior of 1
st
 bending mode for  

cases with flat wake and free wake. 
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Fig. 19 – Behavior of 1
st
 torsion mode for  

cases with flat wake and free wake. 
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3.6 Use of Camber Line 

To study the influence of a more precise airfoil 

model, two cases were analyzed. The first one is 

a flat plate airfoil and the second is a camber 

line that results, at 5º angle of attack, the same 

lift and moment coefficients as the real wing 

airfoil (Selig S1223). 

Both cases were simulated below and 

above flutter critical speed (which is about 

70m/s). 

One can note, from Fig. 21 to Fig. 24, that 

the most important difference between both 

cases is that they oscillate around different 

positions for the same angle of attack. Adjusting 

the angle of attack of the flat plate to obtain the 

same lift as the cambered airfoil (Fig. 21), the 

torsion is still far from the correct response (Fig. 

22). It is not possible, using a flat plate, to get 

precise response for bending and moment at the 

same time. At high speeds (Fig. 23 and Fig. 24), 

bending is more coupled to torsion, which 

makes impossible a good adjustment for lift as 

in low speed case. 

The use of a camber line appears to be 

unnecessary to determination of flutter critical 

speed, but it is important to accuracy of the 

motion amplitude. The motion amplitude in 

bending and torsion affects several structural 

parameters requiring accuracy, therefore the use 

of a camber line shows to be a good option, with 

no increase of computational effort. 

For these simulations were used: 

- air density: 1.225kg/m
3
 

- wing angle of attack: 5º 

- speed: 75m/s 

- wake truncation length: 4.0m 

- simulation total time: 0.300s 

- number of panels chordwise: 8 

- number of panels spanwise: 13 

- integration step: 0.00008s 

- wake model: flat 
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Fig. 20 – Flat plate and camber line airfoils. This  

camber line results in 
L

C = 1.5094 and 
M

C  = -0.290  

at 5º angle of attack (same as Selig S1223) 
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Fig. 21 – Behavior of 1
st
 bending mode at 20.0m/s  

for cases with flat plate and camber line airfoils. 
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Fig. 22 – Behavior of 1
st
 torsion mode at 20.0m/s  

for cases with flat plate and camber line airfoils. 
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Fig. 23 – Behavior of 1
st
 bending mode at 75.0m/s  

for cases with flat plate and camber line airfoils. 
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Fig. 24 – Behavior of 1
st
 torsion mode at 75.0m/s  

for cases with flat plate and camber line airfoils. 

4  Conclusions 

This work presented a compilation of several 

time domain aeroelastic numeric simulations of 

a wing, relating numerical parameters to 

solution accuracy and computational effort. 

The main conclusions are: 

- Integration time step: affects the 

frequency of the solution harmonic motion. The 

data presented can help find the balance 

between accuracy for the response frequency 

and computational effort. 

- Spanwise refinement: does not show a 

significant advantage due to large increases in 

computational time for small improvements in 

aeroelastic response. 

- Chordwise refinement: is the most critical 

of the variables chosen. It affects significantly 

the behavior of the aeroelastic response. If a 

poor refinement is used, there is a risk of 

substantial error in the convergence/divergence 

characteristic of the response. 

- Wake length: the process of truncating 

the wake length leads to a significant gain in 

computational effort with no significant losses 

in accuracy. 

- Camber line airfoil: is a good option, 

since it does not increase computational effort 

and allow a better understanding of the 

aeroelastic response. 
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