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ted to allow efficient ballistic missiles 
, the paper describes a recently developed 
ted estimation/guidance design paradigm 
n several innovative concepts that provides 
satisfactory homing performance against 
ly maneuvering targets. The new paradigm 

veloped and tested first by using a simplified 
constant speed interception scenario model. 
 paper the integrated estimation/guidance 
m is validated by simulations of generic 

tmospheric theatre ballistic missile defense 
ption scenarios against two types of stressing 
 target maneuvers. 

oduction 

cally, guided interceptor missiles were 
ed against aircraft type targets, with clear 
and maneuverability advantage of the 
. Due to the vulnerability of an aircraft 
re, miss distances compatible with the 
radius of the missile warhead, were 
ible. Current warfare concepts involve 
terception of tactical ballistic missiles 
, attacking high value targets (probably 
nconventional warheads). Such scenario 
resented an extreme challenge to the 
 missile community. TBMs fly at very 
eeds and their atmospheric maneuvering 
al, which can be made useful by a modest 
al effort, is comparable to that of the 
ptors. Successful interception of a TBM 
s a small miss distance or  even a direct 
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hit.  Such accuracy against targets flying on 
ballistic trajectories was recently demonstrated 
[1-2]. However, recent studies indicated [3-4] 
that currently used guidance and estimation 
methods are unable to guarantee satisfactory 
guidance accuracy against highly maneuvering 
targets expected in the future.                        
 

All 'modern' missile guidance laws used 
at the present were developed based on a 
linearized kinematical model and a linear 
quadratic optimal control concept (with 
unbounded control). Thus, the limited maneuver 
potential of the interceptor has not been taken 
into account. These guidance laws have 
included the effects of non ideal dynamics of 
the guidance system and the contribution of 
target maneuvers in the 'generalized zero effort 
miss distance' and used a time varying gain 
schedule [5]. For the contribution of the target 
maneuvers, their current value and future 
evolution must be known. The information on 
the current target maneuver, since it cannot be 
directly measured, has to be obtained by an 
observer (since in effect the measurements are 
noise corrupted, by an estimator). For the future 
evolution in most cases, a constant target 
maneuver has been assumed. Theoretically, if 
the assumption on the target behavior is correct, 
the measurements are ideal and the lateral 
acceleration of the interceptor does not saturate, 
such a guidance law can reduce the miss 
distance to zero. In practice, if the 
interceptor/target maneuver ratio is sufficiently 
high, the inevitable saturation occurs only very 
near to the end and the resulting miss distance 
becomes negligibly small.  
 A multi-year investigation has been 
conducted at the Faculty of Aerospace 
Engineering of the Technion to identify and 
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correct the deficiencies of the conservative 
common practice in interceptor guidance law 
design. This investigation resulted in developing 
an integrated estimation/guidance design 
paradigm, based on several innovative concepts, 
providing robust satisfactory homing 
performance against randomly maneuvering 
targets. The ideas involved in the revolutionary 
design concept were developed and tested first 
by using a simplified linearized planar constant 
speed interception scenario model [6].  
The objective of this paper is to outline the 
concept and to report the validation of the 
integrated estimation/guidance algorithm in 
generic, but realistic 3D nonlinear endo-
atmospheric theatre ballistic missile defense 
scenarios against two types of the most stressing 
random target maneuvers. 
   
2. Problem Statement 
 
2.1 Scenario description 
 
Two scenarios of intercepting randomly 
maneuvering TBMs are considered. The first 
one is a three-dimensional endo-atmospheric 
ballistic missile defense (BMD) scenario with 
time-varying parameters (velocities and 
acceleration limits). Due to the complexity and 
the large number of variable parameters such a 
scenario is not convenient for developing and 
testing new ideas. For the sake of research 
efficiency (simplicity, repeatability and reduced 
computational load), a simplified planar 
constant speed model was used in the analytical 
development task. The more complex generic 
BMD scenario was used for validation. 
 In both scenarios, the homing endgame 
starts as the onboard seeker of the interceptor 
succeeds to “lock on” the target. The relative 
geometry is near a head-on engagement. It is 
assumed that at this moment the initial heading 
error, with respect to a collision course, is small 
and neither the interceptor nor the target is 
maneuvering. These assumptions allow the 
linearization of the interception geometry and 
the decoupling the three-dimensional equations 
of motion in two identical sets in perpendicular 
planes. 

 
2.2 Information structure 
 
It is assumed that the interceptor measures range 
and range-rate with good accuracy, allowing to 
compute the time-to-go. However, the 
measurements of the line of sight angle are 
corrupted by a zero mean white Gaussian 
angular noise. The interceptor’s own 
acceleration is accurately measured, but the 
target acceleration has to be estimated based on 
the available measurements. The target has no 
information on the interceptor, but, being aware 
of an interception attempt, it can start applying 
evasive maneuvers at any time, randomly 
changing the direction of the maneuver.  
 
2.3 Lethality model 
 
The objective of the interception is the 
destruction of the target. The probability of 
destroying the target is determined by the 
following simplified lethality function, 
 

 (1) 
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⎨
⎧
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P k
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where Rk is the lethal (kill) radius of the 
warhead and M is the miss distance.  
 
2.4 Performance index 
 
The natural (deterministic) cost function of the 
interception engagement is the miss distance. 
Due to the noisy measurements and the random 
target maneuvers, the miss distance is a random 
variable with an a priori unknown probability 
distribution function. Based on the lethality 
function (1), the efficiency of a guided missile 
strongly depends on the lethal radius Rk of its 
warhead. One of the possible figures of merit is 
the single shot kill probability (SSKP) for a 
given warhead, defined by  
    
     SSKP = E {Pd (Rk)}                                   (2) 
 
where E is the mathematical expectation taken 
over the entire set of noise samples against any 
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given feasible target maneuver. The objective of 
the guidance is to maximize this value. An 
alternative figure of merit is the smallest 
possible lethal radius Rk that guarantees a 
predetermined probability of success. In several 
recent studies [3, 4, 6] the required probability 
of success has been assumed as 0.95, yielding 
the following performance index 

   J = Rk = arg {SSKP = 0.95}                         (3) 

In addition to these two crisp measures a large 
number of Monte Carlo simulations can provide 
the cumulative probability distribution function 
of the miss distance for comparing the homing 
performances of different guidance systems. 
 
2.5 Equations of planar motion 
 
The analysis of a planar interception endgame is 
based on the following set of simplifying 
assumptions:  
(i) The engagement between the interceptor 
(pursuer) and the maneuvering target (evader) 
takes place in a plane. 
(ii) Both the interceptor and the maneuvering 
target have constant speeds Vj and bounded 
lateral accelerations |aj | < (aj)max  (j = E, P).  
(iii) The maneuvering dynamics of both 
vehicles can be approximated by first order 
transfer functions with time constants τP and τE , 
respectively. 
 (iv) The relative interception trajectory can be 
linearized with respect to the initial line of sight. 
 
In Fig. 1 a schematic view of the endgame 
geometry is shown.  The aspect angles φP and φE 
are small, so the approximations cos(φi) ≈ 1 and 
sin(φi) ≈ (φi), (i = P, E), are valid and coherent 
with assumption (iv). Based on these 
assumptions the final time of the interception 
can be computed for any given initial range R0 
of the endgame 

        tf  = R0 / (Vp+ VE),                                   (4) 

allowing to define the time-to-go by 
  
         tgo = tf  - t                                                (5) 
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Figure 1. Planar interception geometry 

 
The state vector in the equations of relative 
motion normal to the reference line is 

XT = (x1, x2, x3, x4) = (y, dy/dt, aE, aP) (6) 

where  

y(t) =
∆

 yE(t) - yP(t) (7) 

The corresponding equations of motion and the 
respective initial conditions are 

x1 = x2 ;             x1 (0) = 0                      (8) 

x2 = x3 - x4;           x2(0) = VE φE0 – VPφp0       (9)  

 = (ax3 E
c- x3 )/τE ;        x3(0) = 0                    (10) 

 = (ax4 P
c - x4 )/τP ;        x4(0) = 0           (11) 

where aE
c and aP

c are the commanded lateral 
accelerations of the target (evader) and the 
interceptor (pursuer) respectively.  

    aE
c = aE

max
  v;      |v| ≤ 1                   (12) 

    aP
c = aP

max
  u;      |u|≤1                     (13) 

The non zero initial conditions VE φE0 and VPφp0 
represent the respective initial velocity 
component not aligned with the initial 
(reference) line of sight. By assumption (iv) 
these components are small compared to the 
components along the line of sight.  
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 The set of equations (8)-(13) can be 
written in a compact form as a linear, time 
dependent, vector differential equation  

   = A(t) X + B(t) u + C(t) v                      (14) X
 
 The problem involves two non-
dimensional parameters of physical 
significance: the interceptor/target maximum 
maneuverability ratio 

 µ   (a
∆
= P)max

 /(aE)max                       (15) 
 
and the ratio of the target/interceptor time 
constants  

          ε  τ
∆
= E/τP                        (16) 

 
The miss distance (the deterministic cost 

function of the interception) can be written as 
  
          J = |DX(tf)| = |x1(tf)|                       (17) 
 
where  

 
      D = (1, 0, 0, 0)                        (18) 
 
2.6 Problem formulation 
  
There is a basic deficiency in formulating the 
interception of a maneuverable target as an 
optimal control problem. Since target 
maneuvers are independently controlled, future 
target maneuver time history (or strategy) 
cannot be predicted, the optimal control 
formulation is not appropriate. The scenario of 
intercepting a maneuverable target has to be 
formulated as a zero-sum differential game of 
pursuit-evasion. In such a formulation, there are 
two independent controllers and the cost 
function is minimized by one of them and 
maximized by the other. By using such 
formulation, several deterministic zero-sum 
pursuit-evasion game models were solved. 
These game solutions provided simultaneously 
the interceptor's guidance law (the optimal 
pursuer strategy), the "worst" target maneuver 
(the optimal evader strategy) and the resulting 
guaranteed miss distance (the saddle-point value 
of the game). Two optimal guidance laws based 

on perfect information linear game solutions 
with bounded controls are briefly described in 
the sequel. 
 
3 Game Optimal Guidance Laws 

 
3.1 DGL/1. 
 
The first perfect information model solved was 
of time invariant game parameters [7].  The set 
of assumptions   (i) – (iv) allowed casting the 
problem to the canonical form of linear games, 
from which a reduced order game with only a 
single state variable, the zero effort miss 
distance, denoted by Z, was obtained. As the 
independent variable of the problem, the time-
to-go (tgo), defined by (5), was selected. The 
solution of this game is determined by the two 
parameters µ and ε defined by (15) and (16). 
The explicit expression for Z is 
 

Z = x1 + x2 tgo  − ∆ZP + ∆ZE                (19) 
 

with 
  ∆ZP = x3 (τP)2 [exp( θP ) + θP -1]        (20) 
 
  ∆ZE = x4 (τE)2 [exp( θE) + θE - 1]      (21) 
 
where θP = tgo/τP and θE = tgo/τE.  
 The game solution results in the 
decomposition of the reduced space (tgo, Z) into 
two regions of different strategies, as it can be 
seen in Fig. 2. These regions are separated by 
the pair of optimal boundary trajectories 
denoted respectively by Z*+ and Z*-, reaching 
tangentially the Z = 0 axis at (tgo)s, where (tgo)s 
is the non zero root of the equation dZ/dtgo = 0. 
One of the regions is a regular one, denoted by 
D1, where the optimal strategies of the players 
are of the “bang-bang” type 
 
       u* = v* = sign {Z}   ∀ Z ≠ 0                  (22) 
 
u and v being the normalized  controls of the 
pursuer (interceptor) and the evader (the 
maneuvering target) respectively. The value of 
the game in this region is a unique function of 
the initial conditions. 
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Fig. 2. Decomposition of the reduced game 

space. 
 
The boundary trajec0tories themselves also 
belong to D1. Inside the other region, denoted 
by D0, the optimal strategies are arbitrary and 
the value of the game is constant, depending on 
the parameters of the game (µ, ε). If the 
parameters of the game are such that 
µε ≥ 1, then the only root of the equation dZ/dtgo 
= 0 is zero and the value of the game in D0 is 
also zero. Note that the “bang-bang” strategies 
(22) are also optimal in D0. 
 The practical interpretation of this game 
solution is the following: (i) the optimal missile 
guidance law can be selected as (22) during the 
entire end game; (ii) the worst target maneuver  
is a constant lateral acceleration starting not 
after (tgo)s; (iii) the guaranteed miss distance 
depends on the parameters (µ,ε) and can be 
made zero if µε ≥ 1. In this case, D0, which 
includes all initial conditions of practical 
importance, becomes the capture zone of this 
game. Implementation of the optimal missile 
guidance law, denoted as DGL/1, requires the 
perfect knowledge of the zero effort miss 
distance, which includes also the current lateral 
acceleration of the target.  
 
3.2 DGL/E. 
 
The second model is also a planar one, but with 
time varying velocities and maneuverabilities. 
In this perfect information game, assumption (ii) 
is replaced by assuming that profiles of these 
variables are known along a nominal trajectory. 
Such a model is suitable for the analysis of a 
realistic BMD scenario. The solution of this 
game [8], is qualitatively similar to the previous 

one, but depends strongly on the respective 
profiles of the velocity/maneuverability and 
obviously, the value of µ is not constant. Due to 
the time varying profiles, the expressions of the 
zero effort miss distance, as well as of (tgo)s and 
the guaranteed miss distance, become more 
complex. In spite of this (algebraic) complexity, 
the implementation of the optimal missile 
guidance law, denoted as DGL/E, doesn’t 
present essential difficulties, although it requires 
the velocity and maneuverability profiles in the 
endgame that can be precalculated along a 
nominal trajectory. 
 
3.3 Implementation with noisy measurements 
 
As already mentioned, the implementation of 
the perfect information guidance laws DGL/1 
and DGL/E requires the knowledge of the target 
lateral acceleration. Since this variable cannot 
be directly measured, it has to be estimated 
based on noise corrupted measurements. If the 
pursuer uses DGL/1, derived from the perfect 
information game solution [7], the evader can 
take advantage of the estimation delay and 
achieve a large miss distance by adequate 
optimal maneuvering [9], even if the game 
parameters are such that the guaranteed miss 
distance should be zero, as it is illustrated in 
Fig. 3.  
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Fig. 3. Homing performance of DGL/1 against 

“bang-bang” target maneuvers 
 
 This figure represents the average miss 
distance of 100 Monte Carlo simulation runs as 
a function of the timing of the reversal (switch) 
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in the target maneuver direction. The data used 
for these simulations are given in Table 1.  
 In the simulations DGL/1 with a typical 
Kalman filter augmented with a shaping filter 
was used. Such a shaping filter, driven by a zero 
mean white noise represents random target 
maneuvers [10]. The shaping filter selected for 
this case was based on an exponentially 
correlated acceleration (ECA) model, suggested 
by Singer [11]. Such a shaping filter has first 
order dynamics with two tuning parameters, the 
correlation time of the maneuver τs and the level 
of the assumed process noise, expressed by its 
standard deviation σs = aE

max/Cs. In this example 
the parameters of the shaping filter are τs = 1.5 
sec and Cs = 2.    
 

Table 1. Horizontal endgame parameters 
 

 
  

The main reason for the degraded 
homing performance is the inherent delay 
introduced by the convergence time of the 
estimation process. DGL/1 can correct the error 
created by the delay only if the change of the 
acceleration command occurs in the early part 
of the endgame. In this case sufficient time 
remains until intercept, the estimated 
acceleration converges and the guidance law 
receives reasonably accurate values of the zero- 

effort miss distance early enough to achieve 
good precision. 
 The value of the estimation delay can be 
reduced by increasing the bandwidth of the 
estimator, which can be done by selecting other 
tuning parameters of the shaping filter. In this 
case the large miss distances associated with 
acceleration command changes occurring in the 
last phase of the endgame, at the expense of less 
efficient filtering that will lead to increased 
residual estimation errors and larger miss 
distances for acceleration command changes 
occurring in the early part of the engagement. 
For an improved homing performance both the 
estimation delay and the variance have to be 
reduced. A single estimator cannot satisfy both 
requirements. 
 
4. Integrated Design Approach  

  
Parameter Value 

Interceptor velocity VP = 2300 m/sec 

Target velocity VE = 2700 m/sec 

Interceptor manuverability aP
max = 20 g 

Target  manuverability aE
max = 10 g 

Interceptor time constant  τP = 0.2 sec 

Target time constant  τE = 0.2 sec 

Initial endgame range R0 = 20 km 

Endgame duration  tf = 4 sec 

Measurement noise σang = 0.1 mrad 

Sampling rate f = 100 Hz 

4.1 Task separation 
 
Since no single estimator can satisfy the 
requirements of homing accuracy, the different 
tasks performed by a classical estimator, have to 
be separated and assigned to different elements. 
The main task is the estimation of the state 
variables (including the target acceleration) 
involved in the guidance law. This task can be 
performed by a narrow bandwidth filter, if the 
correct model of the target maneuver is 
available. Thus, the first task to be carried out is 
model identification, using a multiple model 
structure [12]. The filters for this task should be 
of large bandwidth, in order to complete the 
model identification as fast as possible. Two 
basic types of target maneuver models are 
considered, a piecewise constant one (including 
the most effective “bang-bang” type evasion) 
and a time varying periodical maneuver. 
 
4.2 Tuned estimators 
 
In an earlier paper [13] a multiple model 
estimator, where each model assumed a 
different timing of the direction reversal 
(switch) a “bang-bang” type maneuver, is 
described. Using such an estimator “tuned” to 
the correct switch eliminates the delay and 
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yields excellent homing performance as it can 
be seen in Fig. 4 for the case of (tgo)sw = 1.0 sec.  
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Fig. 4. Cumulative miss distance distribution 
with a perfectly “tuned” estimator 

 
 Even if the switch occurs shortly after 
the time anticipated by the estimator, good 
performance is obtained, as illustrated in Fig. 5 
as a function of ∆(tgo)sw, the difference between 
the “tuning time” of the estimator and the true 
value of (tgo)sw.  
 

∆(tgo)sw = (tgo)tune - (tgo)sw           (23) 
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Fig 5. Average miss distances with “tuned” 
estimators for “bang-bang” target maneuvers 

 
This figure shows small miss distances 

and a surprising robustness, allowing to use 
only very few “tuned” estimators for covering 
the range of interest. The estimators for this 
evaluation employ ECA shaping filters with a 
relatively large bandwidth (τs = 0.2 sec,   Cs = 
3.0). Assuming that the switch in the target 
acceleration command can be detected 
sufficiently fast, this robustness property and the 

results of Figs. 3 suggests to use against “bang-
bang” type maneuvers the an integrated logic 
based estimation/guidance strategy as a function 
of time-to-go. Until the identification of the 
target maneuver type, a narrow bandwidth 
estimator and a guidance law (DGL/0) not using 
target acceleration (without the term ∆ZE (21) in 
the expression (19) of the zero effort miss 
distance) are used. Once the direction of a 
constant maneuver has been identified, the 
guidance law is changed to DGL/1, preserving 
the same estimator. This estimator is kept until 
"critical" time-to-go (tgo = 1.6 sec in the present 
example) is reached, even if a jump in the 
direction of the target maneuver command is 
detected. For tgo ≤ 1.6 sec, as a jump has been 
detected the narrow bandwidth estimator is 
replaced by the nearest (earlier) “tuned” wide 
bandwidth version. Three estimators “tuned” for 
(tgo)sw = 1.6, 1.0, 0.5 sec, cover the range of 
interest in the present example. After “jump” 
detection, the active estimator remains 
unchanged. Since the estimation delay with a 
“tuned” estimator is negligible, the guidance 
law used with these estimators is DGL/1. 
 This new estimation/guidance concept 
was tested by extensive Monte Carlo 
simulations for every 0.1 sec of (tgo)sw within the 
4 sec duration of the benchmark endgame, using 
100 noise samples for each. The results, 
assuming ideal detection, are indeed excellent 
as shown in Fig. 6. Since an ideal detection of 
the jump in the direction of the target maneuver 
command is not feasible, the Monte Carlo 
simulations were repeated assuming small 
detection delays of 0.05 and 0.1 sec. The 
cumulative probability distributions of the miss 
distance for these two cases are also shown in 
Fig.6. A detection delay of 0.05 sec has only a 
minor effect, while a delay of 0.1 sec causes 
more important performance degradation, 
mainly for maneuver switches near to the end of 
the interception. These results strongly 
emphasize the need for a fast “jump detector”, 
which has to be developed, as an additional 
element of the corporate estimation system. Fig. 
6 also includes the results obtained in a recent 
conference paper [14], already using the ideas of 
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Fig. 6 Cumulative miss distance distributions 
with logic based “tuned” estimators 

 
4.3 Guidance law modifications 
 
It was observed that due to the detection delay 
and the remaining short time the interceptor is 
unable to reach its maximum lateral acceleration 
and correct the guidance error generated during 
the delay. This deficiency was corrected by 
increasing the lateral acceleration command for 
small values of time-to-go, when a maximum 
maneuver is needed due to the detected change 
of the target maneuver direction. The increase in 
the commanded acceleration gain is expressed 
for tgo ≤ (tgo)sw by  
 
 ( )

⎟
⎠
⎞

⎜
⎝
⎛−−

==

P

go

p
go

c
p

c
p tk

Za
ktaa

τexp1

sign
,

max              (24) 

  
The parameter k is selected to satisfy  
 

                              (25) ( ) max|,| Pfp akta =

 
Its value depends on (tgo)sw and the value of aP 
at that current time-to-go. The effect of this gain 
enhancement is shown in Fig. 7. 

Further improvement can be achieved by 
introducing a time varying dead in the DGL/1 
guidance law for the period when the “tuned” 
estimators are used.  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 The effect of gain enhancement 
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where Adz is the initial amplitude and bdz is 
exponential decay rate of the dead zone. This 
modification reduces the error that occurs 
during the detection delay as seen in Fig. 8.  
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Fig. 8 The effect of the dead zone. 

 
The dead zone is used only until the switch is 
detected. In the simulations the values of Adz = 
50 m and bdz = 1/sec were selected. The effect 
of the two improvements is clearly seen in Fig. 
9, summarizing different figures of merit for 
the homing performance in the interception 
endgame. 
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Fig. 9 Cumulative miss distance distributions 
with guidance law modifications 

 
 

4 Validation in 3-D 
 

4.1 Scenario Data  
  
The new logic based estimation/guidance 
strategy outlined above (with enhanced terminal 
gain and dead-zone) was validated in a generic 
three-dimensional endo-atmospheric BMD 
scenario, described in the sequel. It is an endo-
atmospheric interception scenario between 
altitudes of 20-30 km with an initial "lock-on" 
range of 20 km.  
 
 The target is a generic tactical ballistic 
missile with aerodynamic control, performing 
either spiral or horizontal bang-bang evasive 
maneuvers. It is assumed to be launched from 
the distance of 600 km on a minimum energy 
trajectory. It is characterized by a ballistic 
coefficient β=5000 kg/m2 and a trimmed lift-to-
drag ratio Λ = 2.6. Its velocity at reentry of an 
altitude of 150 km is Ve0= 1720 m/s with a 
flight path angle of γe0 = − 18o and a horizontal 
distance from target of 210 km.  
 
 The interceptor is generic two-stage 
solid rocket missile with a specific impulse of 
Isp = 250 sec and has two identical guidance 
channels for aerodynamic control (skid to turn). 
The propulsion, mass and aerodynamic data of 
the two stages are summarized in Table 2. 
 
 

 

Table 2. Interceptor data

 
tb 

[sec
] 

T 
[kN] 

m0 
[kg] 

SCD 
[m2] 

SCLma

x [m2] 

1st
 stage 6.5 229 1540 0.10 0.24 

2nd stage 13 103 781 0.05 0.20 
 
 It is assumed that the interceptor is 
launched in a point defense task precalculating 
the firing solutions for different interception 
altitudes. The ignition delay of the second stage 
is timed to guarantee interception with 
longitudinal acceleration and not decreasing 
maneuverability. The speed profiles for the 
interception altitudes are shown in Fig. 10. 
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Fig. 10 Interceptor velocity profiles 
 

 During the endgame the maneuverability 
of the target is monotonically increasing leading 
to a monotonically decreasing value of µ seen in 
Fig. 11. The time constants of the interceptor 
and the target, as well as the measurement noise 
and the sampling rate, are the same as in planar 
case summarized in Table 1. 
 
 
 
 
 

 
 
 
 
 

Fig. 11 Endgame maneuverability ratio 
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4.2 Simulation philosophy 
 
All the simulated endgame engagements had a 
slightly longer duration than 4 sec. The 
estimation and guidance strategy in these 
scenarios was based on the assumption that the 
reentering TBM can execute one of the 
following types of maneuvers: 
 
(1) Spiral (random phase) evasive maneuvers 
with unknown roll rate. 
(2) Horizontal bang-bang evasive maneuvers 
with randomly timed reversal. 
 
 Accordingly, the first second of the 
endgame is devoted to discriminate between the 
two maneuver types. During an additional 
second the roll rate range (for 1) or maneuver 
direction (for 2), as well as the magnitude, are 
estimated. Until target maneuver identification a 
narrow band estimator and a guidance law, both 
assuming no target maneuver, are used. If spiral 
maneuver is identified the closest periodical 
estimator is selected. If the identified maneuver 
is more or less constant (or varying slowly) the 
logic-based scheme developed for the planar 
case including the guidance law modifications 
are used. After target maneuver identification 
DGL/E with the output of the estimator is used.  
    
4.3 Simulation Results 
 
The validation effort is limited to the following 
cases: (i) homing accuracy against random 
horizontal bang-bang maneuvers (using the 
logic based scheme) at different interception 
altitudes; (ii) homing accuracy against spiral 
target maneuvers of different frequencies (p0), 
(using matched and unmatched periodical 
estimators) at the interception altitude of 25 km. 
Homing accuracy statistics, presented in the 
following figures, are expressed by the 
cumulative miss distance distributions based on 
1000 Monte Carlo simulation runs for each 
scenario, assuming Gaussian noise and uniform 
phase or reversal time (switch) distributions.  
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Fig. 12 Homing accuracy against random 
horizontal bang-bang maneuvers 

 
 
 

 
 
 
 
 
 
 
 
 
Fig. 13 Homing accuracy against random phase 

spiral maneuvers (matched periodical 
estimators) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 Homing accuracy against random phase 
spiral maneuvers (unmatched periodical 

estimators) 
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5 Conclusions 
 
The simulation results presented in the figures 
clearly confirm the validity of the integrated 
estimation/guidance approach, which was 
developed using a simplified planar constant 
speed model, in a generic, but realistic theatre 
ballistic missile defense scenario. The homing 
accuracy, using generic target and interceptor 
models, in a realistic three-dimensional 
interception scenario is similar to the accuracy 
found in the simplified planar model.  
 
 The simulations clearly demonstrated 
that the integrated estimation/guidance approach 
not only leads to a substantial homing accuracy 
improvement compared to earlier results but has 
also the potential to satisfy the "hit-to-kill" 
requirement against two types of stressing 
evasive target maneuvers.    
   
 The applicability of the new design 
approach is twofold: (i) upgrading the homing 
performance of existing interceptors without 
requiring hardware modifications; (ii) designing 
new cost effective interceptors with reduced 
hardware requirements.  
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