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Abstract 

This paper describes a method and an 
integrated environment for model based design, 
simulation and analysis of aircraft flight control 
systems. Design of flight control systems 
involves domain knowledge from several 
different disciplines such as mass & inertia, 
aerodynamics, hydraulics and electronics which 
requires a structured method as well as a 
powerful environment to succeed in the control 
system design. The core tool in this design 
environment is the model editor SystemBuild 
which is based on functional flow block 
diagrams. The presented method is illustrated 
using the development of the Gripen fighter 
aircraft flight control system as an example. 

1 Introduction 
Modeling and simulation are methods used to 
achieve high quality and cost-effectiveness in 
the design process for several of the subsystems 
that are part of a modern aircraft (a/c) [9], [11]. 

In the design of flight control systems for 
advanced fly-by-wire aircraft, several 
requirement sources set the boundaries of the 
design space, see Fig 1. Requirements are 
captured for different aspects as described by 
Pratt [11]. Examples are: 

• Handling qualities setting the basic 
maneuvering requirements. 

• Aircraft operation, structural loads and 
flight envelope. 

• Structure and aeroservoelasticity limiting 
the actuator speed at certain frequencies. 

• Equipment constraints. E.g. control stick 

• Mass, inertia and center of gravity taking 
fuel, payload and crew into account. 

• Hydraulic or electrical power limiting the 
total control authority. 

• Flight dynamics and nonlinear 
aerodynamics with uncertain properties 
in some regions. 

• System safety implying redundancy 
management with potential rapid mode 
changes. 

These requirements have to be considered 
during the whole product lifecycle, from 
conceptual and architectural design steps 
through every development phase to further 
sustained engineering work during operation. In 
this paper we focus on the environment for 
flight control system (FCS) software design and 
verification.  
 

 
 
Fig 1.  Requirement sources at control law design. 
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To be able to understand the different problem 
areas, how they interact and how changes in one 
area may affect other requirements, appropriate 
modeling and simulation techniques are 
necessary as described by Zipfel [17]. 

A basic air vehicle simulation model, 
representing an actual or a potential product, is 
typically composed of: 

• Pilot response model 
• Control laws and logic (software) 
• Controls for pilot inputs 
• HMI-system with information feedback 

through windows, panels or displays. 
• Actuators transforming information to 

position/energy/power 
• Sensors transforming position/energy/ 

power to information 
• A/c and surrounding (physical things) 

See Fig 2. 
 

 
Fig 2.  Basic model composition 
 
To develop and maintain the model and to work 
with analysis, design and verification in an 
efficient way, the whole environment content 
and configuration (computers, simulation tools, 
tools integration etc.) is important. Several 
teams add and maintain parts of the total model 
for completeness. The aerodynamics group 
update aero-data, the hydraulics group maintain 
their sub-model and so on. The avionics model 

consist of interfaces and the functions necessary 
only to integrate the flight control functions, 
while many of the tactical systems are omitted.  
We here mainly discuss control law design and 
the transition to software specification 
documentation and software implementation in 
the operational flight program (OFP) as 
described in [11] by Pratt. 

2 Development process  
Several different types of models can be used to 
describe the process of product development. 
The V-model is a popular way to illustrate 
development of systems, see Fig 3.  In Pratt [11] 
the V-model is used to describe the FCS 
development process. 
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Fig 3.  The V-model development process 
 
On the left side, definition, specification and 
modeling activities are performed, mainly 
without any real parts of the product available. 
On the right side integration and test activities, 
with real parts/articles are included. The V-
model tends to be rather top-down oriented, 
depending on the interpretation.  

Another systems development model is the 
two dimensional model with system lifecycle 
phases versus process activities with 
visualization according to RUP [7], here the 
process activities are adopted from EIC/ISO 
15288 [6] see Fig 4. 

For flight control systems, the system 
safety requirements have great impact on the 
development process. For hardware, the safety 
requirements imply an architecture with 
redundant parallel signal channels and multiple 
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3 Design Environment processors and need for coordination of mode 
changes and integrators. Asynchronous inter-
channel communication is not easily modeled, 
but is normally verified by test. This leads to 
thoroughly planned test facilities and test 
procedures. Process requirements on the 
software development work are elicited from 
RTCA/DO-178 [13]. This standard provides 
guidance for determining, in a consistent 
manner, that the software aspects of airborne 
systems and equipment comply with 
airworthiness requirements. 

A design environment usually consists of tools 
for calculation, simulation and plotting, and 
supporting tools for team communication, report 
generation, printing and change-/configuration 
control. Here we divide the environment in 
three main parts out of different focus in the 
engineering work. 

3.1 Design Environment Overview 
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The three different environments are illustrated 
in Fig 5. In the first environment, graphical 
design, aimed for building functional models, a 
notation suitable for control engineers is used. 
The developed sub-models are transformed by 
automatic code generation and integrated into 
the simulation environment where time domain 
analyses are performed.  

During transformation from the simulation 
model to the analysis and synthesis step, model 
reduction and linearization techniques are used. 
Each environment will here be described along 
with the methods developed to enable transition 
between the environments. 

Fig 4.  Process activities during product lifecycle 3.2 Graphical design environment  
When the architecture is stable and the product 
is ready for test/usage, a relevant model to 
describe the work is as a change-driven process. 
For software implementation the different 
changes due to new features or known problems 
are best handled in iterations, by change tasks, 
which is further discussed in chapter 5. 

Function flow block diagrams (FFBD) and data 
flow diagrams (DFD) are modeled in a 
graphical editor based on the SystemBuild tool 
[15]. It contains signal flow elements, for 
example gains, multipliers and filters, but also 
different kinds of logical constructs such as 
switches and state machines.  

For flight control law development, great 
flexibility is required to allow rapid design 
iterations, and the work may be accomplished in 
a less formal way as stated in Pratt [11]. 

Building or extending a model is done by 
selecting blocks from a predefined library of 
verified functions.  
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Fig 5.  Illustration of the three environments including transitions for aircraft control system design 
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In practice it is usual drag and drop editing from 
a palette and connecting the blocks with arrows 
representing signals. The palette is structured by 
functionality group, for example all filters are 
grouped together. When using a specific block 
in the model, it is instantiated by choosing 
parameter values. Beside a signal name, every 
output signal may also be assigned a unit and a 
description. An example of connected blocks is 
shown in Fig 6. 
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Fig 6.  Example of blocks from modeling library  
 
The layout of the blocks is made to be easily 
understood by control engineers, with a time-
continuous representation, when appropriate. 
The implementation of underlying functions is 
however made with time-discrete techniques, 
for example with bilinear transformation (BLT) 
see Stevens and Lewis [16]. When a specific 
design is to be analyzed in continuous time in 
the environment, a transformation is performed 
called “inverse sampling”. 

From the graphical design environment, 
the actual design is transferred both to 
simulators and to software implementation via 
automatic code generation and via automated 
documentation based on diagram printouts. This 
principle of “single electronic source” gives 
consistency of the information package 
containing requirements, graphical design, 
textual design and implementation. 

 

3.3 Simulation environment 
There are different types of simulation facilities: 

• Desktop control simulation tools for 
offline (non real time) batch simulations. 

• Handling qualities, software based, 
simulator with pilot in the loop. 

• System simulator (rig) with a large 
extent of target hardware and other 
product-equivalent equipment present. 

 
A picture of a handing quality type simulator is 
shown in Fig 7. 

 
Fig 7.  Handling quality type simulator “Styrsim” 

3.3.1 Model development 
The main modeling technique for simulation 
models within the control engineering domain is 
the input/output oriented explicit continuous 
time state-space representation (1) based on 
Ordinary Differential Equation (ODE) with time 
as the independent variable, where x is the state 
of the system model, u is input and y is output.  
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Initial condition (2) depends all on u0 and x0.  
The simulator environments are built up from 
other information beside the software based 
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functionality produced in the graphical design 
environment. Important sources for the sub-
models are the mass & inertia, aerodynamic 
data and characteristics of a/c sub-systems such 
as fuel-system and hydraulic-system. Those 
sub-systems are built from a mix of physical 
components (pumps, pipes, valves and so on) 
and logical components (control unit). For 
development of models representing those 
physical sub-systems, desktop vehicle-system 
simulation tools based on the power-port 
technique are used for analysis of system 
behavior and verification. Basic equations for 
this type of modeling are of the Differential 
Algebraic Equation (DAE) type (3), a 
generalized ODE that is relation oriented. 

0),,,( =yxxuf &  (3) 

This method and how it is used in 
development of the Gripen a/c is further 
described in Gavel et al [3] and Lantto et al [9]. 

3.3.2 Execution of simulations 
Batch analyses are performed by running the 
simulation model in a specified envelop of 
operating points. This is done by giving initial 
operating points and a number of inputs for the 
dynamic simulation at every operating point. A 
multidimensional matrix is created with selected 
values of speed, altitude and fuel content as well 
as a range of a/c subtypes, payload 
configurations and pilot inputs. It is also 
possible to introduce h/w failures, in the steady 
state solution, or at arbitrary time during the 
dynamic simulation. 

In batch simulations, the pilot stick 
commands in pitch, roll and yaw are varied to 
find the most severe pilot command 
combination in each flight condition and for 
different payloads. An example of pilot 
command combination is shown in Fig 8. 

The efficiency of batch simulations highly 
depends on consumed time for getting the 
stationary operating point (trimming the initial 
condition) in advance of each dynamic 
simulation. One way of increasing the efficiency 
during this part of the work is to calculate and 
save a library with steady state solutions in 
advance. States (x0p) and inputs (u0p) are needed 

for all operating points, p, and these are used to 
initiate the simulation model from the library.  

 
Fig 8.  Pilot command combination example 
 
Each payload combination is normally 
simulated with over 10000 variations in 
maneuvers and flight conditions. A graphical 
user interface is used to plot all the extreme 
values from the batch simulations. The extreme 
values are connected to the maneuver, see Fig 9.   

 
Fig 9.  The desktop batch procedure. 
 

3.3.3 Simulation analysis and visualization 
The analysis of simulation results require a great 
deal of post processing, for example plotting, 
comparison between baseline and the current 
design (two iterations in the process) and 
summarizing of results.  

Each batch simulated maneuver is 
evaluated with Matlab based scripts. An 
evaluation script finds maximum angle-of-
attack, angle-of-sideslip, load factor, structural 
loads and maximum control surface deflections.  

5  



ANDERSSON, SUNDQVIST  

When the analysis has been completed, the 
simulation starts with the next maneuver.        
An example plot of a single simulation at one 
operating point in the envelop is shown in      
Fig 10.   
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Fig 10.  Example of performance verification plot  
 
Visualization of batches of simulated data is 
done by summary plots for good overview. 
Results from all operating points (height, speed) 
for one a/c type and one payload combination is 
summarized together with information of the 
limits, for example Handling Quality limits, see 
Fig 11. 

3.3.4 Model verification 
When developing systems in a model based 
approach, quality of the models is crucial. 
Confidence that the models are reliable and 
knowledge what the weaknesses are must be 
kept high within the product team.  

Supporting tools are needed for data 
handling when comparing data between models, 
real systems, rigs and simpler simulation tools. 
A part of the model verification is performed by 
comparing simulation results with measured 
data from an instrumented a/c.  
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Fig 11.  Example of verification summary plot 
 
From the simulation environment, the actual 
control design, as well as relevant parts of the 
physical model, is transferred to the linear 
synthesis and analysis environment via model 
reduction and linearization. 

3.4 Analysis and synthesis environment 
Within the control design, a lot of the work is 
carried out in the frequency domain. The main 
input for many design methods is a linear model 
of the system. A standard representation is to 
use the linear continuous-time state-space model 
with the four real constant matrices A, B, C and 
D building a linear dynamic mathematical 
model (4). 
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To get a linear model representing the essential 
dynamics for the control problem, sufficient 
level of fidelity, and not more, is desirable. For 
reduction of complexity, division into 
uncoupled longitudinal axes and lateral axes 
models is a standard method that can be found 
in for example Stevens and Lewis [16]. 
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Other inputs needed for closed loop analysis are 
the values for gains and time constants in the 
controller. These are captured at the same time 
as the dynamics of the physical system. Every 
operating point of the system has its own set of 
controller and linear model values. Parametric 
variation for analysis and optimization is 
performed with data from the simulation 
environment. 

4 Transition between environments 
For stringent and safe transition of information, 
supporting tools are developed, so the transition 
is partly automated. Unique aspects have to be 
considered during transition from graphical to 
simulation environment as well as from 
simulation to analysis environment as described 
below.  

4.1 From graphic modeling environment to 
simulation environment 

Transition from the graphic modeling 
environment to the simulation environment is 
done by code generation, compilation, linking 
and integration of the actual module into the 
simulation tool. As this is repetitive routine 
work, industries have developed several 
automatic code generators. For the control 
engineering domain the following code 
generating tools may be mentioned; 

• BEACON by General Electric [12] 
• HOSTESS by Daimler Aerospace [8] 
• Matlab/Simulink  
• MATRIXx/SytemBuild [15] 
• SAO by Aerospatiale [1] 
• SCADE by Esterel [4] 

The same code generator may be used to 
produce simulation code, as well as embedded 
(target) code for the flight control computer. For 
target code, a qualified code generator will 
dramatically reduce the work of software 
verification, code review and test.  

There are certain requirements on the code 
for efficient use during simulations: 

• Unit and description of signals and states 
shall be transferred, from the model, in 

order to be available during simulation 
and analysis 

• The code shall be possible to initiate to 
arbitrary values from the simulation 
environment, that is, setting of the states 
and inputs (2). 

4.2 From simulation environment to analysis 
& synthesis environment 

Transition from the simulation environment to 
the analysis and synthesis environment is 
achieved in an automated way. The model is 
reduced by finding the linear dependencies 
between states, input- and output signals in 
order to extract a linear model (ABCD-matrices), 
(4) as well as the needed controller values.  

Model reduction is usually needed because 
the simulation model has higher order dynamics 
and several states not relevant for analysis made 
with the linear model. Every operating point of 
the nonlinear system has its own set of ABCD-
matrices (4), and reduction of matrices is 
performed by a tool. The automation enables a 
rapid and reliable transition to the analysis and 
synthesis environment for further work in the 
frequency domain. 

5 Change control 
In addition to the actual configuration items, the 
change control mechanism is built on a number 
of information objects (classes). For every new 
need/feature or known problem a Problem 
Report (PR) is defined. A list of pending PRs is 
used for prioritizing issues and planning of new 
editions as well as for stating remaining 
problems at release (status reporting).   

A Change Request (CR) defines the change 
in a was/is context. Integration of modeling and 
configuration tools is made so that new, 
changed or deleted model elements are 
highlighted to simplify the review of each CR. 
All affected configuration items are listed, 
hardware, software and/or documents.  
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Every new edition of the operational flight 
program is defined by an Edition Definition 
(ED). It contains purpose of the edition and the 
included changes listed by CRs together with 
their associated PRs. Relations between these 
classes are shown in Fig 12. 

 

 
 
Fig 12.  Information model of change control in UML  
 
Problems and changes in the development 
environment are handled in the same principle 
manner, but in another system. The environment 
itself is defined as an Enabling Product 
according to ANSI/EIA-632 [2].  

In addition to change control, the 
subsystem is under configuration control, 
including identification, lifecycle definition, 
version handling, baselining and document 
control. These activities are not described here, 
but further reading in the application of Gripen 
development is available in Hangvar and 
Hübinette [5]. 

6 Verification 
Verification activities are performed at different 
levels according to the V-model: 

• Functional verification 
• Software test/verification 
• System test/verification 
• Flight test 

Out of the over 10000 batch simulated 
maneuvers described in chapter 3.3 there is a 
selection. For each payload combination 
approximately 40 of the most severe and critical 
maneuvers are selected for the pilot in the loop 
simulation and flight test. 
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6.1 Verification of control law functions 
The verification activities are defined in a 
verification program. If the results from the 
verification test with pilot deviates from the 
specified results, a Verification Discrepancy 
Report (VAR) is written. The VARs are 
processed in a VAR meeting with designers, test 
conductors and pilots. If a reported problem 
requires further changes to be solved, this will 
be agreed upon, performed, and then retested. 
When the verification is finished, a verification 
report is issued, which is used as a platform for 
the decision of the final software freeze at the 
configuration board. 

6.2 Software verification 
Formal software test and verification is made 
based on configuration freeze. Different levels 
of code review are made depending on actual 
process requirements and amount of code 
automatically generated. One efficient method 
of software verification is to compare target 
code with generated simulator code. 

6.3 System verification 

This activity is mainly performed in a system 
simulator (rig) with product-equivalent 
computers and other equipment in the loop. 
When verifying multi-channel systems, a 
drawback with this model-based method is that 
all inter-channel behavior/aspects and bus 
communication has to be separately tested, in a 
rig with target software, in parallel to the model-
based functional verification. 

7 Examples from the Gripen a/c 
Two examples from development of the Gripen 
flight control system are described here, one 
control law oriented function and one in the 
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field of flight data and navigation, but 
implemented in the flight control system 
software. 

7.1 Rate limiter with phase compensation 
The rate limiters in the Gripen FCS are phase 
compensated resulting in small time delay 
effects compared to conventional rate limiters, 
according to Saab patent [14]. Briefly, the 
limiter works as follows, see Fig 13. 

When the rate of change of the input signal 
u is greater than the rate limit, the output y 
increases at a smaller rate than u and then the 
feedback signal e becomes negative. The output 
of the lag filter x will then also become negative 
and thus reduce the input signal to the rate 
limiter. If the input u reverses direction the 
output y will almost immediately reverse 
direction too, i.e. less phase shift is obtained. 
 

 
 
Fig 13.  Phase compensated rate limiter 
 
Implementation of the phase compensated rate 
limiter in the graphical design environment is 
viewed in Fig 6. 

As presented in this paper, the Gripen 
design is transferred via automatic code 
generation to simulation environments where 
analysis and verification by simulation is 
performed. Analysis in the frequency domain is 
also made when appropriate. These tools and 
methods are part of the process and are used in a 
suitable extent for every increment depending 
on the type and scope of changes included. 

 
 

7.2 Extended Kalman filter  
In later versions of Gripen, the mechanical 
artificial horizon is replaced by a computer 
calculated attitude and heading, independent of 
the inertial navigation system (INS). The system 
is called Synthetic Attitude and Heading 
Reference System (SAHRS) and uses data from 
sensors already existing in the a/c. The sensor 
information used is a three-axis magnetic 
detector, true airspeed, angle of attack, 
barometric altitude, flight control rate gyros and 
load factor. The sensor data is fused together in 
an Extended Kalman Filter. Each sensor by 
itself is of relatively poor quality. For instance, 
the accuracy of the rate gyros is in the order of 
degrees per second, rather than degrees per hour 
as is the case in gyros dedicated for navigation 
use. However, when all data are combined, they 
provide an attitude and heading estimate with 
sufficient quality for its purpose; to cross-
monitor the INS, and to serve as a backup in 
case the INS fails or data can not be displayed.  

Examples of useful graphical modeling 
elements used within SAHRS are matrix 
multiplications, matrix inverse transformations 
and matrix transpose functions. SAHRS is 
published by Lundberg et. al. in [10] and is a 
Saab patent. 

8 Discussion and Conclusions 
The presented method and integrated tools form 
an efficient environment for rapid design and 
analysis of aircraft control systems. Focus is on 
the requirements for each separate part of the 
engineering environment together with the 
automated transitions.  
Advantages with the described environment: 

• Development in an analysis tool which 
supports design and instant analysis. 

• Standardized appearance with use of a 
palette and underlying library functions. 

• Code generation at the time of 
development: conformity between design 
and functionality, more rapid 
prototyping, possibility for early 
verification in desktop simulator. 

• Automatic generation of documentation. 
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• Review of code and documentation is 
reduced. 

• Automatic model reduction, 
simplification and “inverse-sampling”. 

• Integrated version management and 
configuration control. 

 
Disadvantages identified with the described 
process and environments: 

• The development is more frequently 
done in a single channel system. Effects 
which are results of inter channel 
communication might be discovered late 
in the development. 

• The natural communication between 
developer and implementer of the code is 
reduced. An important resource may thus 
be bi-passed during the early 
development stage.  

• The documentation is considered to be 
hard to read for people without prior 
experience of the tool. 

 
Further research and development is proposed 
in the area of asynchronous simulation to handle 
not only single channel analysis.  

Another area is integrated component 
based hardware modeling and object oriented 
software modeling with more stringent reuse of 
classes between the two domains, preferably 
with use of SysML notation. 
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