
25TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES 
 

1 

 
 
Abstract  

The wind tunnel test was carried out with great 
care obtaining successfully limited numbers of 
LCO data at dynamic pressures above the open 
loop flutter point. After confirming a flutter 
dynamic pressure of the controlled wing, we 
tried to excite the wing by a leading edge 
control surface oscillation at three different 
dynamic pressures in between the open and the 
closed loop flutter dynamic pressure. Even 
though the control might have lost the 
effectiveness due to large amplitude of LCO and 
resulting amplitude might have broken the wing 
seriously, we have succeeded in getting smaller 
amplitude of LCO. Adjusting the mathematical 
model to new wind tunnel test data, the model 
could predict the closed loop bifurcation that 
shows good correspondence to the test data. 

1  Introduction 
In transonic regions, flutter often takes the 

form of a limit cycle oscillation (LCO) caused 
by the nonlinear behavior of the transonic 
aerodynamics due to a shock wave moving on 
the wing surface coupled with the flow 
separation [1]-[3]. The present authors have 
developed a nonlinear mathematical model that 
can explain the most of the bifurcation 
characteristics observed in the series of 
transonic wind tunnel tests executed at the 
National Aerospace Laboratory in Japan (NAL, 
now Japan Aerospace Exploration Agency 
(JAXA)) for a high aspect ratio wing model [4].  

An efficient method to increase the flutter 
velocity in the transonic region may contribute 
greatly to aircraft performance because in this 

region there is a phenomenon known as a 
transonic dip where the flutter velocity drops 
significantly against a flight Mach number [5]. 
Active control technology of flutter is one of the 
most promising technologies that enable to 
increase the flutter velocity without 
performance penalty. The present authors 
proposed a practical control law design method 
that produces a robust controller against the 
model uncertainty [6]. 

Bifurcation diagram of transonic flutter, 
either observed in the wind tunnel tests or 
predicted by the mathematical model, is 
classified as a subcritical Hopf bifurcation type, 
which means that the LCO type flutter may 
occur at lower dynamic pressure than the 
nominal flutter, by more than 10 % [7]. 

The present authors also developed the 
analytical method for the closed loop 
bifurcation characteristics using a continuation 
method [7]. However, we didn’t have any 
experimental data that confirm the analytical 
prediction of the bifurcation diagram. We then 
have made planning to add one more wind 
tunnel test at the transonic wind tunnel at JAXA 
on April 2005. 

2 Limit Cycle Oscillations and Bifurcation 
for Transonic Flutter Observed in Wind 
Tunnel Tests 

Figure 1 shows a wind tunnel model of a 
high aspect ratio wing. It has a leading edge- 
and a trailing edge-control surface (shown as 
hatching parts). They are used for active flutter 
control research [6]. The wing has an enlarged 
middle part where two sets of electric motors 
for control are installed. For LCO investigation 
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Fig. 1 High aspect ratio wing model 

Fig. 2 Time history of nominal flutter
occurrence during the increase of the wind
tunnel pressure. 

Fig. 3 Quasi-steady decrease of the dynamic 
pressure at the saddle-node bifurcation 

in the wind tunnel tests, a leading edge control 
surface is used as a source of excitation and 
wing response is measured by four 
accelerometers and seven sets of torsion and 
bending strain gages, which are fixed along an 
aluminum spar of the wing. 

In the series of wind tunnel experiments at 
the transonic wind tunnel of the National 
Aerospace Laboratory in Japan, it was turned 
out that this wing behaves a typical transonic 
flutter. The wing has a minimum dynamic 
pressure at a transonic region (known as 
transonic dip phenomena) and every flutter has 

the form of LCO. In each flutter, when the 
tunnel pressure is increased as shown at the 
bottom time chart in Fig. 2 as a typical case of 
Mach 0.8, the wing jumps up to LCO at a 
specified (nominal) dynamic pressure as shown 
at the top chart in the figure. (Since this figure 
shows the active flutter test result [6], the LCO 
flutter is stopped right after its occurrence by 
activating a trailing edge control surface as 
shown at the middle chart.) Successive 
investigation cleared that, even at lower 
dynamic pressure than the nominal pressure 
stated above, the wing can be brought into LCO 
state if it’s excited above a certain energy level. 
Once LCO state is attained, it is kept continuing 
even after removing the excitation. LCO thus 
attained is stabilized again if the tunnel pressure 
is further decreased. These phenomena are 
presented in Fig. 3 where the LCO is established 
by a leading edge excitation as shown at the 
middle chart in this case, and continues to 
oscillate even after removing the excitation. 
Then LCO continues to oscillate during the 
quasi-steady decrease of the wind tunnel 
pressure until it ceases to rest at a certain value 
of the pressure. That point corresponds to a 
saddle-node bifurcation. 

Figure 4 summarizes these phenomena 
found in the tests as a bifurcation diagram 
where the LCO amplitude is depicted against 
the dynamic pressure. In this figure the stability 
boundary, or unstable limit cycle expressed by 
the crosses, has a deviation and the stable region 
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Fig. 4 Bifurcation diagram obtained from 
1997 wind tunnel test 

under the boundary is rather narrow. 
Disturbances around the wing such as 
turbulence in the wind tunnel flow, the flow 
separation occurred at the wing surface, etc., 
may decrease the stable region in the 
experimentally obtained diagram. 
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3  Nonlinear Mathematical Model for 
Transonic Flutter and Open Loop 
Bifurcation 

The authors et al. have developed a 
nonlinear mathematical model in the form of 2-
DOF, finite state nonlinear differential equation 
introducing the fourth order nonlinearity to the 
generalized aerodynamic damping terms [8]. 
Extending to four modes, we have obtained the 
following 14th order nonlinear differential 
equation, with a system noise w(t) included, 
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where q is the generalized coordinates and r is 
the augmented variable expressing the unsteady 
aerodynamic delay. A, B, G are linear and 
ordinary part of the system matrices for flutter 
analysis as shown below. 
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where, 
),AK(MA qq 21 −−= , { }δδδ += 22 AKSMA q  

)AB(MA qcq 13 −−= , { }δδδ += 14 ACSMA q  

qMA =5                                                  (3)  
and 

1
0

−−= )AM(M qq  

)AS(S δδ −= 0
 (4) 

In the above equations, M, C, and K are mass, 
structural damping, and stiffness matrices, 
respectively, while A2, A1, A0, B0 and Λ 
comprise the finite state aerodynamic model. 
The matrix ∆ANL in eq. (1) represents a 
nonlinear terms and has the following form. 
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Fig. 5 Analytical bifurcation diagram based on 
1997 wind tunnel test 

where (1, 1) element is the aerodynamic 
damping coefficients for bending deflection. 

In order to make comparison of the 
mathematical model with the test results, an 
output equation that relates the state variables in 
Eq. (1) with the output variables measured in 
the wind tunnel tests is necessary. Since two 
sets of measured and derived variables, 
acceleration a1, a2, velocity v1, v2 and 
deflection d d1 2, at two accelerometer positions 
on the wing are enough for comparison, the 
output equation will take the form, with v(t) 
denoting a measurement noise, 

( )
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As for the two coefficients, C and D in the 
above equation, reader can refer Ref. [10]. A set 
of equations (1) and (7) comprises the nonlinear 
mathematical model for transonic flutter. 

Christiansen and Lehn-Schiøler have 
applied the continuation method to the nonlinear 
mathematical model of Ref. [8] modifying a 
computer program package of the method [11 - 
12]. The package features a fourth order Runge-
Kutta integrator with fixed size which is capable 
of making analysis of limit cycles using 
Poincaré sections as the control parameter 
(dynamic pressure in the present case) is 
continuously changing. The continuation 
method can thus trace continuously the Poincaré 
section, even through the unstable limit cycle 
branch, once at the initial stage LCO amplitude 

has been captured. They could obtain the 
smooth curve in the bifurcation diagram. 

Making use of the continuation method for 
the optimum combination of parameters, we 
have reached the values of β = -1.05e-1 and γ = 
4.5e-3. Resulting bifurcation diagram is shown 
as a solid line in Fig. 5. In the figure 
experimental data are also plotted. The 
correspondence of the LCO between the math 
model and the experiment is quite good; the 
amplitude of LCO is almost identical and the 
position of the saddle-node bifurcation is 
exactly the same. There still remains a 
difference in unstable limit cycle; the 
mathematical model has a wide stable area 
under the unstable limit cycle, while the 
experimental data shows a limited region of 
stability. As stated earlier, the main reason of 
this discrepancy may exist in the noise effects. 
In real situation, even at the stable region 
disturbance may energize the wing to jump up 
to unstable region and push the wing to LCO 
state. 

4 Robust Controller for Flutter Suppression 
and Closed Loop Bifurcation Diagram 

4.1 Robust Controller Design 
Robust stability control design based on left 

coprime factors approach [13] was applied to 
this wing model and the reduced order 
controller was obtained by the residualization 
method yielding control laws with a certain 
level of robustness [13]. 

With the expression of the nominal plant 
model P(s) in a normalized left coprime 
factorisation, 

)()(),,,()( 1 sNsMDCBAsP −==  (8) 

the uncertainties in the plant can be represented 
in terms of additive stable 
perturbations NM ∆∆ , to the factors in a coprime 
factorization of the plant as, 

)()(~ 1
NM NMP ∆+∆+= −  (9) 
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Fig. 6 Bode diagram of controller CT03-161 Fig. 7 Closed loop bifurcation diagram 
compared with open loop 

With the positive definite solutions X, Y of the 
algebraic Riccati solutions, a maximum stability 
margin maxε is given by, 

( )( ) 2
1

maxmax 1 −+= XYλε  (10) 

where ( )XYλmax  is a Hankel norm. Choosing 
the stability margin ε such that max0 εε << , the 
state space realization of a central 
controller )(sK I  can explicitly be given, using 
Doyle’s notation, as  
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where  

( ) XYIεWr +−= −21  (12) 

Controller given by eq. (11) has the same 
order to the mathematical model of the flutter 
and should be reduced in order. Making 
residualization for order reduction, we have 
obtained reduced eighth order controller as in 
the following form. 

GyFzz +=&  

JyHzu +=  (13) 

This controller was designated as CT03-161 and 
was used in the transonic wind tunnel testing 
carried out at NAL and attained 10.9% increase 
of flutter speed [6]. The Bode diagram of the 
controller is in Fig. 6. 

Besides the controller, we use an anti-
aliasing filter to prevent a possible aliasing in 
sampling analog signal and include a model for 
A/D converter. These model can be expressed  
by the following two equations, respectively. 

yyy ff ω−ω= 11&
 

(14) 

1122 yfyyfy dd +−−= &&  
(15) 

In these equations, acceleration output y 
produces filter output y1, which in turn produces 
the converter output y2. 

4.2 Closed Loop Bifurcation Diagram 
The procedure of bifurcation analysis for a 

closed loop system can be developed using a 
continuation method. Substituting the control 
law (13) into the state equation (1) with the 
output equation (7) along with an anti-aliasing 
filter and a model of A/D converter, we can 
obtain the following homogeneous equation for 
closed loop system, 
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2828

2

1~ ×∈






 −+
= R

)q(A)qC(K
BK∆AA

oA
F

NL  (15) 

)21 qC(K)KqB()qA()q(AF −−= . The 
coefficients )qA( )qB( )qC( are evaluated at a 
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Fig. 8 Model installed in the wind tunnel

test section

Fig. 10 Time history of accelerometer output 
and total pressure in wind tunnel 

 

Fig. 9 Wind tunnel instrumentation for flutter
control.

design dynamic pressure q .  Now a 
continuation method can be applied as in an 
open loop system. Figure 7 shows the analytical 
results for closed loop bifurcation diagram 
obtained by Eq. (14) by continuation method. In 
the figure, open loop bifurcation diagram is 
compared. The analysis predicts that the robust 
controller will shift the open loop bifurcation to 
the higher dynamic pressure. Increase of the 
dynamic pressure at the saddle-node bifurcation 
is a little bit smaller than the increase at the 
flutter point.  

5 Wind Tunnel Test Verification of Closed 
Loop Bifurcation 

5.1 Nominal Flutter Tests 
Wind tunnel tests were planned and carried 

out at the transonic wind tunnel of JAXA in 
April 2005. Figure 8 and 9 show the wind 
model installed in the wind tunnel test section 
and the instrumentation diagram for the test, 
respectively. Since time has passed since the 
previous tests, confirmation tests of the nominal 
open loop flutter were first carried out. Several 
confirmation tests were carried out and typical 
time history of flutter is shown in Fig. 10. In 
this figure the acceleration at the #1 sensor point 

shows a sudden LCO in the upper chart with the 
wind tunnel pressure increasing in the second 
chart.  The results are shown in Table 1. 

Compared with the 1997 test flutter 
dynamic pressure of 27.9 kPa, every flutter in 
the table occurred lower dynamic pressure. 
Since we have repaired the model surface, the 
flutter characteristics have changed a bit. We 
chose 26.01 kPa of the fourth flutter as the new 
nominal flutter of the present 2005 test. 
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Fig. 12 Acceleration response of the wing 
caused by a leading edge surface 
excitation for a controlled flutter. 

Fig. 11 Time history of flutter point test 

Table 1 Flutter point test results 
No. Dynamic Pressure 

[kPa] 
LCO Amplitude 

[m] 
1 25.85 0.01169 
2 25.55 0.01128 
3 25.13 0.01092 
4 26.01 0.01234 
5 25.83 0.01165 

Fig. 13 Time history of LCO test (case: c) 

5.2 Excitation Tests above the Nominal 
Flutter Dynamic Pressure 

Closed loop flutter tests were carried out in 
such a way that the robust controller CT03-161 
was engaged at the wind tunnel pressure lower 
than the nominal flutter. The tunnel pressure 
was then increased until the closed loop flutter 
eventually occurred as shown in Fig. 11. 
Confirmed dynamic pressure of the closed loop 
flutter was 28.3 kPa. 

We next executed excitation tests above 
the nominal flutter dynamic pressure. After 
engaging a control at a subcritical flutter 
dynamic pressure, we increased in quasi-static 
way the wind tunnel pressure above the nominal 
flutter at several different dynamic pressures. At 
each dynamic pressure, we applied a leading 
edge control surface a sinusoidal oscillation 

with a frequency of 22.4 Hz, which is the flutter 
frequency. We increased amplitude of 
oscillation in stepwise way until the LCO 
occurred. Once LCO occurred, we stopped 
oscillation and observed whether LCO (or 
forced oscillation) will stop or continue. A 
typical response data obtained in the test is 
shown overall in Fig. 12 and in detail in Fig. 13. 
The upper chart in each figure shows an LCO at 
acceleration response caused by 2.5 deg 
amplitude sinusoidal excitation of a leading 
edge control surface. After confirming LCO, it 
is suppressed by operating a flutter-stopping 
device at the test section of the wind tunnel. 
Figure 14 summarizes these test results. 

Integrating the acceleration data in LCO, 
we can depict the LCO amplitude in bifurcation 
diagram. Figure 15 shows the bifurcation 
diagram for the closed loop system along with a 
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Fig. 5-8 Open loop and closed loop bifurcation 
diagram compared with 2005 test data 

Fig. 14 LCO (flutter control) test result Fig. 15 Bifurcation diagram of 2005 
wind tunnel test 

Fig. 5-7 Parameter adjusting on the bifurcation 
diagram, β=-8.9e-2, γ=4.15e-3

open loop system. In case of controlled system, 
LCO is suppressed completely below the 
dynamic pressure 26.7 kPa. Three pairs of 
triangular points show just outside a separatrix, i. 
e., unsteady limit cycle.  

5.3 Confirmation of the Predicted 
Bifurcation by the Wind Tunnel Tests 

Adjusting free parameters in the 
mathematical model, we have renovated the 
model so as to fit the present wind tunnel test 
data. Resulting bifurcation diagram finally 
obtained is depicted in Fig. 16. Three sets of 
wind tunnel test data are just lying on the 
analytical LCO curve.  

Based on the mathematical model closed 
loop bifurcation can be predicted as shown in 
Fig. 5.8. The figure shows the wind tunnel test 

data and it is clear that the analytical results 
predict surprisingly well the test data. 

Figure 5-8 shows that the predicted 
bifurcation diagram for a closed loop system of 
flutter control can fundamentally be confirmed 
by the wind tunnel experiment. 

 

6 Conclusions 
The wind tunnel test was carried out with 

great care and limited numbers of LCO data at 
dynamic pressures above the open loop flutter 
point were successfully obtained. After 
confirming a flutter dynamic pressure of the 
controlled wing, we tried to excite the wing by a 
leading edge control surface oscillation at three 
different dynamic pressures in between the open 
and the closed loop flutter dynamic pressure. 
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Even though the control might have lost the 
effectiveness due to large amplitude of LCO and 
resulting amplitude might have broken the wing 
seriously, we have succeeded in getting smaller 
amplitude of LCO. 

Based on the mathematical model that was 
tuned to fit the new wind tunnel tests, the closed 
loop bifurcation for a robust controller used in 
the wind tunnel test was predicted. LCOs that 
were obtained in the tests have fitted well with 
the predicted LCO of the bifurcation diagram. 
Dynamic pressure of controlled flutter could be 
predicted in good coincident with the one 
obtained in the wind tunnel test as well. 
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