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Abstract  

The objective of this work is to present some 
theoretical and experimental results concerning 
the neuro-fuzzy control synthesis as applied to 
electrohydraulic servos actuating primary flight 
controls. The control algorithm supposes as 
component part a neurocontrol designed to 
minimize a performance criterion. The objective 
functional supposes a trade-off between the 
tracking error, the load induced differential 
pressure in the cylinder’s chambers and the 
control. Whenever the neurocontrol saturates or 
a certain performance parameter of the system 
decreases, the scheme of control switches to a 
feasible and reliable fuzzy logic control. It was 
thus obtained a Fuzzy Supervised Neuro-
Controller (FSNC), with a switching structure, 
the role of fuzzy control being supervisory – 
antisaturating and antichattering one. Although 
the FSNC design does not require of a 
electrohydraulic servo model, a nonlinear one 
was considered in numerical simulation.  

1 Introduction  
This work addresses the problem of theoretical 
and laboratory test validation for an 
electrohydraulic motion control system 
(EHMCS) based on neuro-fuzzy synthesis. The 
question was partly considered in recent works 
of the authors [1] – [3]. The EHMCS (Fig. 1) 
consists firstly of a double effect hydraulic 
cylinder with 24 m103 −×=S  piston area and 

m1019 2−×. half of piston stroke and an ORSTA 
TGL33649 electrohydraulic servovalve. The 
valve is a direct valve, in which a linear motor 
drives the spool directly according to the input 
current. The valve has a nominal flow of 
40×10− 3 m3/60 s, at the nominal pressure drop 
of 70 bar. Secondly, a PC with dual processor 
Pentium 4 − 2×3.00 GHz − and 1 GB of RAM 
controls the system through a DAQ PCI 6040E 
National Instruments. Thirdly, an inductive 
position transducer Penny & Gilles and two 
Hottinger Baldwin Messtechnik (HBM) 
pressure transducers provide the measurement 
input for DAQ. Finally, the inertial load is 
simulated by an inertial load simulator and the 
hydraulic power is supplied by a hydrostatic 
generator.  

Fig. 1. Partial view of the EHCMS. 
 

The EHMCS is in fact a tracking system. 
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Therefore, for this system the aim of control 
synthesis is to have a good tracking by the 
piston position of the specified desired position 
references introduced as electrical signals by 
PC. When this control problem is treated in 
classical manner, a mathematical model of the 
system must be firstly performed. Secondly, a 
mathematical procedure of control synthesis 
must be developed. But, in classical manner, the 
procedure is dependent of model, and the model 
is not infallible, and frequently classical control 
methodologies fail facing to mathematical 
model complexity. A non-exhaustive 
mathematical model of the above described 
system, used in numerical validation of the 
proposed Fuzzy Supervised Neuro-Controller 
(FSNC), is the following (see the 
Nomenclature): 
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Given this EHMCS mathematical 
embodiment, classical solutions of the control 
problem “find control variable u such that 
tracking error ( ) ( ) ( ) 0: →−=ε txktrt p  as ∞→t  
for specified reference signals ( )tr ”  have to 
facing obvious difficulties. pk  is  the position 
transducer coefficient [V/m]. Our approach in 
solving this problem belongs to artificial 
intelligence techniques, which are in fact 
independent of mathematical model of the 
system, thus achieving certain robustness and 

reducing complexity. 

2. Neurocontrol 
Indeed, artificial intelligence based  new 
approach in the treatment of posed control 
problem concerns principially an input-output  
behavioral philosophy of solution. In fact, the 
mathematical model (1) will herein serve only 
as illustration of applying the new strategy. In 
the on line process variant, the mathematical 
model is naturally substituted by the physical 
system. 

In this and next Sections, the structure of 
the proposed FSNC is shortly described. The 
algorithm is composed of a neurocontrol and a 
fuzzy logic control supervising neurocontrol. As 
neurocontrol, an unilayered perceptron 
architecture was used. For this elementary 
network, two weighting parameters 21 νν ,  and a 
linear combiner generate the neurocontrol 

( )21212211 ppzkryyu pn −ν+−ν=ν+ν= )(: (2)

where ( )tr  – reference input (command [V]). 
Worthy noting, from EHMCS behavior view 
point, the input is u and the output is 

( )21 yyy ,= . From neurocontrol training 
viewpoint, the system performance is assessed 
by the cost function, a criterion supposing a 
trade-off between the first input 1y − tracking 
error −, the second input component 2y  and the 
control u 
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Consider the on line updating of the weighting 
vector T][ 21νν=υ , by the gradient descent 
learning method [4], in view of cost J reducing  
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where the matrix ),( 21diag δδ  introduces the 
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learning scale vector, )(nν∆  is the weight 
vector update and N marks a back memory (of N 
time steps). The derivatives in (4) require only 
input-output information about the system. 

)(/)( iuiy ∂∂  is online approximated by the 
relationship  

))()(/())()(( 11 −−−− iuiuiyiy  

The results obtained using this simple 
unilayered perceptron are very satisfactory.  

3. Fuzzy Logic Control And Fuzzy 
Supervised Neurocontrol 
In many applications, particularly in the field of 
aerospace engineering, actuator saturation is the 
principal impediment to achieving significant 
closed-loop performances [5]. In the learning 
process with artificial neural networks, the risk 
of control saturation is real. To counteract this 
risk and not compromise the learning neural 
network by harmful phenomena as control’s 
chattering and making worse system’s 
performance, FSNC is herein considered as 
amtiwindup strategy. Thus, the control will have 
a switching type structure, which will be 
clarified in the following.  

The commonly used Mamdani fuzzy logic 
control supposes three main components: the 
fuzzyfier, the fuzzy reasoning, and the 
defuzzyfier [4]. Herein, the proposed fuzzyfier 
component converts the crisp input signals  
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into their relevant fuzzy variables (or, 
equivalently, membership functions) using a set 
of linguistic terms: zero (ZE), positive or 
negative small (PS, NS), positive or negative 
medium (PM, NM), positive or negative big 
(PB, NB); thus, fuzzy sets and their pertinent 
membership functions are produced (for sake of 
simplicity, triangular and singleton type 
membership functions are chosen, see Figs. 
2, 3). The considered l2 norm computes, over a 
sliding window with a length of k samples, the 
maximum variation of the tracking error. The 

insertion of this crisp signal in the fuzzyfier will 
result in a reduction of fuzzy control switches 
due to the effects of spurious noise signals.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The strategy of fuzzy reasoning 
construction embodies herein the idea of a 
(direct) proportion between the error signal y1 
and the required fuzzy control uf. Thus, the fuzzy 
reasoning engine totals a number of n = 4×7×7 
IF..., THEN... rules, that is the number of the 
elements of the Cartesian product A×B×C, 
A := {ZE; PS; PM; PB}, B = C := {NB; NM; NS; 
ZE; PS; PM; PB}. These sets are associated with 
the sets of linguistic terms chosen to define the 
membership functions for the fuzzy variables 
( )12 yl , y1 and, respectively, 2y . Consequently, the 

−1   −2/3    −1/3       0       1/3       2/3       1     y1 ; y2 

                                               
                                              µ B(y1); µC (y2)           
  NB        NM     NS        ZE  PS    PM         PB       
                              1 

  0       1/3       2/3       1    l2(y1) 

1
ZE    PS      PM        PB 
µA ( l2 (y1)) 

Fig. 2. Triangular membership functions for: a) 
scaled input variables y1, y2 and b) l2(y1). 

a)  

b)  

          -1         -2/3       -1/3        0         1/3        2/3        1     uf 

            
                                                       µD (uf) 
        NB      NM       NS           ZE    PS      PM      PB  
            1            

Fig. 3.  Singleton membership function for 
scaled fuzzy control uf. 
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succession of the n rules is the following: 

1) IF l2 (y1) is ZE and y2 is PB and y1 is PB, 
THEN uf is PB  
2) IF l2 (y1) is ZE and y2 is PB and y1 is PM, 
THEN uf is PM  
M  
7) IF l2 (y1) is ZE and y2 is PB and y1 is NB, 
THEN uf is NB  
8) IF l2 (y1) is ZE and y2 is PM and y1 is PB, 
THEN uf is PB  
M  
196) IF l2 (y1) is PB and y2 is NB and y1 is NB, 
THEN uf is NB 

Let τ be the discrete sampling time. 
Consider the three scaled input crisp variables 
l2 (y1k), y1k and y2k, at each time step τ= ktk  
(k = 1, 2,...). Taking into account the two 
ordinates corresponding in Figs. 2, 3 to each of 
the three crisp variables, a number of  M ≤  23 
combinations of three ordinates must be 
investigated. Having in mind these 
combinations, a number of M IF..., THEN... 
rules will operate in the form  

MiDu
AylCyBy

ifk

ikikik

,...,,,
,)(

21isTHEN
isandisandisIF 1221

=
 (6)

(Ai,B, Ci, Di are linguistic terms belonging to the 
sets A, B, C, D and D = B = C, see Figs. 2, 3). 
The defuzzyfier concerns just the transforming 
of these rules into a mathematical formula 
giving the output control variable uf. In terms of 
fuzzy logic, each rule of (6) defines a fuzzy set 
Ai×Bi×Ci×Di in the input-output Cartesian 
product space R+×R3, whose membership 
function can be defined in the manner 
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For simplicity, the singleton-type membership 
function µD(u) of control variable has been 
preferred; in this case, µDi

u( )  will be replaced 
by ui

0 , the singleton abscissa. Therefore, using 
1) the singleton fuzzyfier for uf, 2) the center-
average type defuzzyfier, and 3) the min 

inference, the M  IF..., THEN… rules can be 
transformed, at each time step kτ, into a formula 
giving the crisp control u f [6]: 

∑ ∑µµ=
= =

M

i

M

i iuiiuf uu
1 1

0 / . (8)

The FSNC operates as fuzzy logic control 
in the case when neurocontrol saturated, or so 
called l2−norm of tracking error y1 increased. 
FSNC switches on neurocontrol whenever nu  is 
not saturating )( ,maxnn uu ≤ and scaled <)( 12 yl  
l2, min. In the case of fuzzy control operating, the 
fuzzy neurocontrol un is concomitantly updated 
considering the real acting fuzzy control uf .  

4. Numerical simulations 
The aforementioned FSNC was applied in 
simulation studies of the systems similar to (1) 
[1]–[3]. Despite of such model complexity, the 
simulation studies performed in the cited 
references attest good tracking performance, 
both in the presence of step and sinusoidal 
combination type signals r. The parameters used 
in simulations correspond to the 
mechanohydraulic servo (MHS) included in the 
aileron chain of military jet IAR 99, namely: 
m = 30 Kg, f = 300 Ns/m, k = 105 N/m, 
xM = 0.03 m, ρ = 850 kg/m3, S = 10−3m2, 
ps= 21×106 N/m2, kQp= 0.523×10–12m5/(Ns), 
B = 6×108 N/m2, c = 0.63. An equivalent 
rectangular valve port with W = 0.0005 m and 

vMx  = 0.0017 m was considered, supplying a 
maximal flow =MQ /sm10 34−  and a maximal 
piston velocity m/s10M .=x& . 

Neuro-fuzzy control unf, as result of 
switching between optimal neurocontrol un and 
antisaturation fuzzy control uf, is represented by 
case studies in Figs. 4 (model without internal 
friction Ff) and 5 (model containing internal 
friction Ff); see also [3], where a quasi-energetic 
component xky v &22 ν=  was considered in 
performance criterion. The back memory L = 1. 
For step reference, scaled variables 1y , 2y  and 

( )12 yl  were obtained by dividing respectively by 
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Fig. 5.   Neuro-fuzzy controlled EHS, Ff ≠  0, comparison with MHS. Desired (r/kp) and actual (x) piston 
displacements. a) step reference; b) sinusoidal combination reference.  
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displacements. a) step reference; b) sinusoidal combination reference. 
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maximal values vMp xk , Mv xk &  and vMp3 xk ; 
one proceeds similarly for sinusoidal 
combination reference (but rigor of these 
scalations is not too important). Switching 
parameter 31min2 /, =l  was chosen. LuGre 
model [3] of internal friction Ff  is defined by 

Ns/m60=vf ,  N/m1012 5
0 ×=σ , =sF   120N, 

Ns/m3001 =σ , m/s10s .=v , N100c =F . In 
processing numerical experiments, the system 
operation is restricted to the noncavitation 
regime, i.e., 21i,0is ,=>≥ pp . The following 
set was tuned in a trial and error type process: 
initial weighting vector ν = [100  1],  learning 
rates ]1010[5]δ[δ 42

21
−−×=  and weights 

]10003[][ 21 .=qq  (by using physical units daN 
and cm in simulation). Better tracking performance 
of electrohydraulic servo (EHS) in comparison 
with MHS is pointed out: for sinusoidal 
combination reference, actual load displacement x 
is virtually superposed on desired load 
displacement r/kp . On the other hand, MHS 
tracking property is affected by some dephasage. 
Worthy of note, the presence of a strong nonlinear 

component as internal friction Ff doesn’t influences 
behaviour of the two systems.  

5. Experimental Results 
The present work reports that the FSNC was 
applied to the system described in Section 2. 
The detailed in Sections 3, 4 algorithm was 
implemented using a LabView type 
programming language. Alternate classical 
algorithms LQR and LQG were also 
implemented, in order to evaluate and compare 
the results. Various experimental results were 
thus collected. 

In Figs. 6-9, representative time responses 
to step and sinusoidal references are shown, and 
a comparison classical versus FSNC is 
emphasized. The system controlled with FSNC 
is proved to be better than the corresponding 
LQG system (see transitory and stationary 
regime performances), in accordance with 
simulation studies. Consequently, the above 
results are very encouraging from viewpoint of 
development of the intelligent control strategies. 
 

 

 
  
FFiigg..  66..  EExxppeerriimmeennttaall  tteessttss,,  LLQQRR  aallggoorriitthhmm..  OOvveerrsshhoooott  11..55  %%,,  ttiimmee  ccoonnssttaanntt  00..003322  ss,,  ssttaattiioonnaarryy  eerrrroorr  1100  %%..  
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Fig. 7. EExxppeerriimmeennttaall  tteessttss,,  FSNC algorithm. Overshoot 21%, time constant 0.03 s, stationary error 4%. 
 
 

 
 
 
Fig. 8. EExxppeerriimmeennttaall  tteessttss,,  LQG algorithm: sinusoidal reference (amplitude 2 cm, frequency 3 Hz). Time delay 0.025 s,     
10 % attenuation. 
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Fig. 9. EExxppeerriimmeennttaall  tteessttss,,  FSNC algorithm: sinusoidal reference response (amplitude 2 cm, frequency 3 Hz). Time delay 
0.016 s, 0% attenuation. 
 
5. Conclusions 
The aforementioned FSNC is applied both in 
simulation studies and laboratory tests of the 
electrohydraulic servo system. The simulation 
studies The results attest good tracking  
performance in the presence of sinusoidal 
combination type signals, particularly in the 
presence of step signals. The assertion that 
“neural networks seem to be the most promising 
technique to design a robust, adaptive and 
intelligent control systems” [7] is worthy of 
noticing. With regard to fuzzy logic, this offers 
on excellent way “to combine mathematical 
models and heuristics into controllers” [6]. The 
artificial intelligence based synthesis of control 
law (in other words, using neurocontrol and 
fuzzy logic control) provides also the means to 
evade the mathematical model of the system. In 
fact, the salient feature of neurocontrol and 
fuzzy logic control, which distinguish them 
from the traditional control and adaptive 
approaches, is that they provide a model-free 

description of the control system. 
Thus, our conclusion is that, in various 

approaches [1]−[3], [8]-[10], regarding as 
applications active and semiactive suspensions, 
electrohydraulic servo actuating primary flight 
controls and antilock-braking systems (ABS),  
the neuro-fuzzy control worked very well, 
frequently much better than the classical 
methodologies.  

5. Nomenclature 
Variables: 

( )tx  – load displacement (defined from the 
center of the actuator cylinder [m])  

( )tpi  – actuator cylinder pressures (i = 1, 2) 
[N/m2] 
( )tr  – reference input (command) ([V], for 

EHS; [m], for MHS) 
( )tu  – control, that is, valve input voltage [V] 
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( )txv  – valve spool displacement relatively to 
its sleeve, defined from the valve's neutral 
position [m] 

( )txf  – internal friction state variable [m] 
( )tFf  – internal friction force due to the tight 

sealing [N] 
( )tF  – load disturbance 

 
Load parameters: 

m – total mass of piston and load referred to 
piston [Kg] 

k – load spring gradient [N/m] 
f – viscous damping coefficient of load [Ns/m] 
 
EHS parameters: 

sp  – supply pressure to valve [N/m2] 
0R ≈p – return pressure 

S  – actuator piston area [m2] 
Mx  – half of piston stroke [m] 

C – semivolume of oil under compression in 
both cylinder chambers [m3], MxSC ×=  

B – bulk modulus of oil [N/m2] 
pk  – position transducer coefficient [V/m] 

vk  – velocity scale factor [V×s/m] 

uvxk  – valve displacement-voltage gain [m/V] 
W – area gradient of valve [m2/m], or valve port 

width [m] 
vMx – length of rectangular valve port [m] 

c – valve discharge coefficient  
λ  – kinematic feedback coefficient of MHS  
ρ  – oil density [kg/m3] 
 
Cylinder internal friction parameters:  

0σ  – stifness coefficient [N/m] 

1σ  – damping coefficient [Ns/m] 

vf  – viscous friction coefficient [Ns/m] 

sv  – Stribeck velocity [m/s] 

sF  – static friction [N] 

cF  – Coulomb friction [N]      
 
Other notations: 

 kv – scale factor in neurocontrol synthesis 

τ  – discrete sampling time  
f& –  derivative of a function f with respect to 

time t 
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