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1  Introduction  Abstract  

Simple agent-based models may be useful for 
investigating air traffic control strategies as a 
precursory screening for more costly, higher 
fidelity simulation.  Of concern is the ability of 
the models to capture the essence of the system 
and provide insight into system behavior in a 
timely manner and without breaking the bank.   

National Airspace System improvement 
plans focus on improvements to today’s Air 
Traffic Control systems, but it is becoming clear 
this approach may not satisfy future air-traffic 
demand.[1] System transformation will require 
changes in methods and policies for traffic 
management that consider the interplay of 
capacity, demand, and aircraft capability as well 
as the influence of operational and 
environmental constraints.  However, 
comprehensive transformation policies have 
been hard to develop and equally difficult to 
model.   

The method is put to the test with the 
development of a model to address situations 
where capacity is overburdened and potential 
for propagation of the resultant delay though 
later flights is possible via flight dependencies.  
The resultant model includes primitive 
representations of principal air traffic system 
attributes, namely system capacity, demand, 
airline schedules and strategy, and aircraft 
capability.   It affords a venue to explore their 
interdependence in a time-dependent, dynamic 
system simulation.  

Air transportation system designers have 
had only limited success using traditional 
Operations Research and parametric modeling 
approaches in their analyses of innovative 
operations.  They need a systemic methodology 
for modeling of safety-critical operations that is 
comprehensive, objective, and sufficiently 
concrete, yet simple enough to be deployed with 
reasonable investment. The methodology must 
also be amenable to quantitative analysis so that 
issues of system safety and stability for new 
operations in light of demand uncertainties can 
be rigorously addressed.   

The scope of the research question and the 
carefully-chosen modeling fidelity did allow for 
the development of an agent-based model in 
short order.  The model predicted non-linear 
behavior given certain initial conditions and 
system control strategies.  Additionally, a 
combination of the model and dimensionless 
techniques borrowed from fluid systems was 
demonstrated that can predict the system’s 
dynamic behavior across a wide range of 
parametric settings. 

The literature suggests that agent-based 
models may be applicable: Many authors 
suggest that this approach can provide insight 
into the operational viability of complex 
systems such as air transportation.  Agent 
models can also provide a means to explore the 
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effect of transformation mechanisms on system 
operations, e.g. policy changes, social norms, 
and technology development. 

1.1 General Modeling Aptitudes 
In the case of air transportation, the federal 

government is largely responsible for both 
setting policy, and implementing infrastructure 
implied therein.  To do so necessitates 
consideration of both the effectiveness of 
actions and repercussions they may create 
across the National Airspace System (NAS). As 
Wieland et al [2] point out, modeling air traffic 
management “with all its interrelated 
components – mechanics, human decision 
making, and information flow – is a large effort 
involving multidisciplinary and ‘out-of-the-box’ 
thinking.  …The challenge is not only to 
represent physical NAS dynamics, but also to 
incorporate the behavioral and relational 
components of NAS decision making that are an 
important part of the system. …A 
comprehensive model is incomplete and subject 
to first order errors unless all such interactions 
are incorporated to some degree.”  Their claim 
is that a useful NAS simulation intended for 
setting policy must model the economic, 
information and mechanics factors of the system 
and their interactions, or gross errors will occur.  
They go on to recognize that this is a tall order 
indeed, and that a comprehensive NAS model is 
a “grand challenge,” yet they believe, necessary 
and obtainable. 

Actually, NASA has recognized the need 
for a more systemic method for some time.  
They commissioned Krozel [3] to review all the 
Free Flight research related to distributed air 
traffic management, a widely accepted 
development concept.  He identified not only 
the existing research, but also the research needs 
that were not being met more generally.  In 
summary, he found that at the time, there were 
no tools capable of assessing both new and 
traditional NAS operations simultaneously, and 
therefore assessing their interactions. 

Sheate [4] complains that standard NAS 
policy decisions have led to a business market 
that decides “where capacity is needed and 

therefore fails both to maximize the use of 
existing airport resources and to recognize the 
importance of environmental capacity 
constraints.”  He argues for policy analyses that 
consider the interplay of system capacity, 
demand, and aircraft capability. 

Unfortunately, policy analysts in the air 
traffic management arena have continued to use 
methods more suited to regularly-behaved 
systems to develop strategy1.  Apparently, this is 
a pervasive problem throughout the policy 
community.  In fact, Bankes [5] laments that 
there are “few good examples of the classical 
policy analysis tools being successfully used for 
a complete policy analysis of a problem where 
complexity and adaptation are central.”  He 
continues to say that policy analysis in the face 
of “deep uncertainty” must focus on robustness 
rather than single-point optimization.  
Addressing this same concern, Iyer [6] offered 
that the “basic contribution of complexity 
theory [to planning] is its focus on systemic 
interactions at various scales…” that can 
address uncertainty. 

 

1.2 Agent Based Modeling  
Agent-based modeling (ABM) techniques 

have been proposed as an alternative to 
traditional parametric models because they can 
exhibit higher-order behaviors based on a 
relatively simple rule set.  ABM uses agents to 
execute model functions.  They are the active 
components of an agent based simulation.    

Agents are ‘autonomous’ in that they have 
interfaces to the general simulation, but carry 
within them their own ability to perform tasks 
without a centralized controller.  Agents are 
interactive entities that may also exploit salient 
but generally localized behavior of system or 
environmental elements.  Because of their 
autonomy, agents generally are not optimizing 
or even ‘satisficing’ system goals.  However, 
even with simple rules to determine each 
agent’s actions, higher-order system behaviors 
can emerge.  Jennings [7] and Jennings and 
Wooldridge [8] offer further detail, saying 
agents: 
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• are entities with well-defined boundaries  
and interfaces 

• are situated in a particular environment 
• strive for specific objectives 
• are autonomous  

(distinguishing them from objects)  
• can be both reactive and proactive in 

achievement of their objectives.   
Jennings would most likely agree that 

ABM is not well suited to all systems.  
However, he outlines his argument in favor of 
ABM of complex systems, saying complex 
system development requirements and ABM are 
highly compatible.  He argues that ABM is 
particularly well suited to complex systems 
because they are: 
• an effective way of partitioning the problem 

space of a complex system 
• abstractions that are a natural means of 

modeling complex systems 
• appropriate for dealing with dependencies 

and interactions in complex systems 
However, he also admits that these same 

properties can lead to issues of unpredictability 
and apparent chaotic behavior.  Unpredictability 
is a problem in the simulation world because it 
makes internal validation very difficult when 
exact results cannot be repeated.  The lack of 
deterministic behavior is also a problem for 
validation.  Jennings and others claim that these 
difficulties can be circumvented by formally 
analyzed interaction protocols, limiting the 
nature of agent interaction, and adopting rigid 
organizational structure among the agents. 

Much hope is laid at the feet of ABM, 
particularly in the social science realm where 
complexity and uncertainty are paramount.  
From recent literature, Bankes [9] summarizes 
three reasons why ABM is potentially 
important:  i) the unsuitability of competing 
modeling formalisms to address the problems of 
social science, (ii) the ability to use agents as a 
natural ontology for many social problems, and 
(iii) the ability to capture emergent behavior.  
While the latter two arguments are similar to 
those of Jennings, Bankes claims that 
dissatisfaction with the restrictions imposed by 
alternative modeling formalisms is driving 

modelers to agent-based solutions. In his 
opinion, the most widely used alternatives, 
systems of differential equations and statistical 
modeling, are viewed as imposing restrictive or 
unrealistic assumptions that limit many 
applications.  He says “The list of assumptions 
that have been objected to is lengthy, but it 
includes linearity, homogeneity, normality, and 
stationarity.”  

What Bankes fails to mention is that these 
shortcomings are not necessarily avoided just by 
deploying ABM approaches, and certainly not 
by agent implementations of standard methods.  
A model still has to be appropriately defined to 
describe significant features for the system 
served.  Additionally, addressing issues such as 
homogeneity requires not only more effort in 
model specificity, but also more information 
related to distributions of variables or behaviors.  
These data may not be available.  A 
homogeneous population model might be of 
sufficient fidelity for describing some systems, 
while an assumed (but erroneous) normal 
distribution, for example, might yield 
misleading results.  A more complex or detailed 
model (e.g. at the agent rather than the 
aggregate level) is not necessarily more 
accurate. 

Bonabeau [10] claims that ABM is “by its 
very nature the canonical approach to modeling 
emergent phenomena” of complex systems, 
necessary for analysis of nonlinear behaviors, 
localized phenomena, and heterogeneous 
populations. However, like Jennings, he 
acknowledges difficulties in building agent 
models of large systems because of the myriad 
low-level details and the “extremely 
computation intensive and therefore time 
consuming” model that results.   

Arthur suggests agents are a natural way to 
deal with ill-defined or complicated “reasoning” 
within a system, often induced by inclusion of 
humans. He argues, “beyond a certain level of 
complexity, human logical capacity ceases to 
cope – human rationality is bounded.”  Agents 
can be designed to mimic the inductive behavior 
of people when placed in unfamiliar or 
complicated environments.  However, the 
example he provides, a problem of deciding 
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whether or not to frequent a bar based on the 
expected crowd, exemplifies a prime concern 
with assuming agent “intelligence” (which has 
to be present to differentiate the agent from a 
mere object in Jennings and Wooldridge’s 
terms).   In his example, the agents select from a 
pre-determined set of schemata based on some 
outcome metric (actual number of bar patrons).  
Can this be considered true inductive behavior?  
The “induction” was accomplished [by the 
modeler] in the generation of the options, not by 
the agent in their selection later on.   

If appropriate strategies were not included 
in the agent’s definition, Arthur’s agents would 
have never succeeded.  Recognizing this, he 
does acknowledge that people’s ability to 
induce [emulated by agents using lists, genetic 
algorithms, etc.] is a “deep question in 
psychology” and thus can only be marginally 
imitated.  Generally speaking, agent 
“intelligence” at best will be limited by the 
degrees of freedom their internal models are 
allowed to explore, and may be further limited 
by methods of exploration.   

1.3 Agent Modeling of ATM  
Moss expresses the view that “Policy 

analysis has to start with observation and the 
specification of a problem to be solved.”  From 
here, appropriate analysis tools can be defined.  
Moss, Iyer, and others suggest that deterministic 
and even stochastic approaches to complex 
policy development are incompatible, though 
they all conclude that ABM may be applicable. 

The air transport research community has 
attempted to model particular attributes of the 
NAS, but there hasn’t yet been a method 
capable of answering questions regarding the 
systemic response to substantive changes in 
operations.  To date, agent-based, elemental 
simulations have proven too expensive and 
unwieldy to complete.  Parametric simulations 
have failed to provide the flexibility to be used 
as design tools. 

The dearth of appropriate analytical tools is 
not due to a lack of demand, or trying:  It has 
proven difficult indeed.  Calls for systemic 
simulation for operational design of the NAS to 

researchers in the trenches from responsible 
government officials continue to accrue [11].   

The majority of researchers in the area 
have joined Wieland et al. in suggesting that 
ABM is one of only a few appropriate modeling 
solutions currently available.  Holmes and Scott 
[12] say, “Proposed ideas for changing the NAS 
should not be contemplated lightly, due to the 
sheer size and complexity of the system.  
Instead it will require a fundamental 
reconsideration of how such complex systems 
are analyzed and designed if the system to 
evolve remains productive and viable.  
Traditional methods for analyzing changes to 
complex systems fail when applied to highly 
dynamic and interconnected system such as the 
Internet or the NAS.”  They go on to outline 
their case for using agents operating on network 
structures as a viable analytical alternative, and 
as framework for future NAS design as well. 

However, modeling is not simply an 
emulation or simulation of all the entities or 
behaviors in a complex system.  As discussed, 
such extensive simulations would generally be 
extremely difficult and expensive to build.  
Nonetheless, it is hypothesized that purpose-
specific models of sufficient fidelity would be 
feasible.  The difficulty arises in selecting the 
appropriate system attributes that can capture 
the behaviors of interest, and using suitable 
abstractions of them in a model.  

To further scope the model used to assess 
the ABM method for this study, it is focused on 
a specific research topic: For this test case, the 
model is intended to explore the dynamic 
system response to service policies at capacity-
limited airports reflected by flights nominally 
operating by a reserved schedule or ‘slot’.  

2 The Model  
The model emulates commercial airline 

demand at a busy airport with a simplified hub-
and-spoke route structure.  It is comprised of a 
series of ‘rushes’ or ‘banks’ of flights* operating 
in or out of a hub airport facility (fig 1).   
                                                 
*  Emulating either arrivals or departures, but regardless, 

consume 1 unit of facility capacity in the model. 
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The ability for individual flights to operate 
on schedule could also influence a scheduled 
system’s behavior.  In practice, there are many 
reasons why a flight may not operate on 
schedule beyond those caused by air traffic 
service delay.  Regardless of the cause (e.g. late 
“push” from a gate on departure or weather 
causing a late arrival), the net effect is that the 
flight misses its slot.  The next slot becomes the 
earliest this flight can then operate.  This model 
emulates the effects of these schedule anomalies 
by sliding a flight’s schedule with probability P. 

Finally, both the demand (average number 
of agents or flights per unit time, e.g. nominal 
bank size, n) and the facility capacity, Cmax are 
controllable. 
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Figure 1: The model 
 

At each time slice in this discretized model, 
flight agents will “request” service at the 
facility, representing a bank of flights for that 
time t.  The flight will operate as long as the 
capacity of the facility has not been exceeded.  
If for some reason demand at that rush (time) 
exceeds capacity, the flight is rescheduled. 

With these abstractions of the system in 
hand, coding the simulation was relatively 
straightforward.  REPAST PY [13] was selected 
as an appropriate platform, providing a quick 
way to create the simulation environment with 
minimal coding overhead (including batch 
capability, data logging and visualization). 

To capture potential dynamic behavior 
caused by an airline’s linking of one flight to 
another in a previous bank (by crew, equipment, 
connecting passengers, etc.), flights in banks 2 
through D were randomly assigned an average 
of k dependencies with flights in a previous 
bank.  For example in figure 2, a hypothetical 
model schedule, the first flight in the second 
bank (t=2) would not operate until the second 
and third flights scheduled for the first bank 
(t=1) have been served. 

A set number of flight agents per bank 
were initiated and named according to their 
nominal scheduled (time slot for operation).  
Using k, dependencies were also assigned at 
initiation. 

During the simulation, advancing time was 
represented by servicing of the next bank or 
block of flights, i.e. indexing t.  Each flight 
agent checked its scheduled operations time vs. 
the current bank as well as the disposition of its 
dependencies (if any).  Assuming all 
dependencies had been previously served and 
they weren’t randomly selected to miss their slot 
(P), flights ‘operated’ (dropped off the service 
queue for that rush and were marked as 
“operated”) until the capacity of the airport was 
met.  Any remaining flights in the bank were 
rescheduled for the next bank. 
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Figure 2: Flight Dependencies
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Three different strategies to order flights 
within the banks were used in this study; 
original schedule followed by rescheduled or 
delayed flights, earliest scheduled flights first, 
or random draw. 
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3 Using the Model: An Initial Experiment  From a facility perspective, where flight 
dependency is less of a factor, the model 
predicts reasonable stability as long as there is 
approximately 10% greater capacity than 
demand.  Also influential was the ability of 
flights to meet their scheduled slot (non ATC 
related delay).  With these parameters bounded 
and flight dependencies unaccounted, the model 
predicts stability (fig. 4) regardless of the ATC 
strategy used to clear aircraft in a service queue. 

3.1 Experiment Design  
A full-factorial designed experiment was 

conducted to explore the effects of the user-
defined variables and their interactions.  Results 
consisted of metrics related to service quality; 
average time in queue, max time in queue, and 
the max number of aircraft waiting for service. 

However, flight dependencies are critical to 
airline business models and practical operational 
considerations.   With an assumption of total 
dependence between flights, certain ATC 
actions and capacities are predicted to lead to 
run away delay (fig. 5), while an alternative 
strategy proved more stable (fig. 6). 

3.2  Results  
The model demonstrated both stable and 

unstable behaviors:  In some configurations, 
delays grew to a certain level and then remained 
relatively constant.  In other instances, delays 
grew seemingly unbounded.  Interestingly, even 
without inter-flight dependencies there were 
also instances where delays seemed stable, but 
then would suddenly grow quickly.  For 
example, compare the first 15 cycles in figure 3 
with the subsequent response: the change 
implying a threshold condition was exceeded.   

Figure 5 - An unreasonable and Unstable configuration: 
- 10% Over capacity  
- 8% flight schedule delay (non-ATC) 
- All flights reliant on some in previous bank 
- Scheduled flights take priority 
 
 
 
 
 
 
 
 
 

Figure 3: No inter-flight  
dependencies, 
yet non-linear  
results 

Figure 6 - A (more) stable configuration: 
- 10% Over capacity 
- 8% flight schedule delay (non-ATC) 
- All flights reliant on some in previous bank 
- Queued flights take priority 
 

 
 

Fig 4: A reasonable and stable configuration: 
- 10% Over capacity 
- 8% flight schedule delay (non-ATC) 
- No account for inter-flight 
- Stable regardless of queuing strategy (FIFO or schedule) 

3.3  Discussion   
After exploring the experiment space, 

varying flight delays, queuing strategy and the 
dependencies while keeping demand and 
capacity constant, it appeared that there was a 
relationship across these variables.  The point at 
which the system became sensitive to flights 
missing their slots appeared to be dependent on 
the ATC strategy for ordering and serving 
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Figure 9a: 
Given 30% overcapacity

and a 20% delay P

Figure 7: Queue Strategy and 
Flight Uncertainty vs. Max Buffer
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Estimate stable P

for 50% overcapacity 

Figure 8: Queue Strategy and 
Flight Uncertainty vs. Ave Delay
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Figure 9c:
Estimate % overcapacity 

that will be unstablewaiting flights. This was true for both the 
maximum experienced buffers (Fig. 7) and the 
average delay (fig. 8). 

4  Conclusions 
 

The data revealed what appeared to be a 
relationship between overcapacity (capacity-
bank size) and the probability of a flight missing 
its expected slot.  In many cases, the average 
delay also demonstrated behavior similar to a 
second order oscillator.  Dimensionless 
techniques borrowed from fluid systems implied 
that these dynamic properties should be able to 
be described by a term akin to a damping 
coefficient.  Upon inspection of the data, this 
term, γ, was estimated as: 

Agent modeling is particularly well suited 
for addressing the service delay issues of a 
capacity-constrained air traffic facility.  
Abstraction of the system of interest was 
straightforward, and the relative ease of building 
an ABM made capturing all the influential 
elements of the system easier: Initial attempts to 
model the system could be quickly explored and 
expanded.  Adding behaviors to existing agents 
was uncomplicated. With this relatively simple 
model, the efficacy of ATM three different 
control strategies as well as their interactions 
with airline usage was demonstrated.    

Cmax - N 1 γ ~ 
Cmax P 

With additional research into user 
behaviors, the model could easily be extended 
to explore “gaming” that is known to occur in 
airline scheduling and its influence on 
operational delay in general or specifically for 
rival airlines. Additionally this is a natural 

Using this concept of γ, the data from what 
appeared to be a near-critically damped case 
(Fig 9a) was used to successfully predict a 
stable tolerance for delay given 50% 
overcapacity (fig. 9b) or an unstable 
overcapacity threshold for a given P (fig. 9c). 
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platform for investigating distributed 
responsibility for control, e.g. ordering 
operations, and other peer-to-peer interactions.  
It is also particularly suited for the engineering 
of local and global control strategies 
simultaneously as is occurring in ATM. 

While the experiment used a fixed demand 
with some random noise to build the nominal 
schedule, using actual demand profiles, origin 
and destinations, schedules, and even passenger 
loading data would only require using these data 
to supplant the nominal values in flight agent 
initiation. These historical data as well as travel 
forecasts could be used to determine the demand 
profiles most difficult to control, and provide a 
means to test strategies designed for their 
mitigation. 

Finally, these models could serve as the 
bridge between full-mission operational 
modeling used for detailed system design/safety 
analyses and more coarse models often used for 
cost benefit analyses.  For example, with the 
addition of passenger agents having some 
simple mode choice behaviors and the airlines 
adjusting their scheduled service to this demand, 
such a model could be used to address the 
dynamics of demand rebalancing, travel time, 
etc. in light of operational delay.  The influence 
of these potential feedback effects would be 
otherwise difficult to capture in parametric 
models. 

As billed, an agent model of air traffic 
service delay, if built with sufficient domain 
integrity, does indeed seem capable of capturing 
the interactions at various scales within this 
complex, dynamic system. 
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