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Abstract  

The problem of through optimization of 
branched spatial trajectories of space 
transportation systems (STS) is considered in 
view of atmospheric disturbances (a wind and 
variations of thermodynamic parameters) and 
restrictions on admissible areas of dispersion of 
separated parts fall points. The maximized 
criterion is the mass injected into an orbit. The 
Pontryagin maximum principle is applied to 
solve the problem. The influence of stochastic 
disturbances is defined on the basis of the 
"minimax" approach at which the worst random 
parameters values of the set, corresponding to a 
considered probability level, are determined, 
maximizing the dispersion of fall points. The 
disturbances influence on the trajectories is 
supposed small so that the Bliss formula is 
applicable for its estimation. In view of 
complexity of the used mathematical model of 
motion the much importance is attached to a 
multilevel system of verification of the 
developed program complex and assurance of 
objective control of accuracy of obtained 
optimal solutions. Described ways of the 
verification have the universal character as they 
base on the use of known integrals of the motion 
and physical sense of conjugate variables as 
influence functions. All stages of the carried out 
research, from the verification up to the 
problem solution, are illustrated by 
corresponding numerical results. 

1  Introduction 
The necessity of considering branched 
trajectories appears in researching the motion of 
compound aircraft (staged rockets, airplanes-

carriers etc.), airdrops of loads or missile starts. 
At the same time, branched trajectories can be 
inserted artificially as a convenient virtual 
image to take into account simultaneously all 
phases of multi-purpose flying missions, 
different scripts of rescue in emergency 
situations, or a set of variants subjected to 
random disturbances, etc. 

Among optimization methods the 
Pontryagin maximum principle (PMP) [1] 
seems preferential for the effective solution of 
this type of practical problems due to following 
essential advantages over direct optimization 
methods and approximate engineering 
approaches: 
• The PMP does not require a priori definition 

of the optimal control law structure, as it 
results from the problem solution; 

• The PMP determines the optimal control in 
a function space with a high accuracy 
solving the two-point boundary value 
problem with a small number of parameters 
(does not exceed the state space dimension); 

• First integrals of state and conjugate systems 
as well as the physical meaning of conjugate 
variables as influence functions allow to 
form criteria of the objective software test, 
calculation accuracy control and, if 
necessary, to reveal the source of errors in 
blocks forming the optimal control, 
boundary conditions, and conjugate system; 

• The PMP solution of the conjugate system 
allows defining an influence on the 
functional of small variations of problem 
parameters (characterizing aerodynamic 
layout, propulsion system, boundary 
conditions, constraints, etc.) and small 
systematic and random external disturbances 
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(variations of atmosphere thermodynamic 
parameters, a wind, etc.) practically without 
additional computing expenditures. 

Branched trajectories optimization 
methods using the PMP are based in [2-4]. The 
automated program package realizing this 
approach both for qualitative studies of the 
optimal solutions and for the practical analysis 
of particular aircraft is submitted in [5]. Its 
efficiency for the optimal reduction of fall zones 
for aerospace transport systems is demonstrated 
in [6]. In [7] the PMP is used for synthesis of 
STS optimal fail-safety trajectories. In this case 
the trajectory side branches represent virtual 
images of aircraft return trajectories in 
emergency situations. Since failures can happen 
in any point of the main trajectory, side 
branches generate the continuum.  

 This paper considers two groups of 
branched trajectories. The first group 
corresponds to real physical processes, 
associated, for example, with separation of 
some parts from aircraft. The second is virtual 
one including possible trajectories under the 
influence of different random factors, for 
example, atmospheric disturbances. The second 
group of branches can contain either a finite set 
of trajectories, if just extreme disturbances 
appropriated to an assigned level of the event 
probability (the “minimax” approach) are taken 
into account, or the continuum (tubes of 
trajectories), if all random realizations are 
considered (the Monte-Carlo technique). 

Numerical results are demonstrated below 
in the framework of the "minimax" approach. 
Thus the optimal control provides the maximum 
of the functional (the injected mass). 
Atmospheric disturbances are set on unguided 
segments of separated parts return branches to 
maximize the area of fall points dispersion, thus 
creating the worst conditions to meet the 
relevant boundary restrictions: the dispersion 
area has to place into admissible fields (see 
Figure 1).  

 

2  Problem Statement 
It is supposed, that the aircraft motion on each 
trajectory branch is described by a normal 
system of ordinary differential equations [13]: 

( ) ,
m

,,t,,,
dt
d

⎭
⎬⎫

⎩
⎨⎧ −+++== µgATvfεuxfx (1) 

where { } Xvrx ∈= T,, m is the state vector, r is 
the radius vector, v = Vev is the velocity vector, 
ev is the unit velocity vector, m is the mass, is 
the right part vector, is the control 
vector, 

f
Uu∈

Dε∈  is the disturbance vector, 
( )fi

j ttt ,=∈T  is the time, g is the gravity 

acceleration vector, ( ωvRωΩ )×+×= 2  is the 
acceleration vector due to coordinate system 
noninertiality,  is the Earth rate vector, 

o     Rr R +=  is the vector from Earth center, 
 is the vector from Earth center to the origin 

point, µ is the mass flow rate, 
o R

TeT ⋅= T  is the 
thrust vector,  is the thrust unit vector, A is 
the aerodynamic force vector: 

Te

( ( ( )( )) ) ,, vv0
2 eeeeA τα

α
τ

α ++−ρ= DCDCVa LLr (2) 

ra is the parameter of disdimensiality, ρ is the 
atmosphere density, eτ is the vehicle 
longitudinal unit vector. The following form for 
aerodynamic coefficients is used [2]: 

Dadm σ

Figure 1. The scheme of considered optimal 
branched trajectories. 
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α+=α α
α cos,sin = 0 DDDLL CCC ,  (3) 

where  is the angle of attack. The coefficients 
 and depend on the Mach number M 

and the altitude h.  

α

0 , Dα
LC αD

The boundary conditions as well as 
matching conditions are specified in initial, 
intermediate and final points of the branches 
[4]. Boundary conditions also can depend on 
random factors. 

It is required to find such control functions 
 on all branches that the functional 

of the problem, the inserted-into-orbit mass, 
reaches the maximum at all limitations, 
including boundary conditions, on all set of 
perturbed trajectories. In particular, it is 
required that the areas 

{ Teu ,τ=opt }

σ  of dispersion of 
separated part fall points belong to a set of 
admissible fields  (see Figure 1):  admD

admD⊂σ .    (4) 
The Pontryagin maximum principle for 

branching processes is used to solve this 
problem. The state and conjugate systems are 
written taking into account only systematic 
disturbances, such as seasonal deviations of 
atmosphere thermodynamic parameters and a 
systematic latitude wind. Random disturbances 
are used at formation of terminal requirements 
and limitations on the control and flight 
regimes. 

It is supposed, that random disturbances of 
the trajectory are small, so their influence on 
some function ( )fL x  of the state vector 

 at the branch right end can be 
estimated by the Bliss formula [8]: 

)( ff txx =
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Here,  is the conjugate vector obtained 
from the solution of the Cauchy problem: 

ψ
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where  is the condition of implicit 
determination of the right end of the trajectory 
(the branch). The coordinates of the conjugate 

vector corresponding to the radius vector, 
velocity and mass are denoted ,  and , 

so 

0))(( =ftG x

P S mP
{ }T,, mPSPψ = . The vectors  in (5), (6) 

correspond to the optimal solution of the 
problem (1) - (4) without random disturbances  
(

ux,

0=ε ). 

3 Models of Disturbances 

The following atmosphere disturbances are 
considered: the density ρ , pressure p  and 
sound speed , and a horizontal wind with 
velocity vector . 

sa
W

In indignations we shall allocate regular and 
casual components: 

ρ∆ρρ += sys , aaa syss ∆+= ,   
WWW ∆+= sys , ,   (7) ϕϕλλ ∆∆∆ eeW WW +=

where  is the longitude projection (in the 
east direction),  is the meridional projection 
(to the north),  and  are unit vectors in 
corresponding directions.     
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The random components are defined in the 
form of a canonical decomposition: 
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where ( )T
21 mkk ,...,,..., += ξξξξ  is a vector of 

independent random numbers distributed under 
the central normal law with the unit dispersion, 
ϕ  is the latitude, Т is the day of year. 

To describe the disturbances of 
aerodynamic coefficients they usual use the 
uniform distribution law. Variations of the state 
vector at separation points (just after), 
apparently, can be described by the normal 
distribution law. 
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4 Separated Part Trajectories  

Atmospheric disturbances of the right parts of 
the equations (1) for passive motion of aircraft 
can be presented as follows: 

WAAAA ∆∆∆
ρ
ρδ ρε Wa a

a ++= ,    (9) 

where 
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Variations of aerodynamic parameters , 
 cause the following change of the 

aerodynamic vector: 
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A projection of displacement of the fall 

point from nominal one onto a unit vector , 
belonging the local horizontal plane, is 
determined by the Bliss formula (5) for random 
disturbances (8), (9): 
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The influence of variations of aerodynamic 
parameters ,  and  on fall point 
dispersion is defined by (5), (10) as follows: 
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The variation of the initial state vector (at the 
separation point) causes the following deviation 
of fall point in the chosen direction : Le

( ) ( ) ( )imiii mPL ∆∆∆∆ ++= rPVS ,, .   (13) 
In formulae (11) - (13) the solution of the 

conjugate system (6) is used with the following 
transversality conditions on the right end (at the 
fall point): 
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,
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where  is the unit vector along Re R . 
To obtain the longitudinal range increment 

it is necessary to set in (14) 
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Let us define the maximal deviation from 
the nominal fall point in the direction  as Le

)(max
2max ξ

ξ
LL

mkRD
∆=∆

+⊂∈
.    (15) 

If the set  is a hypersphere D

⎭
⎬
⎫

⎩
⎨
⎧

κ≤ξ=== σ

+

=

∆

∑
mk

j
jsDD

2

1

2: ξξ limited to a 

surface with equal probability density, equations 
(11), (15) lead us to the “worst” (according to 
the “minimax” approach) value of the random 
vector and the maximum fall point deviation: 

ξ
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If the set  is a hypercube D
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In Figure 2 calculation results of the 
maximum fall point deviation of the first-stage 
booster due to the random wind by the above 
mentioned technique are shown at = 1. At 
the moment of the booster separation the 

following trajectory parameters were set: 
V = 1669 m/s, h = 49468 m, θ =   33.57° for the 
optimal trajectory with the gravitational turn 
control program on the first-stage atmospheric 
flight and V = 1780.1 m/s, h = 39362 m, 

σκ

θ = 25.25° for the optimal atmospheric flight. 
Spread of trajectory parameters at the separation 
moment and aerodynamic coefficients was not 
taken into account here. 

Let the nominal motion of a separated part 
occurs with zero effective lift. Then, in a case 
when  is the increment of the longitudinal 
range the conjugated vector S in (11) can be 
approximately determined by known integrals 
of motion in the Newtonian central gravitational 
field [9] (in the inertial coordinate system): 

L∆
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Figure 2. The maximum deviation of

first-stage booster fall points due to the
random wind as a function of admissible fall
area range Ladm for two first stage ascent
programs: the gravitational turn and the
optimal. 

gravitational turn

optimal control

Ladm, km 

∆Lmax, m 

  
Figure 3. The comparison of the analytical 
estimation (18) of the conjugate variables with 
the precise numerical results. 
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numerical results
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numerical results

analytical estimation by (18)
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The integrals (18) of the conjugate system 
allow calculating quadratures in (11). For 
practical tasks the formulae (18), as a rule, 
provide accuracy sufficient for an estimation of 
dispersion in a plane of separated part falling. In 
Figure 3 the estimation (18) is compared to the 
conjugate variables obtained on the basis of 
numerical integration of the conjugate system 
for typical ballistic trajectories of launcher 
separated parts.  

5 Testing Technique 

The optimization technique stated above is 
realized in updating the program complex 
ASTER [5]. To solve complex applied tasks of 
launcher ascent optimization in view of features 
of a thrust profile and loading restriction at a 
powered ascent leg, of admissible fall fields of 
separated boosters and a nose fairing, etc., a 
verification of the model and program is of 
principal importance.  

Before calculating it is necessary to be 
convinced of correctness of the program work. 
After that the accuracy of optimum trajectory 
determination should be estimated. As a rule, 
the trajectory optimization error should not 
result in relative mistake of definition of the 
maximal inserted mass more than 10-5. It means,  
for example, if the inserted mass is 20 tons 
(launching mass is 600-800 tons) the mistake 
has not to exceed a tenth part of kg. It is 
necessary to emphasize, that here the question is 
not only and not so much the accuracy of 
trajectory integration (as a rule, it is 5-7 orders 
higher), but a total error of determination of the 
optimum solution. The total error depends 
appreciably on such factors, as an accuracy of 

the multipoint boundary value problem solution, 
a smoothness of the right parts of the motion 
equations, an accuracy of definition of 
discontinuous moments of these functions and 
their derivatives, and many others.  

The fulfillment of these requirements is 
possible when using indirect methods of 
optimization. In the complex ASTER the special 
procedures of all-round testing of the program 
are provided. It is important, that they are based 
on objective criteria, such as conservation of the 
first integrals, conformity of the conjugate 
vector to the physical sense as a function of 
influence of current state vector variations on 
the optimum functional, etc. 

 

 

0 200 400 600

0

5E-008

1E-007

 
Figure 4. The Hamiltonian time-histories

on the optimal branched ascent trajectory for
three integration time-grids: nominal, twice
rarefied and twice condensed. 

H

twice rarified 

The changes of the Hamiltonian 

 on the optimal branched 
ascent trajectory of the launcher are 
demonstrated in Figure 4. Calculations are 
carried out for three integration grids: nominal, 
twice rarefied and twice condensed. It is visible, 
that fluctuations of the Hamiltonian do not 
exceed 10

( t,,uxfψT∆
=H )

-7 -10-8, and reduction of the 
integration step by half decrease it in one-two 
orders. Similar dependence on the integration 
step is more reliable indication of correctness of 

twice condensed 

nominal 

time, sec
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the program, than a Hamiltonian value because 
the Hamiltonian is necessary to be compared to 
zero. Nevertheless, the following reasons can be 
useful for Hamiltonian value comparison. The 
physical sense of the Hamiltonian is a partial 
derivative of the optimum functional (the 
maximum inserted mass ) on the current 
time, i.e. 

fm

( )if

t

t
f ttdtm

f

i

−≈=δ ∫ HH .   (19) 

Let us fmδ in (19) is the admissible error of 
calculation of the functional, then the estimation 
of the permissible deviation of the Hamiltonian 
can be represented as 

( )if

f

tt
m
−

δ
<H .    (20) 

If calculations are carried out in a 
dimensionless form (the characteristic time is 
the satellite period on the conventional circular 
orbit of the Earth radius, the characteristic mass 
is the start mass), than equation (20) has the 
following numerical estimation: 

87 1010 −− −<H . 
The second stage of the verification of the 

program is connected to check of conformity of 
the conjugate variables to their physical sense as 
influence functions of the current state variables 
on the maximum inserted mass. For example, in 
Table 1 coordinates of the conjugate vector 

 are compared to corresponding 
coordinates of the gradient 

{ SPψ ,= }

⎭
⎬
⎫

⎩
⎨
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∂
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∂
∂

=
∂

∂
Vrx

maxfmaxfmaxf m
,

mm
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points of the optimum trajectory. The gradient is 
calculated approximately by numerical 
differentiation on the basis of the central 
differences: 

( ) ( )
h

hh

2
−−+

≈
∂

∂ jmaxfjmaxf

j

maxf xmxm
x

m
 , 

where is a "disturbed" - coordinate of the 
state vector . A step value  is selected from 
a condition of a minimum total (methodical and 
rounding) errors of the numerical differentiation 
[12]. 

jx j
x h

6 Numerical Results 

The developed optimization technique has been 
applied to the calculation of the optimal 
branched trajectories of the three-stage launcher 
of Proton type inserted the payload into the low 
Earth orbit. Four admissible fall areas for three 
separated boosters and the fair are assigned 
downrange. 

The calculations of the optimal branched 
trajectories have been carried out taking into 
account the systematic season (December) wind 
and without wind. 

 
Table 1. The comparison of the numerical 

influence functions with conjugate variables on 
the optimal branched trajectory just after first 
staging. 

P  0.542e-02 0.453 -0.400e-03 

r∂
∂ maxfm

 0.543e-02 0.454 -0.416e-03 

S  0.141 0.938e-01 -0.435e-03 

V∂
∂ maxfm

 0.141 0.940e-01 -0.436e-03 

Figure 5 shows differences of state 
variables (the speed, trajectory angle and 
altitude) along the optimal trajectories due to the 
wind in a case of the gravitational turn program 
for the first stage. The optimal trajectory 
without the wind has the functional in 0.4% 
more then with it. 

Table 2 demonstrates the influence of the 
fall point range deviation due to the random 
disturbances on the functional and optimal state 
variables at the fist-stage separation point. 

 

Table 2. 
∆LI, km maxfm hsep, km Vsep, m/sec θsep, deg 

-15 0.936 55.66 1603.6 45.8 

-10 0.9453 55.01 1610.3 44.32 

-5 0.9564 54.17 1619.1 42.49 

-0 1 49.47 1669 33.57 

2.5 0.9869 51.26 1649.8 36.73 
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7 Conclusions 

The experience of development and practical 
use of the technique and automated complex of 
programs of through optimization of branched 
trajectories on the basis of the Pontryagin 
maximum principle, including above mentioned 
results of research on optimization of branched 
trajectories of compound space transport 
systems in view of atmospheric disturbances 
and restrictions on separated parts fall areas, 
confirms broad opportunities of such approach 
for complex research of optimal motion of 
complex dynamic systems, including:  

 supplying with objective multilevel 
verification of the software,  

 the control of accuracy of the optimum 
solution obtained,  

 high self-descriptiveness,  
 automation of the procedure of solution 

of multipoint boundary value problems 
of the considered class without heavy 
requirements to the choice of an initial 
conjugate variable values,  

 ability of a further evolution of 
methodical and information 
opportunities, etc.  
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Figure 5. The systematic wind influence on the state variables of the optimal branched space 
launcher trajectories. 
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