
25TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES 
  

OPTIMIZATION OF THE AFT-BODY GEOMETRY 
OF AXI-SYMMETRIC SLENDER BODY 

BASED ON WAVE DRAG CONSIDERATIONS 
  

Harijono Djojodihardjo1, Eddy Priyono2 and Lavi R.Zuhal3  
Department of Aeronautics and Astronautics, Institut Teknologi Bandung 

Jalan Ganesya 10, Bandung 40132, Indonesia 
harijono@djojodihardjo.com

 
Key words: Aerodynamics, Computational Fluid Dynamics, Optimization, Slender body, Transonic Flow, 

Supersonic Flow, Axi-symmetric Flow, Shock-generation 

 
Abstract  
The objective of the present work is to establish a 
comprehensive, universally valid, elegant and yet 
simple method to design slender axisymmetric body 
of minimum wave drag in transonic and supersonic 
flows, taking advantage of the progress of 
computational aerodynamics and optimization 
technique. Computational aerodynamics will also be 
used as a tool for numerical experiments in gaining 
physical understanding of the drag mechanism due 
to the geometry of the aft-body, such as the 
correlation between wave drag and wave 
distribution of the aft-body geometry, by analyzing 
previously known optimum aerodynamic shapes as 
well as verifying the validity of those obtained 
through minimization scheme. Due to its universality 
and elegance, the Modified Feasible Direction 
(MFD) based optimization program will be utilized, 
along with the linear slender body aerodynamics, 
also due to its elegance  and which could shed some 
light on the generic optimization scheme.  The 
efforts will be focused on inviscid flow. Based on the 
physical understanding gained above, a practical 
method of reducing the wave drag of a given body is 
developed for both bodies with pointed end and with 
base area, using shock wave generator at a 
particular location on the aft body.   
Upon validaton of the MFD optimization program 
by bench-marking the results with the existing 
optimum axi-symmetric slender bodies, the program 
is used to search for optimum aft body geometries 
which minimize the wave drag. The results show that 
the MFD optimization program can be effectively 
utilized in an aerodynamic optimization problem.  

 
1. Introduction 
 The drag minimization of slender axisymmetric 
body, particularly in the transonic and supersonic 
flow regimes, has received much interest since it is 
one of the fundamental problems of aerodynamics. 
Both theoretical and practical interest leads to the 
efforts to find the area distributions of slender axi-
symmetric bodies, which for a given constraints, 
such as length, volume, maximum diameter or else, 
give the minimum possible wave drag. Several 
geometrical optimization schemes have been utilized 
for optimum aerodynamic performance. Pioneering 
effort in the geometrical optimization of bodies of 
revolution, in particular slender axisymmetric body, 
for minimum wave drag, has been carried out by von 
Karman[1], followed by others [2]-[8]. Linearized 
aerodynamic approach as solution to the wave 
equation allows the drag to be superposed of conical 
solutions of an integral over a distribution of sources 
in supersonic flow, where the sources are equivalent 
to the local rate of change of the cross-sectional area 
of the body along its length. Using calculus of 
variations, minimum-wave-drag bodies for various 
isoperimetric conditions were determined. Families 
of bodies of revolution known as von Karman’s 
Ogive [1][2], Sears-Haack Body( Sears [3], Haack 
[4])., Adams-Haack Body etc are well known 
slender bodies of revolution of minimum wave drag 
with various constraints. Later on Ward[5] derived 
the slender-body approximation for the drag of 
bodies with a non-zero rate of change of cross-
sectional area at the base. Adams[6] considered 
several minimum-wave-drag problems on the basis 
of Ward’s equation, and arrived at similar minimum-
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wave drag body as von Karman’s, i.e. it has zero 
slope at the base. Parker [7] presented a linearized-
drag integral for bodies of revolution in a double 
integral form depending explicitly upon the source-
distribution function, which is applicable to a larger 
class of bodies than the usual slender-body, and 
which reduces to Ward’s drag expression in the 
proper limit, in the supersonic range. Adams [6] and 
Harder and Rennemann[8] carried out similar 
analysis on boattail bodies of revolution having 
minimum wave drag.  

With the progress of CFD that has taken place to 
date, codes are available to look into the detailed 
flow characteristics and the resulting wave drag, in 
particular due to the geometry of the aft-body. To 
the authors’ knowledge, a universally valid 
geometrical design technique for optimum drag of 
axi-symmetric bodies has not been comprehensively 
available in the literature and need be further 
elaborated. Therefore it is the objective of the 
present work to look carefully into the drag 
mechanism due to the geometry of the aft-body, 
since such body has found many applications, also in 
the light of boattailing and rounding off techniques. 
The latter may involve shock-boundary layer 
interaction, which should be taken into account, 
either a priory or a posteriori, in the optimization of 
the geometry for minimum total drag.  Hence the 
present study is focused on finding a general 
optimization scheme, that may give novel results. 
Although the study is focused on boattail axi-
symmetrical bodies, the study of pointed bodies are 
also carried out to shed some light into the general 
optimization scheme as well as to understand the 
detailed characteristics of drag mechanism. 
Furthermore, the study is devoted into axisymmetric 
body without lift generation. A  preliminary study 
carried out by the authors[9] to look into the 
influence of viscosity has confirmed earlier results 
of Heaslet and Fuller[10] that the viscous 
contribution to the drag is relatively small in these 
cases. 

Basically, the drag force is divided into two 
categories, the drag due to skin friction, known as 
skin friction drag, and drag due to pressure exerted 
by the fluid to the surface of the object which gives 
rice to forces acting normal to the boundary surface, 
known as pressure drag. The pressure drag can be 
differentiated further into drag due to vorticity 
released to the flow, and wave drag, which is present 
only in supersonic flow.  
 The analytical and computational studies related 
to the minimization of drag by geometrical 

considerations will start with inviscid flow, and the 
effect of viscosity can later on be incorporated. For 
many engineering purposes it is possible to make 
useful predictions and design calculation for a steady 
flight by linearized model and use of the principle of 
superposition for drag due to viscosity and that 
occuring in inviscid medium. For supersonic flight, 
first order analysis for inviscid fluid has been 
adequate. The perturbation velocity potential of the 
flow field satisfies the wave equation, and the 
pressure drag of non-lifting configurations results 
from the accumulation of energy in the waves 
induced by the body during its motion. 

The analysis for such inviscid flow in the 
transonic and supersonic  regime for axisymmetric 
flow has been comprehensively treated by Ashley 
and Landahl [11], using singular perturbation 
technique and mathematical approximations  
introduced by Oswatitch and Keune[12]. The drag 
formulation used for in the optimization search 
following certain optimization schemes will follow 
such an approach, due to its powerfulness as an 
analytical tool.  

This method is convenient to reveal the generic 
contributions of geometrical elements to the drag, and 
will be useful in understanding the characteristics of 
several slender axi-symmetric body configurations. 
Classes of axi-symmetric slender bodies will be 
identified, including their limitations. Corresponding 
optimum geometry problem will be defined and 
formulated through analytical means. Transonic Small 
Perturbation Method Routine that can also be used for 
rapid computation to be incorporated in the 
optimization scheme has also been developed 
(Djojodihardjo, Widodo et al, [13], and Djojodihardjo 
& Widodo [14]). 

2. Fluid Dynamics Governing Equations  

Consistent with our approach to look only into the 
inviscid flow characteristics, assumptions will be 
made in the Governing Equations for transonic and 
supersonic flow, that the flow is steady, irrotational 
and adiabatic with no energy transfer, no body 
forces and no shear stresses (inviscid flow).  
For the inviscid flow analysis to be incorporated in 
the optimization scheme, in particular for the drag 
prediction to be utilized as the Objective Function in 
the MFD optimization approach, first order slender 
body aerodynamics as approximation originally 
formulated by von Karman & Moore (Ashley and 
Landahl[11], Liepmann and Roshko[15]) will be 
followed.  The drag coefficient for axi-symmetrical 
slender body can then be expressed as[11][15]: 
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where, 
 S is the  cross sectional area  S(x) = 2πR2 , S’(x)  = 
2πRR’  is the first derivative of S(x), S”(x) = 
2π(R.R” + R’.R’)  is the second derivative of S(x) 
and L  = total length of body 
Equation (2.1) was first given by von Karman. For 
bodies with pointed nose and end or ends  with the 
slope of the base equal to zero, equation (2.1) 
reduces to 
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                       (2.2) 
Equation (2.2) implies that the drag coefficient of a 
slender body in supersonic flow using slender body 
approximation is independent of Mach number.  

3. Optimization Approach using Most Feasible 
Direction (MFD) Method 

3.1. Modified Feasible Direction (MFD) 
optimization  
Geometrical optimization using equation (2.1) or 
(2.2) then give rise to the variational problem that 
can be treated with standard method, Through such 
analysis, an optimum shape of a slender body of 
revolution with pointed nose and has a  base area 
known as the von Karman ogive[1][2] is obtained.  
Similar variational optimization scheme leads to 
other minimum wave drag geometries mentioned 
before[3]-[8].  
 
The present approach is intended to look into finding 
other optimum slender body of revolution shapes by 
carrying out optimization scheme which may cover a 
larger class of bodies, through numerical approach. 
For that purpose, the Modified Feasible Direction 
(MFD) method will be followed in the optimization 
scheme. This method incorporates information about 
the constraints directly into the optimization 
problem rather than converting the problem to an 
equivalent unconstraint  one. 
Since the objective of the optimization scheme is to 
find body-of-revolution geometries that have 
minimum drag in transonic and supersonic inviscid 
flow, the objective function is defined as the wave 
drag. For the geometries to be acceptable, a certain 
set of specified requirements known as constraints 
should be specified.  These constraints can be 

defined as the length and diameter, maximum cross 
sectional area and slope of the contour of the body. 
In addition, the shape of the aft section of axi-
symmetric slender body can be assumed to be the  
function of the design variables and will be the focus 
of the present work. 
The basic concept of Modified Feasible Direction 
(MFD) optimization can be outlined as follows. Let 
the wave drag as the objective function F, which 
should be minimized, be formulated as  

F ≡ F( X )                                     (3.1) 
a function of the vector of design variables X , 
which will be calculated successively following the 
optimization iteration scheme: 
 1 *.q q qX X α−= + S         (3.2)   
where q is the iteration number, Sq is the search 
direction, and α* is a scalar multiplier determining 
the change in X  for this iteration. The search 
direction S which leads to the minimization of F 
should be sought at each iteration scheme to update 
the X  vector in the process. The search direction 
will rapidly reduce the objective function but should 
be maintained within a feasible design. Following 
the MFD scheme (Vanderplaats, [16][17]), the 
general statement of the problem to find the 
minimum of the Objective function )(xF  subject to 
inequality constraint as well as side constraints is 
then given as follows : 
Minimize the Wave Drag as the Objective function  
                    ( )F X  -                  
(3.3) 
Subject to a set of Inequality Constraint          

( ) 0jg X ≤     j = 1,…,ng       (3.4) 
a set of Equality Constraint              

( ) 0kh X =     k = 1,…,nh       (3.5) 
a set of Side Constraint 

l
i i

u
iX X X≤ ≤   i = 1,…, n,               (3.6) 

Where  [ ]1 2, , ......, nX x x x=    (3.7) 
is the vector of Design Variables. 
Equation (3.2) represents a one dimensional search 
since the update on Xq depends only on the single 
scalar parameter α, while α* is the value of α that 
yields the optimal design in the direction defined by 
Sq.  At each iteration step, a new search direction 
Sq+1 must be found to reduce the value of the 
objective function F (i.e.”the elevation at the hill”) 
but still satisfies the constraints, i.e. the vector S

r
 is 

kept within the usable-feasible direction (“the inside 
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the constraint fence”). At each step, a usable-feasible 
direction will be sought, where a usable direction is 
one that moves downhill while feasible direction is 
one that keeps the target value inside the fence. 
The Kuhn Tucker condition is also utilized to insure 
that the vector  meets the optimum design 
requirements[16].   

X
r

 
3.2 Finding the Search Direction  qS  
The first step in finding the search direction is to 
determine which constraints, if any, are active or 
violated. An active constraint is defined as one with 
values ranging between a small negative number, 
here designated as CT, and a small positive number, 
here designated as CTMIN. Typical values for CT 
and CTMIN are -0.03 and 0.003, respectively. 
Depending on the values of the constraints compared 
to CT and CTMIN, the constraints can be 
differentiated into three categories.  
If: 

CTxg j <)( , then the constraints are non-active          
    (3.8) 

CTMINxgCT j ≤≤ )( , then the constraints are 
active              (3.9) 

CTMINxg j >)( , then the constraints are violated
              (3.10) 
Using the active constraint criteria, the algorithm 
first sorts all the constraints and identifies those that 
are active or violated.  Then the gradients of the 
objective function and all the active and violated 
constraints are calculated. Thereafter, a usable-
feasible search direction is found (if one exists).  In 
this case, there are three possibilities : 
(1) There is neither active nor violated constraints. 
(2)  There are active constraints but no violated 

constraints. 
(3)   There are one or more violated constraints. 
 
3.3  Finding the scalar parameter α* 
Having determined a usable-feasible search 
direction, the next problem is to determine  the scalar 
parameter α* , i.e. the extent of how far the design 
can be moved in that direction.  The basic concept is 
to try some initial value α* in Equation (3.2) and 
evaluate the corresponding objective and constraint 
functions.  At the beginning of the iteration process, 
the values of the objective and constraints are known 
at lower value α* = 0 and upper value α* = α1 where 
α1 is the initial estimate for α*  given by Vanderplaats 
[16] :   
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3.4  Convergence Criteria  
The optimization scheme carried out through an 
iterative process requires convergence citeria. There 
are two kinds of criteria, i.e. relative and absolute 
criteria.   The first criterion requires that the relative 
change in the objective function between iterations 
to be less than specified small  numerical tolerance. 
The second criteria is that the absolute change in the 
objective function between the iterations is less then 
another specified small numerical tolerance. 
Both criteria are used since if the objective function 
is large, the relative change between two successive 
iterations is an indication of convergence. If the 
initial design variables is non-feasible (i.e. the 
constraints are violated), the first priority is to 
overcome these violations and find a feasible 
solution; the absolute change is relevant. The detail 
of these procedure can be found in ref.[16] and [20].  

4. CFD Analysis of Selected Axi-symmetrical 
Slender Body  

4.1.CFD Analysis of Sears-Haack Geometry 

In the following example, CFD numerical 
computation approach is carried out for Sears-Haack 
geometry. The flow characteristic for inviscid flow 
condition at Mach number of 1.2 and 3.0. is 
evaluated. 

 

 
Fig.4.1-a-b  Mach Number Contour of Sears-

Haack at M = 1.2  and  3.0 
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Fig. 4.2-a-b  Static Pressure Contour of Sears-Haack at  

M =  1.2 and 3.0 
The Mach number contours indicates that the shock 
wave angle at the nose as well as at the aft-body 
tends to be deflected downstream as the Mach 
number is increased. The location of the shock wave 
at aft-body also tends to move backward if  the 
Mach number is increased.  
As shown in Fig. 4.1-a-b and Figure 4.2-a-b, the 
attached shocks occurs at the nose and the shock 
angle depends on the free stream Mach number. As 
the flow velocity is increased, expansion waves 
move downstream of the mid section. The shock 
wave appears again adjacent to the pointed end, 
accompanied by pressure increase.  The downstream 
pressure for free stream Mach number of 1.2 is 
lower than the downstream pressure for free stream 
Mach number of 3.0.       
Two methods are utilized to calculate the drag 
coefficient of the Sears-Haack geometry. The 
analytical approach using slender body 
approximation formula given in [11] gives Cd = 
0.444.   The CFD computation of the drag 
coefficient of Sears-Haack geometries at M = 1.2 
and  at  M = 3.0 is 0.34037479  and 0.14974916 
respectively. The CFD approach is carried out to 
display the flow field of the Sears-Haack body at 
Mach numbers of 1.2 and 3.0. 

From the discussion of the results, one may conclude 
that there are shock waves at the aft body region for 
the axi-symmetric slender body with pointed end. 
Intuitively, the variation of the distribution of waves 
on the aft-body will cause the change of the wave 
drag.  Therefore, the study for the modification of 
the distribution of shock waves is required. This is 
carried out subsequently as further elaboration of the 
study reported in ref.[20]. 

4.2 Sears-Haack Geometry with Shock Generator 

CFD analysis of section 4.1. shows  that the shallow 
aft-body generate a weak expansion that is followed 
by a weak shock.  On the contrary, steep aft-body 
generates a strong expansion and followed by a 
strong shock that result in a higher wave drag. 
In this section, the aft-body wave distribution will be 
intervened by introducing aft-body shock wave, with 
the purpose to investigate further the relationship 
between the aft-body wave distribution and the wave 
drag. To this end, a shock generator (relatively small 
flat obstacle) will be placed to force a shock-wave to 
occur at a specific location. The shock generator is 
placed at various location at the rear part of the 
body, and the drag coefficient for the corresponding 
shock location will be recorded. The Sears-Haack 
body with shock generator positioned at station 400, 
600 and 750 measured from leading edge will be 
evaluated at Mach number of 1.2.    

 

 

 

Fig.4.3-a-b-c Static Pressure Contour of Sears-Haack 
with Shock Generator at x = 400, 600, 750 for Mach = 
1.2 
The CFD results of Sears-Haack body with Shock 
Generator are displayed on Fig. 4.3-a-b-c to Fig. 4.5-
a-b-c. For a free stream Mach number of 1.2, similar 
to earlier result without shock generator, there 
occurs a shock wave at the nose; the local velocity 
gradually increases along the front surface, but the 
flow on the aft-body changes due to the presence of 
the shock generator. The general feature of the flow 
is characterized by the presence of the shock wave 
occurring upstream of the shock generator location. 
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Fig. 4.4-a-b-c  Pressure Coefficient of Sears-Haack 
with Shock Generator at x = 400, 600, 750 for M = 1.2 

 
This is then followed by the expansion wave which 
occurs downstream of the shock generator. Near the 
pointed end, another shock is generated.  However, 
this shock is much weaker than the first one.   

Table 4.1 summarizes the numerical results obtained 
for the drag components of the Sears-Haack 
geometry with various location of shock generator. 
Among these geometries, Sears-Haack geometry 
with shock generator at 750 mm (most rearward) 
seems to give rise to lower drag components.  

Table 4.1  Drag Coefficient for Sears-Haack with  
and Without Shock Generator at Mach = 1.2 

 
No Geometry Drag Coeff. 

1 SearsHaack without SG 0.34037479 

2 SearsHaack with SG at 400 0.29200521     

3 SearsHaack with SG at 600 0.26400607     

4 SearsHaack with SG at 750 0.21099250     

  
This results indicates that for a given body, 
especially slender body with pointed end, the drag 
coefficient can be modified by altering the aft-body 
wave distribution that results in a lower drag. 
 
4.3 MBB Experimental Bodies 
MBB (Messerschmitt Bolkow Blohm) has carried 
out experiments to evaluate drag of a family of 
slender bodies of revolution as reported by Lorenz-
Meyer and Aulehla [18]. MBB geometry shown in 
Fig.4.5 is an axi-symmetric slender body created by 
MBB, consisting of two parts, fore-body and aft-
body, with the total length of 800 mm and max 
diameter of 120 mm.    The specific location the 
starting point of the aft-body is predetermined. The 
fore-body is characterized by power series, as  
elaborated in [20]: 
Yf  =   af .x3  + bf .x2  + cf .x  (4.1) 
Where :    af  =  ymax./x1

3, bf   =  - 3.ymax/x1
2 and cf  =  

3.ymax/x1 
The aft-body geometry characterized by the power 
series :  Yh  =   ah.x3  + bh .x2  + ch .x + d   (4.2) 
where : 
ah   =  ymax/(x2 – x3)3 
bh   =  - 3x2. ymax/(x2 – x3)3 
ch   =  3x2

2 . ymax/(x2 – x3)3 
d    =   (x3. ymax/(x2 – x3)3).(3x2.x3  - x3

2 – 3x2
2) 

ymax  =  maximum radius  =  60 mm 
x1     =  midpoint of body =  400 mm 
x2     =  starting curve measured from leading edge 
x3     =  total length of body  = 800 mm 
In this work three types of the MBB geometries will 
be reevaluated by utilizing the CFD approach, and 
carried out at the transonic flow (Mach = 1.2) and 
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supersonic flow (Mach = 3.0).   The CFD numerical 
approach is carried out on the MBB geometries in 
order to obtain their physical  flow characteristic 
indicative as flow over an axi-symmetric slender 
body with pointed end. 
By determining the starting point of the aft-body 
geometry several MBB bodies can be developed.  
The CFD investigation is carried out for three MBB 
geometries namely MBB1 (MBB geometry with the 
starting point of the aft-body at midpoint), MBB3 
(MBB geometry with the starting point of the  aft-
body at 0.6875 length of body) , MBB5 (MBB 
geometry  with starting geometry at 0.8125 length of 
body) at Mach = 1.2 and Mach = 3.0. in inviscid 
flow. 

 

 

 
Fig.4.5-a-b-c  Static Pressure Contour of MBB-

1,MBB-3, MBB-5 at  M = 1.2 
 

 

 

 
Fig. 4.6 a-b-c  Static Press Contour of MBB1, MBB3 and 

MBB5 Aft-body  at  Mach  = 1.2 
The following table summarizes the CFD numerical 
results obtained for the drag components of the axi-
symmetric slender body with pointed end for three 
geometries with different aft-body.  The MBB-1 
geometry seems to give the lowest wave drag 
components compare to the others, as shown in 
Table 4.2 

                   Table  4.2  Drag Coefficient  of  MBB  
Experiment Body 

Drag  Coefficient  
No 

 
GEOMETRY M = 1.2 M = 3.0 

1. MBB-1 0.26769474 0.18607837 
2. MBB-3 0.37780611 0.21508539 
3. MBB-5 0.43300818 0.23530491 
 

CFD results of the MBB experimental geometry 
reveals several features.  The MBB geometry with 
steep aft-body has a higher wave drag than the 
others.  The MBB geometry with shallow aft-body 
has relatively lower wave drag.    There should be an 
optimum gradient of the aft-body, which gives 
minimum wave drag. The next section is devoted to 
address this notion, i.e to find the optimum MBB 
geometry by using the MFD numerical approach. 

5 Application of MFD Optimization for 
Wave Drag Minimization of Slender Body  
The conservative method to obtain the optimum 
geometry of axi-symmetric body having minimum 
drag in the transonic as well as supersonic flow 
regime can be carried out using traditional iteration 
process. The iteration process needs more time to 
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arrive at the optimum result depending on the 
complexities of the problem. Furthermore the 
traditional iteration process does not guarantee that a 
global optimum is achieved. The MFD optimization 
is a structured numerical optimization, so that it can 
be applied to minimize wave drag of any axi-
symmetric slender body. The structure of the 
optimization consists of an objective function, 
equality/inequality constraints as well as side 
constraints,  and the design variables.  In this work, 
the objective function for solving the optimization of 
axi-symmetrical slender body is the wave drag 
equation (2.1).  

The objective function CD  is expressed in terms of 
S”(x), and S”(x) and should further be expressed in 
term of the design variables. The number of the 
design variables depends on the complexity of the 
problem. The constraints can be defined depending 
on the design goal; for example, the geometry of 
interest can be differentiated into two parts: the fore 
body, which is an arbitrarily chosen existing 
geometry, and the aft-body, which is created 
following any arbitrary function f(x)). The 
constraints depend on the design parameters such as 
maximum diameter, length of body and location of 
maximum cross sectional area. The constraints 
should be expressed in terms of the design variables,  
and the number of the constraints depends on the 
problem at hand. 
The MFD optimization codes will be validated using 
the corresponding constraints of  the existing axi-
symmetric slender body with pointed end as well as 
with base area (Sears-Haack and Von Karman).    
Here the MFD optimization code is developed and 
utilized to obtain the minimum wave drag of an axi-
symmetric slender body.  Furthermore, this MFD 
optimization codes can be applied to a general 
optimization problem as long as the objective 
function as well as the constraints are suitably 
defined.    

5.1   MFD Optimization Approach of Sears-
Haack Geometry 

In this section, the MFD optimization code will be 
validated.    The MFD optimization code which has 
been developed is verified by evaluating a set of 
constraints that are consistent with the existing 
Sears-Haack geometry. The optimum wave drag 
results are compared to the analytical ones. 

The critical parts of the evaluation of the geometry 
using the MFD optimization approach are the 
definition of the objective function, the constraints 

and the design variables. Firstly, the objective 
function of axi-symmetrical slender body with 
pointed ends will be determined. The objective 
function represents the wave drag which is given by 
the Equation (2.2).  
The value of S”(x) can be obtained from the second 
derivative of S(x), where S(x) is the cross sectional 
area distribution of the geometry of interest.  In this 
case the cross sectional area S(x) is by the following 
Equation (see reference [3])  with n = 2. Following 
the procedure elaborated in section 3, MFD 
optimization code is developed. For validation 
purposes, the code is applied for the optimization 
scheme of well known geometries, and in this 
particular example, the problem defined for Sears-
Haack body. Here, the set of constraints should 
correspond to the Sears-Haack body.  Their 
optimum wave drag results will be compared. 
The objective function is then defined as the wave 
drag, which for Sears-Haack body is expressed as 

( )1
0 0

1 "( ) "( ) log
L x

DC S x S x
S L

ξ ξ ξ
π

= − −∫ ∫ d dx (5.1) 

For convenience, instead of the linear variable of the 
axial coordinate, angular variable θ is used and 
defined as: 

1cos 2 1x
L

θ − ⎛ ⎞= −⎜ ⎟
⎝ ⎠

 or ( )1 cos
2
Lx θ= +   (5.2) 

with θ = 0 at the tail and θ = π at the nose. 

The cross-sectional area distribution along the length 
of Sears-Haack body is given by [3] 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦

⎤
⎢⎣

⎡ −+⎟
⎠

⎞
⎜
⎝

⎛ +−=
1

)sin(
3

)3sin()2(
2
2sin

)1(
4

)(
2 θθθ

θπθ XXlS  (5.3) 

Table  5.1  Result of MFD optimization Approach of 
Sears-Haack 

Initial Design Var Optimum Design 
Variables      No 

X1 X2 X1 X2 

ObjectiveFunction 
F(x) 

1.     0.1        0.1        0 -0.0942 0.3567 
2.     0.5        0.5        0 -0.0941 0.3564 
3.     1.0        1.0        0 -0.0942 0.3564 
4.      1.2        1.2        0 -0.0942 0.3564 
5.      2.0        2.0        0 -0.0942 0.3566 

0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1

0 . 1 2

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

a n a l y t i c a l m f d

Fig.5.1. Sears Haack Geometry obtained using 
Analytical and MFD Optimization Approach 
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where X(1) and X(2) corresponds to A1 and A2, 
respectively, and are chosen to be the design 
variables. The length L, the maximum cross-
sectional area (πrmax

2)and its position along the 
length of the body are defined. Then two sets of 
constraints can be defined, these are S(0) = 0 and 
S(π/2)= πrmax

2. Going through the algebra, the 
following constraints are defined: 
1. 

2
max(1) (0) (1).
4

xg S X π= =       (5.4) and 

2. 2
2max

max(2) (1) 1.3333 (2)
4 2

xg X Xπ π⎛ ⎞= − −⎜ ⎟
⎝ ⎠

r   (5.5) 

The results of the MFD optimization code with 
several values of initial design variables 
corresponding to the maximum radius Rmax = 0.1 and 
maximum length L=Xmax = 1.0 is exhibited in Table 
5.1 
The result of MFD optimization approach gives the 
constants A1 = 0 ,  A2 = -0.0942  and the Drag 
Coefficient,  CD =  0.3564.   Substituting A1 = 0 and 
A2 = -0.0942 into Equation (5.1) gives the equation 
of cross sectional area distribution, 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦

⎤
⎢⎣

⎡ −−=
1

)sin(
3

)3sin(0942.0
4

)(
2 θθ

θ lS      (5.4) 

The result is plotted in Fig. 5.1 where it is compared 
with the Sears-Haack area distribution.  The MFD 
output reproduces closely the Sears-Haack area 
distribution.     Hence, MFD output of the problem, 
with set of constraints consistent with Sears-Haack 
geometry, gives the Sears-Haack area distribution.    
Therefore, the MFD optimization code has been 
validated. 
 
5.2 MFD  Optimization of MBB Geometry 
The MFD optimization program validated in the 
previous subsection is applied for finding the MBB 
geometry which has a minimum wave drag. The 
optimization problem of the objective function 
objective function of this investigation is Equation 
(5.1). The value of S”(x) can be determined from the 
geometrical properties of the candidate optimum 
geometry.  An example is depicted in Fig. 5.2. The  

 
Fig. 5.2.  Case Study Geometry with Pointed Ends 

geometry considered consists of two parts namely 
the fore-body (Curve O-A) and aft-body (Curve B-
C), connected by a cylindrical section (A-B). 
The fixed fore-body (Curve O-A) is adopted from 
the MBB geometry.    
f1(x)   ≈   R(x)  =   af .x3  + bf .x2  + cf .x       (5.5)    
where : 
 af  =  Rmax./x1

3        =     0.1/0.53         =   0.8 
 bf   =  - 3.Rmax/x1

2    =   -3 x 0.1/0.52   =  - 1.2 
 cf  =  3.Rmax/x1        =     3 x 0.1/0.5    =    0.6 
Here, Rmax = 0.1 and x1 = 0.5. 
Then the equation of the fore-body is   R(x)  =  0.8 
X3  - 1.2 X2  +  0.6 X 
The mid-section is a cylinder with radius rmax, (A-B), 
and starts at  X = 0.5  to XSC (starting point of aft-
body curve).  In this case,  XSC is varied from 0.5  to 
1.0, and this point is designated as the design 
variable.    The equation of mid-section is 
f2(x)  ≈   R(x)  = rmax   (5.6) 
The aft-body (Curve B-C) is formulated as a 
polynomial of order 3, with origin at  point B(XSC, 
rmax) and end at point C(xmax, 0) , maximum radius =  
0.1  and intersects the  X axis  at  xmax = 1.0.    The 
aft-body curve f3(x)  can be expressed as :  
R(x)  =   a .x3  + b .x2  + c .x  + d  (5.7) 
where the curve f3(x)   passes through  point  B(XSC, 
rmax) and  point C(xmax, 0) and the slope of f3(x) at 
point B(XSC, rmax) is equal zero.   Then the 
coefficients a, b, c and d should be expressed in term 
of the known values (rmax and xmax) and the design 
variable (XSC). 
Rmax  =  a. XSC

3  +  b. XSC
2  +   c. XSC  +  d  (5.8) 

The curve f3(x) passes through the point C(xmax, 0)  
then: 
 0    =    a. xmax3 +  b. xmax2  +   c. xmax  + d (5.9) 
Rmax  =  a (XSC

3  -  xmax3)  +  b (XSC
2  -  xmax2)  +  

c(XSC – xmax) 
The slope of f3(x) at point B(XSC, rmax) is equal to 
zero 
R’  = 3a XSC

2  +  2b XSC
2   +  c  =  0   (5.10) 

By evaluating Equation (5.8)-(5.10) the constraints 
a, b, c and in term  XSC, Rmax and xmax can be 
obtained : 
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Fig. 5.3   Optimum Geometry Possibilities 

 
The optimization procedure is feasible when the 
constraints are satisfied. In this case the constraints 
are determined from the possible values of the 
starting point coordinate XSC , where 0.5 ≤  XSC  ≤  
1.0. Fig. 5.3 shows the possible geometries obtained 
by varying the value of XSC.   
Hence in this problem the constraints in term of 
design variable XSC can be written as : 
 g(1)  =  0.5 - XSC    (5.11) 
 g(2)  =  XSC  -  1.0  (5.12) 
The output of the MFD optimization program with 
the initial design variable XSC = 0.1  is shown in 
Table 5.2. 

Fig.5.4  successive geometries as the result of  the 
MFD iteration process 

 
Figure 5.4 plots the successive geometries resulting 
from the MFD iteration process. The optimum 
geometry of the axi-symmetrical slender body with 
pointed ends is depicted in Fig. 5.5. 

 
Fig. 5.5    Optimum Geometry of MBB-like body 

 

The MFD optimization program gives the optimum 
drag of Cd = 0.3592484 which is satisfied by a 
geometry with XSC at 0.85. 

5.3. CFD Validation of Optimum MFD Geometry 
In this section, CFD computational study is carried 
out to validate of the optimum MBB geometry, 
which is a family of axi-symmetrical slender bodies 
with pointed ends, and to look into the flow 
characteristics and to investigate the significant 
elements that contribute to the wave drag.       

0 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
5 0 5 5 6 0 6 5 7 0 7 5 8 0 8 5 9 0 9 5

Based on the result of the MFD optimization 
approach, the optimum value of MBB geometry 
with pointed ends is the geometry with XSC = 0.85.   
The investigation is not only concerned with the 
search for the optimum geometry, but also to look 
into the effect of the variation of the position of the 
XSC point, at which the aft-body curve coincided 
with the cylindrical mid-section.   
These geometries are also represented by using the 
polynomial order three (f3x = a.x3 + b.x2 + c.x + d).  
For convenience, three geometries are considered: 
Body A with aft-body curve starting at 0.75, with 
aft-body curve represented by f3x = - 6.4 x3  +  
14.4x2  -  10.8x  +  2.  (upstream of optimum 
geometry). 
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0 . 0 8

0 . 1

0 . 1 2
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q 0
q 1
q 2
q 3
q 8
o p t

 0

0.025

0.05

0.075

0.1

0.125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1  
Fig. 5.6-a-b-c  Static Pressure Contour  of  Case Study 

Geometry  (Aft-body Section, Body A, Body B and 
Body C) at Mach  = 1.2 

 
Body B with aft-body curve starting at 0.85, with 
aft-body curve represented by f f3x = - 29.63 x3  +  
75.56x2  - 64.22x  +  18.30  (optimum geometry). 
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Body C with aft-body curve starting at 0.95, with 
aft-body curve represented by f3x = - 800x3  +  
2280x2  -  2166x  +  686. ( downstream of optimum 
geometry). 
Rampant/Fluent Flow Solver [21] is utilized to 
explore the aerodynamic characteristics, especially 
the wave drag, by applying the free stream Mach 
number of 1.2 and 3.0. The results are exhibited in 
Fig. 5.6-a-b-c.   It can be seen in that the base of 
Body B has larger region of lower pressure 
compared to Body A and C. Therefore the Body B 
has a lower drag compared to Body A and Body B. 
 

Table 5.2. Contribution of Slender Body Sections to 
the Drag Coefficient (Cd) of Case Study Geometry  

with Pointed End 
CASE STUDY Mach 

number 
Body 
Section BODY  A BODY  B BODY  C 

fore 1.17475 1.17481 1.17541 
mid -3.8759e-09 5.8961e-06 -3.9499e-08
aft -0.607594 -0.700233 -0.587099 

1.2 

total 0.5671576 0.4745911 0.5883180 
fore 0.337934 0.3381056 0.3379349 
mid -1.7968e-09 2.9711e-09 4.1853e-07 
aft -0.0310517 -0.050358 -0.047258 

3.0 

total 0.3068830 0.2877474 0.2906767 

6 Optimization of Axi-symmetric Slender 
Body with Base Area  
This section will explore several selected axi-
symmetric slender bodies with base area.    The 
study includes existing well-known geometry  (Von 
Karman, Haack-Adams and slender body with 
different aft-body), and then followed  by case-study 
axi-symmetric slender bodies with base area. The 
three geometries (Von Karman, Haack-Adams and 
Case study geometry) were build with the same 
diameter and length, which are 100 mm and 1000 
mm, respectively.  The wave drag of both the 
existing geometry and the case study geometry will 
be evaluated by using equation (2.1). .Three 
methods of approaches, i.e. Analytical, MFD 
Optimization and CFD Approach, will be applied to 
both existing and the case study geometries. The 
CFD approach is intended also to look whether the 
candidate case study geometry has favorable 
(optimum) wave drag characteristics. 
 
6.1  Analytical and CFD Approach for Existing 
Geometry 

CFD Analysis of Von Karman Geometry 

The flow characteristics of von Karman geometry 
will be studied. The CFD numerical approach is 
applied to von Karman geometry at Mach numbers 
1.2 and 3.0 for inviscid flow condition. 
 

 

Fig.6.1-a   Mach Contour for  Von Karman Geometry  
Mach = 1.2 

 

 

Fig. 6.1-b -c  Static Pressure  Contour and Velocity 
Vector for  Von Karman Geometry  at  Mach = 1.2 

 
The result of CFD analysis is shown at Fig. 6.1-a,  
and Fig. 6.1-b-c.   It can be seen that the shock wave 
angle at the nose as well as at the aft-body tends to 
deflect downstream with the increase of the Mach 
number.    Expansion waves occur at the edge of the 
base area, then followed by a shock wave 
downstream of the base area.   Such distribution of 
waves obviously results in the appearance of a very 
low pressure region on the base area, which 
contributes significantly to the overall drag of the 
body. 

The analytical approach for the wave drag, which is 
independent of Mach number as given in Ref [11], 
gives  Cd = 0.40. The CFD result for M = 1.2 and at 
M = 3.0 is Cd = 0.47110016 and   Cd = 0.17504237,  
respectively. 
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Haack-Adams Geometry 
Haack-Adams Geometry is an axi-symmetrical 
slender body with pointed nose and base area.    
There are three specific families of the bodies.   The 
first family consisting of bodies having a fixed 
length, given base area, and given maximum area.    
The second family consists of bodies having a given 
length, base area and a contour passing through a 
prescribed point between the nose and base.  The 
third family consists of bodies having given length, 
volume and base area.   Here only the first family 
will be evaluated. 
 
Analytical Approach to Haack-Adams Geometry 
For a given length, base area and maximum area, the 
area distribution of Haack-Adams Geometry is[6] : 

( ) )()ln(
1

1)( 1
2

2
2 xCosBN

c

cx
c

Bx
c

BxS −+
−

−
+−= −

πππ
(6.1) 

Fig. 6.2   Hack-Adam body with given base radius  = .1  , 
length =  1  and  c = 0.25 

 

cx
xcxc

N
−

−−−−
=

22 111
              (6.2) 

Where S(x)  =  cross sectional area distribution 
A  =  max cross sectional of body divided by (l/2)2 
B  =  body base area divided by (l/2)2 
c  =  distance, divided by (l/2)2, from midpoint of 
body to location of A max. 
The relationship between A,B and c is given by,    

)(
1 1

2

cCos
c

c
B
A

−+
−

= −π
 (6.3) 

Ref[6] gives the analytical expression for the drag 
coefficient  : 

2

21
cA

BCD π
=                (6.4) 

In the case considered, the maximum length Xmax  
= 1.0,  the base radius rmax  =  0.1, and the base area   
B = π rmax

2 /(l/2)  =  π 0.12 /(0.5)2  =  0.12566. 
The distance of the point of maximum area  to the 
mid point is 0.25; this gives the value of  c =  

0.25/(l/2)  = 0.25/0.5  =  0.5, π A/B  =  3.8264, A  =  
0.15306 
Substituting A, B and c into Equation (6.10)  will 
give the analytical drag coefficient : CD  =  0.13135. 
The graph of the first family of the Haack-Adams 
geometry with given length, base area and the 
maximum area are depicted in Fig. 6..3. 

HAfAB4

0
0.05

0.1
0.15

0.2
0.25

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

HAfAB4

Fig.  6.3 Hack-Adam given length = 1 , base radius = 
0.1 and ratio of maximum area to base area  f = 4 
(Location of max area at 0.55) 

 
 hackadam
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0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
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Fig. 6.4-a-b-c  Mach Number Contour, Static Pressure 
Contour and Velocity Vector of Haack-Adams 

Geometry for Mach = 1.2 
 
CFD Analysis of Haack-Adams Geometry 
CFD numerical computation approach is applied to 
Haack-Adams geometry, for inviscid flow condition 
at Mach number = 1.2 and Mach number = 3.0.. 
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The result of CFD analysis is depicted at Fig. 6.4-a-
b-c. The Mach number contours indicate that the 
shock wave angle at the nose as well as the aft-body 
tends to be deflected to downstream with the 
increase of the Mach number. Expansion waves 
occur at the edge of the base area, and followed by 
shock wave downstream of the base area.  The aft-
body flow looks very similar to that of Von Karman 
geometry. Slender body drag formula [11] gives 
predicts Cd = 0.13135, while the CFD results for this  
geometry, for M = 1.2 and  M = 3.0, gives Cd values 
of  0.5110229  and 0.2277281,  respectively. 

 
CFD Calculation of Slender Body with Flat, 
Rounded and Conical Aft-body 
As further development of the work reported in [9], 
the flow characteristics of slender body with three 
different aft-body geometries are investigated; these 
are the flat edge, conical and rounded edge aft-
bodies.  The calculation is carried out for values of 
free-stream Mach numbers of 1.2 and 3.0; the angle 
of attack α = 0. For this analysis, all axi-symmetric 
slender bodies considered (flat base, conical and 
rounded aft-body geometry) has the same maximum 
diameter = 12.7 mm and maximum length = 60 mm.  
               

 

 

 
 

Fig.  6.5-a-b-c  Mach Contour, Static Pressure 
Contour and Velocity Vector of Flat Aft-Body at M 

= 1.2 
 
The Mach contour and pressure distribution of the 
axi-symmetric slender body with flat aft-body 

geometry under study are shown in Fig. 6.5-a-b-c for 
Mach number =1.2. 
In particular, for free stream Mach number M = 1.2 , 
shocks occur at the bow and at the stern of the axi-
symmetric slender body. The presence of shock 
waves is accompanied by the presence of mach lines 
that are inclined downstream. The pressure 
distribution indicates a maximum at the bow of the 
axi-symmetric slender body, i.e the stagnation point, 
as expected, and decays towards downstream. At the 
corner, the pressure decreases sharply. It should be 
noted, however, that at the aft-body region, the 
inviscid computational approach may not be valid 
without proper modeling of the flow. The results 
thus far obtained may be indicative of the real 
situation only at the upstream part, especially if there 
are shocks in the vicinity of the corner. 
 

 

 

 
 

Fig.  6.6-a-b-c   Mach , Static Pressure Contour and 
Velocity Vector of Conical Aft-Body at M = 1.2 

 
The Mach contour and pressure distribution of the 
axi-symmetric slender body with conical aft-body 
geometry under study are shown in Figure 6.6-a-b-c 
for Mach number = 1.2 and for Mach number = 3.0 . 
For this configuration, at free-stream Mach number 
M = 1.2 and 3.0, the local velocity is gradually 
accelerated downstream along the surface until near 
the stern. The shock waves appear at the front and 
rear part.   Compared to the former geometry, the 
pressure drops near the beginning of the conical part 
of the aft-body due to expansion waves. For M = 1.2 

13  



H.Djojodihardjo, E.Prijono and L.R.Zuhal 

and 3.0,  the expansion waves also occur near the 
beginning of the conical part.  Wake is shed near the 
base and strong shock wave appears downstream the 
body. 
 
The Mach contour and pressure distribution of the 
axi-symmetric slender body with rounded aft-body 
geometry under study are shown in Fig. 6.7-a-b-c 
and for Mach number = 3.0 . 
For this configuration, at free-stream Mach number 
M = 1.2, the local velocity is also gradually 
accelerated downstream along the surface until near 
the stern. For M = 1.2, shock waves appear at the 
front and rear part.   Expansion wave occurs near the 
stern, as indicated also by a sharp pressure jump 
there.  

.

 

 
 

Figure  6.7-a-b-c   Mach , Static Pressure Contour 
and Velocity  Vector of Rounded Aft-Body at M = 

1.2 
 
The pressure jump occurs at the rounded part of the 
stern. Comparing the pressure jump here for this 
geometry with that for the other geometries studied, 
the pressure jump here is relatively larger.  
The following table summarizes the numerical 
results obtained for the drag components of the axi-
symmetric slender body for three different geometry 
studies. For the drag coefficient calculation, the CFD 
numerical approach is conducted base on reference 
value of area = 0.00050675 m2 (maximum cross 

sectional area) and reference of length = 0.06 m 
(maximum length). 

 
Table 6.1  Drag Coefficient of CFD results for 

Various Aft-Body 
No. AFT-Body Mach = 1.2 Mach = 3.0 
1. Flat 0.12222553 0.081524489 
2. Cone 0.10648763 0.063160879 
3. Rounded 0.15347332 0.080476319 
 
This particular result indicates that the slender body 
with the cone aft-body has minimum drag compared 
to the other two configurations. 

6.3  MFD Optimization Approach 

Analogous to the MFD optimization of Sears-Haack 
body, MFD optimization of von Karman ogive is 
carried out. The result is plotted in Figure 6.8 where 
comparison is made between von Karman ogive 
original cross-sectional area distribution with that 
obtained using MFD optimization. The MFD output 
resembles von Karman ogive area distribution very 
closely, which serves to further validate the MFD 
code developed. 
 

0
0 .0 2 5

0 .0 5
0 .0 7 5

0 .1

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

vo nka rm a n

Fig. 6.8 Von Karman Geometry 
 

Optimization of Aft-Body Geometry 
The MFD program is next applied to find a 
geometry that has a minimum wave drag starting 
from a simple case study geometry.  This case study 
geometry consists of three parts, the fore-body and 
aft-body, connected by its mid-section, as depicted 
in Fig.6.9.  The fore- body is an arbitrary existing 
axi-symmetrical slender body, whereas the aft-body 
will be evaluated later on. The aft-body geometry of 
interest is represented by a function of F(x) (in this 
work using a third order polynomial as an example) 
and the MFD program will be used to find the 
coefficient of the polynomial which leads to a 
minimum drag.   
In this case, the case study geometry is axi-
symmetric slender body with base area, which has a 
normalized dimension of maximum length = 1 and 
maximum radius = 0.1.  
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Fig. 6.9  Case Study Geometry with Base Area 
 
The fixed fore body (Curve O-A) is adopted from 
the MBB geometry previously discussed. 
 The mid section is cylindrical with a radius of  rmax, 
(A-B) starts at  X = 0.5  and ends at XSC. Point XSC 
is varied from 0.5  to 1.0, and is designated as the 
design variable. The aft-body (Curve B-C) is 
formulated as a third-order polynomial, starting at 
point B(XSC, rmax)  and ending at point C(xmax, 0.5 
rmax); the maximum radius is  0.1  and  the base 
radius is 0.5 rmax. 
The aft body curve f3(x)  can be expressed as   
R(x)   = a(X – XSC)3 + b(X-XSC)2 + c(X-XSC) + d
 (6.5) 
where the curve f3(x)   passing through  point  
B(XSC, rmax) and  point C(xmax, 0.5 rmax) and the slope 
of f3(x) at point B(XSC, rmax) is equal zero.   Then 
the coefficients a, b, c and d should be expressed in 
term of the known value (rmax and xmax) and the 
design variable (XSC). 
The optimization procedure is feasible when the 
constraints are satisfied.     In this case the 
constraints are determined by the possible values of 
XSC point with defined range of  0.5 ≤  XSC  ≤  1.0.   
Going through the algebra [20], in terms of design 
variable X(1) and X(2) the constraints can be written 
as : 
g(1)  = X(2)             (IV.18) 
g(2)  = 0.5 – X(1)            (IV.19) 
g(3)  =  X(1) – 1.0            (IV.20) 
where X(1) = XSC and X(2) = b .  MFD optimization 
program is then applied to obtain the optimum 
geometry for minimum wave drag.   

 
Fig. 6.10  Case Study With Initial Condition X(1) = 

0.85  & X(2) = 0.5 
Fig. 6.10 plots the corresponding aft-body curves 
obtained successively from the initial design 
variables of X(1) = 0.85 and X(2) = 0.5. 
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Fig. 6.11 Optimum Case Study Geometry  with Base 

Area 
The optimum geometry of axi-symmetrical slender 
body with base areas is depicted in Fig. 6.11.    The 
output of MFD optimization program gives the 
optimum geometry with XSC = 0.5 , polynomial 
coefficient of aft-body a = 0.4482, b = 0.4241, c = 
0.0 and d = 0.1.   The equation of optimum aft-body 
can be expressed as  R(x) =  0.4482x3 – 0.4241x + 
0.1. The MFD result gives the minimum drag 
coefficient for  M = 1.2    Cd = 0.4069  , and for M = 
3.0  Cd =  0.4013 
 

 

 

 
Fig. 6.13-a-b-c  Static Pressure Contour of Case 

Study Geometry Body A, Body B and Body C for 
Mach = 1.2 

0
0 . 0 1
0 . 0 2

0 . 0 3
0 . 0 4
0 . 0 5
0 . 0 6
0 . 0 7
0 . 0 8

0 . 0 9
0 . 1

0 . 1 1

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 1 . 1

o p t
q 0
q 1
q 2
q 9
q 8 CFD Validation for Optimum Case Study 

Geometry 
Three different geometries are considered. For 
convenience, the following label will be used to 
identify the three geometries considered,  
(1) Body A is case study geometry with aft-
body consists of cone start at point A(0.5,rmax) and  
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C(1.0, 0.05) with the equation of R(x) = - 0.1x + 
0.15. 
(2) Body B is case study geometry with starting 
point of curve at XSC = X(1) = 0.5 and the 
polynomial of aft-body is R(x) =  0.4482x3 – 
0.4241x + 0.1.  
(3) Body C is case study geometry with starting 
point of curve at XSC = X(1) = 0.6994 and the 
coefficient of polynomial b = X(2) = 0.0.  
 

 

 

 
 

Fig. 6.14-a-b-c  Static Pressure Contour of Case 
Study Geometry Body A, Body B and Body C (aft-

body) for Mach = 1.2 
Static pressure contour and velocity of the axi-
symmetric slender body with base area under study 
are shown in Fig. 6.13-a-b-c to Fig. 6.15-a-b-c. 
 

 

 

 
 

Fig. 6.15-a-b-c  Static Pressure Distribution of Case 
Study Geometry Body A, Optimum, Over  (aft-

body) for Mach = 1.2 
 
Figure 6.13-a-b-c shows the static pressure 
distribution around the body. Attached shock wave 
occurs at the nose for all geometries with the same 
fashion. It means that the fore body for all 
geometries gives the same contribution to the drag , 
and it is independent of shape of aft-body geometry.     
Weak expansion occurs at the starting point of aft-
body curve for Body C and followed by a shock 
wave at wake downstream region.     This pressure 
distribution will cause the very low pressure at base 
area region as depicted in figure 6.15-a-b-c.    
Therefore, the Body C has the highest drag compare 
with Body A and Body B. 

7.  Concluding Remarks  

Three studies have been conducted. Analytical, 
numerical computation (CFD) and MFD 
optimization has been carried out to several axi-
symmetric slender body configurations to search for 
geometry with minimum drag. In the first 
investigation, an analytical approach was used to 
look into the simplified transonic and supersonic gas 
dynamic equations following the work of Von 
Karman and Moore.  This approach is conducted to 
the existing well-known axi-symmetric slender 
body, such as Sears-Haack, Von Karman and Haack-
Adams geometry. This method is useful in 
estimating the characteristic of several axi-
symmetrical slender body configurations.  
In the second investigation, computational studies of 
the previous existing axi-symmetric slender body are 
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conducted to gain physical understanding of the 
effect of aft-body geometry to the overall wave drag.     
The CFD computations are made by using a 
commercially available flow solver Fluent/Rampant 
[21].   All of the CFD numerical approach is 
conducted for the condition of inviscid flow at Mach 
number 1.2 and 3.0, so only the pressure drag 
contributes to the total drag.  
The CFD calculations have been conducted to the 
axi-symmetric slender body with pointed end as well 
as the axi-symmetric slender body with base area.  
For the axi-symmetric slender body with pointed end 
the results indicate that the weak expansion occurs 
on the shallow curve, while the strong expansion 
occurs on the steep curve. Usually, the strong 
expansion is followed by the appearance of strong 
shock waves on the aft body and weak expansion is 
followed by weak shock waves. The distribution of 
expansion and shock waves at the aft-body of the 
axi-symmetric slender body with pointed end alters 
the total drag. Modifying the contour of aft-body 
geometry will change the wave distribution and 
consequently alters the total drag.    The optimum 
geometry is a body which has set of shock and 
expansion waves’ distribution, in such a way that 
minimizes the wave drag.    
For the axi-symmetric slender body with base, there 
are no shock waves generated on the aft body region 
on the axi-symmetric slender body with base area.   
Instead, expansion fans appear at the corners 
connecting the aft body to the base. The corner 
expansion fans turn the flow toward the centerline.  
As a result, a low pressure region occurs at the base 
area of the body.  Also, the expansion fans deflect 
the flow coming from the upper and lower surfaces 
toward each other.   Somewhere behind the base of 
the body, the two streams would meet and shock 
waves form near that location. 
Based on the physical understanding gained above, a 
practical method of reducing the wave drag of a 
given body is developed for cases, body with 
pointed end and body with base area. In this method, 
a shock wave generator is placed at a particular 
location on the aft body.  By trial and error, a 
particular location of the shock wave generator 
placement is found which result in lowering the 
wave drag.  By CFD analysis, it is found that by 
placing the generator at this location, the aft body 
wave distribution induces a pressure distribution 
which lowers the wave drag of the body. The 
analysis indicates that there exists a particular shock 
wave generator location which results in generating 

an optimum aft body wave distribution and, hence, 
minimizes the wave drag of the body. 
Finally, the third investigation is to find optimum 
geometries, which have minimum wave drag by 
utilizing Modified Feasible Direction (MFD) 
optimization program. The MFD optimization codes 
have been verified by evaluating a set of constraint 
that is consistent with Sears-Haack geometry and 
von Karman geometry. The optimization program is 
used to obtain the optimum aft-body of geometry of 
several case studies.  Two geometries have been 
investigated: axi-symmetric slender body with 
pointed end and axi-symmetric slender body with 
base area.  Both geometries consist of two parts, the 
fore-body and aft-body. The arbitrary fore-body is 
adopted from the MBB experimental body, for the 
case of body with pointed end.  While the aft-body is 
formed by the polynomial of order three and the 
coefficient of the polynomial treated as the design 
variables. The aft-body for slender body with base  
consists of third order polynomial and has a base 
area with a radius of half of the maximum radius   
Using the specific set of constraints, the MFD 
program is used to find the optimum geometry 
which has minimum wave drag.  In other words, in 
this approach the MFD program searches for an aft 
body geometry that generates an optimum wave 
distribution for minimizing the wave drag of the 
body.  The results of this study show that the MFD 
optimization program provides a convenient way to 
solve an aerodynamic optimization problem which 
has not been done before. 

References: 

1. von Karman, T., The Problem of Resistance in 
Compressible Fluids, Proc.5th Volta Congress, 
Rome, pp.255-264, 1955. 

2. von Karman, T., Compressibility Effects in 
Aerodynamics, J.Aeronaut.Sci., 8, pp.337-356, 
1941. Fluids, Proc.5th Volta Congress, Rome, 
pp.255-264, 1955. 

3. Sears, W.R.: On Projectiles of Minimum Wave 
Drag, Quarterly Appl.Math., vol. IV, no.4, Jan. 
1947, pp. 361-366 

4. Haack, W.: Geschossformen kleinsten Wellen-
widerstandes, Lilienthal-Gesellschaft fuer 
Luftfahrtforschung, Bericht 130, Teil 1, October 
9-10, 1941, pp.14-28; also Haack, W.: Projectile 
Shapes for Smallest Wave Drag, Translation No. 
A9-T-3, Contract W33-038-ac-15004 (16351), 
ATI No. 27736, Air Material Command, U.S.Air 
Force, Brown Univ., 1948. 

17  



H.Djojodihardjo, E.Prijono and L.R.Zuhal 

5. Ward, G.N.: Supersonic Flow Past Slender 
Pointed Bodies, . Quart.Jour.Mech. and 
Appl.Math., Vol.II, pt.1, June 1949, pp.75-97. 

6. Adams, M.C.: Determination of Shapes of 
Boattail Bodies of Revolution for Minimum 
Wave Drag. NACA TN 2550, 1951. 

7. Parker, H.M., Minimum-Drag Ducted and 
Pointed Bodies of Revolution Based on 
Linearized Supersonic Theory. NACA Rep.1213, 
1955. 

8. Harder, K.C., and Rennemann, Jr., C., On 
Boattail Bodies Of Revolution Having Minimum 
Wave Drag, NACA Report 1271, Langley 
Aeronautical Laboratory, Langley Field, Va., 
June 8, 1955 

9. Priyono, E. and Djojodihardjo, H., 
Computational Study Of The Aerodynamic 
Characteristics Of Axisymmetric Bodies In 
Transonic Flow, ICAS Paper 0375, 23rd ICAS 
Congress, Toronto, Canada, 2002. 

10. Heaslet, M.A. and Fuller, F.B.: Axially 
Symmetric Shapes with Minimum Wave Drag, 
NACA Report 1256, 1955 

11. Ashley, H and Landahl, M.T.: Aerodynamics of 
Wings and Bodies,  Addison-Wesley Publishing 
Co,Inc., Reading, Massachussetts,USA., 1965. 

12. Oswatitsch, K., and Keune, F., Ein 
Aequivalenzsatz fuer nichtangestellte Fluegel 
kleiner Spannweite in Scallnaher Stroemung, 
Z.Flugwiss., 3, No.2, 29-46, 1955. 

13. Djojodihardjo, H and Widodo, A.F., Small 
Perturbation Computational Studies Of Two-
Dimensional And Axisymmetric Slender Body In 
Transonic Flow, The 3rd INDO- TAIWAN 
Workshop on Aeronautical Science and 
Technology, Bandung, Indonesia, December 
2002.  

14. Djojodihardjo, H and Widodo, A.F.; 
Development Of A Simple And Fast 
Computational Routine To Solve The Full 
Potential Equation Of The Transonic Axi-
Symmetric Flow, Proc., 24th ICAS Congress, 
Yokohama, Japan August-September 2004 

15. Liepmann,H.W. and Roshko, A., Elements of 
Gasdynamics, Dover Publications, Inc., Mineola, 
New Yrk2001. 

16. Vanderplaats, G.N. Numerical Optimization 
Techniques for Engineering Design, with 
Applications. McGraw-Hill Book Company, New 
York, 1984. 

17. Vanderplaats, G.N., Efficient Algorithm for 
Numerical Airfoil Optimization, AIAA Journal of 

Aircraft, vol.16, no.12, pp.842-847, December 
1979.  

18. Lorenz-Meyer, W. and Aulehla, F. (1979) , MBB 
– Body of Revolution No. 3 , AGARD AR 138, 
London. 

19. Priyono, E. , Lavi R Zuhal and Djojodihardjo, H., 
Numerical Study of Shock Generator at the Aft-
Body of Slender Body of Revolution using 
Navier-Stokes Equation, ICAS Paper 469, 24th 
ICAS Congress, Japan, 2004. 

20. Prijono, E., Optimization Of The Aft-Body 
Geometry Of An Axi-Symmetric Slender Body To 
Minimize Wave Drag, Doctoral Dissertation, 
Departemen Teknik Penerbangan Institut 
Teknologi Bandung, October 2005. 

21. Anonymous. RAMPANT  USER’S MANUAL. 
Fluent Inc,  Centerra Resource Park , Lebanon, 
NH 03766,  June 1997. 

18 


	3.4  Convergence Criteria  
	Fig.4.3-a-b-c Static Pressure Contour of Sears-Haack with Shock Generator at x = 400, 600, 750 for Mach = 1.2 
	Fig. 4.4-a-b-c  Pressure Coefficient of Sears-Haack with Shock Generator at x = 400, 600, 750 for M = 1.2 
	 
	5.2 MFD  Optimization of MBB Geometry 

	Fig. 5.3   Optimum Geometry Possibilities 
	Fig.5.4  successive geometries as the result of  the MFD iteration process 

	6.1  Analytical and CFD Approach for Existing Geometry 
	Fig.6.1-a   Mach Contour for  Von Karman Geometry  Mach = 1.2 
	Fig. 6.1-b -c  Static Pressure  Contour and Velocity Vector for  Von Karman Geometry  at  Mach = 1.2 

	Haack-Adams Geometry 
	Analytical Approach to Haack-Adams Geometry 
	Fig. 6.2   Hack-Adam body with given base radius  = .1  , length =  1  and  c = 0.25 

	CFD Analysis of Haack-Adams Geometry 
	Table 6.1  Drag Coefficient of CFD results for Various Aft-Body
	Optimization of Aft-Body Geometry 

	R(x)   = a(X – XSC)3 + b(X-XSC)2 + c(X-XSC) + d (6.5) 
	Fig. 6.10  Case Study With Initial Condition X(1) = 0.85  & X(2) = 0.5 
	Fig. 6.11 Optimum Case Study Geometry  with Base Area 


	CFD Validation for Optimum Case Study Geometry 


