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Abstract  

The paper aims to present a method to 
increase runway capacity by planning optimal 
sequences with genetic algorithms using 
enhanced heuristics and parameter estimation 
with neural networks. A Timed Stochastic 
Coloured Petri Net model of the runway is used 
to generate pre-optimized sequences as the 
initial population of the genetic algorithm. The 
performance of the algorithm has been 
investigated by simulation for the case of arrival 
peak and arrival and departure peak and 20% 
saving in sequence completion time could be 
achieved. With use of enhanced heuristics 
computational time decreased by 10%. 

1 Introduction  
Nowadays, the air transport organised 

using the conventional hubing (hub and spoke) 
philosophy tends to its capacity limits. One of 
the problems is associated with runway 
capacity. The major international organisations 
as ICAO, EUROCONTROL, IATA, ACI 
Europe initiated several programs for increasing 
runway capacity. Currently running projects are 
focused on organisational problems and 
developing of new models for optimising and 
maximising the throughput of the air transport 
system. 

The aim of our paper is to present a 
method to increase runway capacity by planning 
optimal sequences with genetic algorithms and 
thus increasing airport capacity and air transport 
system efficiency. The planning of optimal 
sequences at runways corresponds to the pre-
tactical and tactical phase of air traffic control, 
and thus optimisation methods used for this 
purpose has to work very fast. Genetic 
algorithms have proven their potential to be 
used in such applications [3,5,6,7,8]. In order to 
further improve the efficiency of the applied 
method enhanced heuristics are used. The 
flexibility of the method is ensured by online 
parameter estimation with neural networks. 

2 Basic notions  

2.1 The selected approach and tools 
 
As the chromosomes of the genetic 

algorithm represent aircraft sequences, the 
algorithm uses special crossover operator and a 
modified mutation operator. This is necessary 
due to the fact, that standard crossover or 
mutation operators for sequencing and 
scheduling problems are not suitable, because 
their mechanism could lead to badly formed 
strings [3]. The use of genetic algorithms and 
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thus the computation of optimised sequences 
has the potential to show best results in 
congested traffic conditions, while in light 
traffic minor or no modifications to the First 
Come First Serve (FCFS) principle is needed. 
Sequences are coded as vectors where the 
elements represent aircraft. These elements have 
the form of vectors containing information on 
runway occupancy time and separations. 

In addition, the parameters used in the 
algorithm are not fixed as in most applications, 
but can be dynamically modified due to changes 
in weather (wind, temperature, runway surface 
conditions etc.) and operational conditions 
(closing or taxiways, change of runway-in-use) 
using neural networks for parameter 
estimation. For each parameter and aircraft type 
a small neural network is created and trained 
offline (e.g. one network gives the runway 
occupancy time parameter of a Boeing 737-800 
in the full operational range of temperature and 
wind). The trained nets can then be used for 
online parameter estimation. The use of such 
networks is described in [2]. 

 
Some extensions of Coloured Petri Nets 

have already been used in ATM [4,5]. A Timed 
Stochastic Coloured Petri Net (TSCPN) model 
of the runway is used to generate pre-optimized 
sequences. These are then used as heuristics, i.e. 
they are the initial population in the 
optimization process with genetic algorithms, 
instead of a randomly generated initial 
population. The result is either a saving in 
computational time or better quality solutions. 
The TSCPN presented in [1] is further 
developed to contain wake turbulence 
separations and thus to reflect real operational 
circumstances. The initial population gained 
with this heuristics has greater average fitness 
than the randomly generated one.  

The input of the TSCPN model is the 
natural sequence, and the output is the pre-
optimised sequence. This is gained by using the 
arrivals priority principle in the model. The 
reason why it is possible to gain a set of pre-
optimised sequences is that the model puts some 
noise on the natural sequence, i.e. changes the 
planned times over the threshold and planned 

take-off times with a few seconds randomly 
every times it is presented to the model. As a 
result one planned sequence (or natural 
sequence which is in fact reflection of the 
FCFS) a number of pre-optimised sequences are 
obtained. These are then used as the initial 
population of the genetic algorithm. In 
addition, there are possibilities to put a new 
aircraft into the queue, and change the status of 
any of rapid exit taxiways during the execution 
of the TSCPN model. This is an important 
feature, because sequence planning is done for a 
definite time ahead, and as this time window 
slides forward new aircraft may enter to the 
sequence to be optimised [8]. 

The performance of the method applied in 
this paper is demonstrated under congested 
traffic patterns, i.e. sequences used as inputs 
correspond to congested traffic. Computational 
demonstrations are conducted on a single 
runway model with two rapid exit taxiways. 

The lecture deals with description of the 
developed method and shows and discusses the 
results of application of the method described. 

2.1 Problem formulation 
Given a set of aircraft with estimated 

landing times (ELDT) and estimated take-off 
times (ETOT) for arriving and departing aircraft 
respectively.  

An optimized sequence is to be calculated 
in terms of an objective function if the aircraft 
use the same runway and a set of constraints are 
to be satisfied.  

The constraints are maximum time and 
position shifting. These are applied for arriving 
and departing aircraft separately. Each flight can 
be shifted by a predefined number of positions 
in its arrival or departure queue from the FCFS 
positions. Time shifting constraint is calculated 
for each individual flight from its ELDT/ETOT, 
and from the time the flight would use the 
runway if it were cleared according to the FCFS 
sequence. An optimized sequence is not 
acceptable if: 

• An aircraft is to use the runway much 
earlier than its estimated time 
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Table 1. Separations 
 

 

• An aircraft is to use the runway much 
later than its FCFS time (i.e. it suffers 
much more delay than without sequence 
planning) 

3 Modeling 

3.1 The genetic algorithm  
As the chromosomes of the genetic 

algorithm represent aircraft sequences, the 
algorithm uses a special crossover operator 
(OCGS) and a modified mutation operator. This 
is necessary due to the fact, that standard 
crossover or mutation operators for sequencing 
and scheduling problems are not suitable, 
because their mechanism could lead to badly 
formed strings [3,8].  We do not use OCGT as 
in [3] because it is generally the same as OCGS. 

Mutation, which is a random swap of two genes 
is modified in a way in a way that the closer the 
genes are to each other the more probable they 
change positions (i.e. the probability of 
selecting closer genes for swapping is higher).  

Since we aimed at optimising sequences 
corresponding to congested patterns, the 
objective function to minimise is sequence 
completion time. Maximum time shifting and 
maximum position shifting checks are applied 
to ensure operationally acceptable solutions 
(extreme delays and position shifts are filtered 
out). The fitness is the inverse of the objective 
function (Fobj):   

Fitt=1/Fobj (1) 
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3.2 Sequence coding and separations 
Arriving aircraft are considered in three 

classes according to ICAO wake turbulence 
categories: light (L), medium (M) and heavy 
(H). Different types are represented within the 
categories at arrival runway occupancy time 
(ROTA) estimation with neural networks. 
Departing aircraft are coded as 8-10 in Table 1. 

For departing aircraft seven classes are 
defined according to wake turbulence category 
(L, M, H), standard instrument departures (SIDs 
for medium and heavy) and speed (for medium): 
light (1), heavy with SID1 and SID2 (6,7), 
medium jet and turboprop SID1 and SID2 (2-5). 
The numbers in brackets correspond to the 
coding in Table 1. 

Separations applied are based on ICAO 
wake turbulence separations, radar separations 
and runway occupancy times generated by 
neural networks. The times are estimated from 
the given distances in Table 1 using airspeeds of 
representing aircraft of the class. Since wind has 
also an effect on the conversion (from distance 
to time, since the calculation should be based on 
ground speeds which varies with wind velocity) 
in the simulation we used different separation 
matrixes to demonstrate this (the second table in 
Table 1 corresponds to calm wind).  The zeros 
in the converted table standing for ROTAs 
generated for each individual arriving aircraft by 
neural networks. Consider separation matrix 
(SEP). The separation between flight A of class 
i and flight B of class j, is SEP(i,j) or if  
SEP(i,j)=0 then the ROTA generated for flight 
A. (Note that occupancy time is generated for 
the individual flight, not for the class of flight).   

3.3 Using of neural networks for parameter 
estimation 

The used neural networks generate ROTAs 
as the function of wind and runway status, 
similarly as in [2] (in [2] the inputs were wind 
and temperature).  

The effect of wind and closing of taxiways 
is not straightforward. For example in case of 
strong headwind an aircraft would be able to use 
a RET (taxiway C in Fig. 2) instead of vacating 
at the end (taxiway D in Fig. 2) resulting in a 

smaller ROTA. On the other hand if the aircraft 
still wont be able to use the RET it results in 
greater ROTA due slower ground speed.  

In case of closing a RET only aircraft that 
usually vacating via that taxiway will have 
greater ROTA other occupancy times remain 
the same (since the other taxiways are still 
available).    

4 Dynamic model 

4.1 Concept  
The model is based on the assumption that 

the planning of sequences starts 15 minutes 
ahead (i.e. the first aircraft in the queue 
estimates landing or take-off in 15 minutes) in a 
defined time window (in this case 550 seconds). 
The reason for this is that 15 minutes is 
estimated to be close for arriving flights 
entering the terminal maneuvering area (TMA) 
and some minutes before start-up for departing 
aircraft. Of course this time may vary at 
different airports. Time checks in respect of 
earliest departure and earliest landing time are 
based on the possibility to be able to fly or taxi 
faster to meet the earliest time to the runway. 
The applied 15 minutes allows controllers to 
speed up arriving aircraft or instruct aircraft for 
faster taxi and arrange predeparture sequence. 

The method is similar to RHC described in 
[8] or the concept used in Departure Manager 
[9], i.e. optimization is done in a definite time 
window sliding forward in time instead of 
optimizing the sequence till the end of the 
operating day. The time window moves forward 
and aircraft are removed from the beginning of 
the queue and other entering to the end of the 
queue. This procedure is feasible for 
computational time saving and due to the fact 
that uncertainties of estimated times long ahead 
make the solution too much uncertain.  

In this work after an optimization step in a 
time window the positions of the first two 
aircraft are decided. The first is removed and the 
window slides forward by the separation time 
between the first and the second aircraft. In the 
next step the flights in the next window are 
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selected and the new sequence is optimized. The 
first one is removed (from the optimized 
sequence) and the window slides forward. This 
process is repeated until there are aircraft in the 
window.  

The overall optimized sequence is given by 
the flights removed from the first positions in 
the subsequent steps. Between the steps it is 
possible to update estimated times (as there may 
be new information) and parameters due 
changes in wind, operational circumstances 
(closing of taxiways, change of runway-in-use). 

A block diagram in Fig. 1 shows how the 
dynamic model works. The first position is 
fixed in every optimization step because the 
start of the first aircraft was calculated from the 
separation from the preceding one. After an 
optimization step the first aircraft (of the fittest 
sequence) is removed and the second is fixed, as 
it is the first in the next step. t_rem is defined as 
the earliest estimated time among aircraft in an 
optimized sequence from the third position till 
the end of the queue. t_rem is used because it is 
possible that the first aircraft in the new 

sequence (starts at updated T0 as the time 
window slides forward) is not the one with the 
earliest estimated time, and if the flights would 
be selected for the new sequence from interval 
[T0,T0+550] it could be missed out.  

4.2 Heuristics 
The space defined by the random initial 

population generally used for sequencing 
problems solved by genetic algorithms is in fact 
much wider than the solution space of interest. 
This is because vast majority of the sequences 
generated randomly are not acceptable (too 
much time or position shift, or simply not 
efficient).  

If we generate an initial population that is 
closer to the optimized solution it can be 
assumed that the algorithm finds the solution 
earlier or it finds a better solution at the same 
time.  

Using the above-mentioned heuristics has 
certainly some drawbacks. If the space defined 
by the heuristics is too narrow (maybe even 
more narrow than the solution space) the 
algorithm might not find the optimum or the 
best quality solution just a sub-optimum (as it 
possibly happened in some of the cases of the 
simulation). This problem is also mentioned in 
[7]. 

Fig. 1. Block Diagram of the Dynamic Model 
 

Further investigation is required to explore 
best balance between narrowing the space 
defined by the heuristics and running time and 
solution quality. Basically we can say that the 
heuristics’ space should be wider than the 
solution space.  

The ‘working space’ of the algorithm is 
wider than the heuristics defined (consider 
mutation), but in case of a too narrow initial 
population it is less probable to find solution 
outside that space (in a finite number of 
generations).    

For generating heuristics a TSCPN model 
was used described in [1]. The model in [1] was 
modified in terms of random time shift applied 
for the FCFS sequence to fit the genetic 
algorithm and to contain separations.  
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Table 2. Results 

 

5 Algorithm implementation 
The algorithm is intended to be used 

online. Under real circumstances the 
computational time of one step has to be low 
compared to the time the window slides forward 
(the time between two aircraft).  

Neural networks enable online parameter 
estimation for the algorithm. These however 
have to be trained offline on measured or 
calculated data for each parameter needed. This 
may be a long process but once the trained nets 
are available they are feasible for online use.  

Heuristics generation was done offline 
because the TSCPN model was not connected to 
the GA implementation. Of course in an online 
environment this has to be integrated to the 
algorithm, but for our purposes (to show 
heuristics performance) it showed to be 
acceptable.  

The GA model was implemented in 
Matlab6.5 and was run on a P4 PC.  

Our aim was to investigate the effect of 
enhanced heuristics and online parameter 
estimation with neural networks. The 
parameters of the algorithm are tuned to be able 

to demonstrate our aims but not fine-tuned to 
optimize running time.  

The main parameters are the following: 
• Population size: 20 
• Number of generations (in each step): 80 
• Chromosome length: depending on 

number of flights in time interval 
• Mutation probability: 0.01 

 
Parent selection is based on chromosome 

normalized fitness. A chromosome (Si) is 
selected for reproduction with a probability 
equal to its normalized fitness (fittnorm) in the 
population: 

fittnorm= Fobj(Si)/∑i Fobj(Si) (2) 

The model runway (Fig. 1.) is 2500 meters 
long with two RETs (taxiway B and C at 1050 
m and 1625 m respectively) and a normal 90o 
taxiway (D) at the far end.  
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Fig. 2. The Model Runway 

6 Simulation results 
For simulation two schedules were created 

(Sch1, Sch2). Both cases correspond to 
congested traffic conditions, Sch1 for arrival 
peak and Sch2 for arrival and departure peak 
with 32 flights planned in 30 minutes. In Sch1 
the share of arriving aircraft is 75% in Sch2 
50%.  

Both for Sch1 and Sch2 six cases were 
tested, three with random initial population and 
three with TSCPN generated one. The three 
cases were to demonstrate the effect of wind 
and closing of a RET (namely taxiway C): 

• Wind calm, all taxiways available 
• Wind calm, taxiway C closed 
• Wind maximum (we applied 20 knots), 

all taxiways available 
 
Typical results can be seen in Table 2. 

There are six block of rows in the table. The 
first three are for Sch1, the second three for 
Sch2. Pairs within the blocks correspond to 
random and TSCPN generated initial 
population. The FCFS sequence completion 
times (t_fcfs) and average delays for FCFS 
(avg_fcfs_d) are the same for these pairs since 
they correspond to the same conditions. The 
second column is the optimized (overall) 
sequence completion time (t_opt) the third is 
average computational time for one step 
(avg_ct) and the fifth is the average delay 
(avg_opt_d). 

Delays are listed for information only since 
they are not included in the objective function. 
However time and position checks have much 
effect on delays. It is clear that through 
minimizing sequence completion times delays 
are also reasonably reduced. 

The table shows that in all of the cases with 
the use of the algorithm an approximately 20% 
gain in sequence completion time can be 
achieved. The saving is defined as 1-(t_opt / 
t_fcfs). The slight difference of time saving in 
favor of arrival-departure peak (ad_…) on 
arrival peak (a_…) might be due to the fact that 
departure aircraft were splitted into more classes 
in the model.  

The effect of operational circumstances 
(closing of taxiway C (…_Cclosed)) and wind 
(…_calm or …_max) can be seen comparing the 
completion times of the same schedules (e.g. in 
the first three blocks for Sch1). The great 
differences in these times explain the advantage 
of using online parameter estimation.  

Evaluating heuristics performance it can be 
said that about 10% of computational time can 
be saved by TSCPN generated heuristics, 
though in some of the cases t_opt is slightly 
worse. The difference (where applicable) is 
rather small compared to the saving in respect to 
t_fcfs. As mentioned is section 4.2 the reason 
can be that the defined space of the applied 
heuristics is too narrow. In other cases the same 
or even better t_opt was computed together with 
saving in computational time, which indicates 
that more appropriate selection of heuristics 
should lead to at least same solution quality 
with decrease in avg_ct.    

7 Conclusions and future work 
In this paper we presented a method to 

increase runway capacity by planning optimal 
sequences with genetic algorithms using 
enhanced heuristics and parameter estimation 
with neural networks. A Timed Stochastic 
Coloured Petri Net model of the runway was 
used to generate pre-optimized sequences as the 
initial population of the genetic algorithm. The 
performance of the algorithm has been 
investigated by simulation for the case of arrival 
peak and arrival and departure peak and 20% 
saving in sequence completion time could be 
achieved. With use of enhanced heuristics 
computational time decreased by 10%. Neural 
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networks proved to be effective tools for online 
parameter estimation.  

The results show the potential of using 
enhanced heuristics to save computational time 
together with good solutions.  

Further work will be done on investigation 
of appropriate generation of heuristics without 
even minimally degrading solution quality and 
preserving desired saving in computational 
time.     
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