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vibrating suppression, and many theoretical 
researches with advanced technical applications 
have been recently reported for aeronautical 
engineering[4], for example, ERF is 
experimentally added into rotary wing structure 
of helicopter to control its bending and twisted 
vibration. 

In view of its excellent electro-mechanical 
coupled effects and potential to use in flight 
vehicle technology, this paper theoretically 
attempts to explore ERF as a variable damping 
medium to actively control aircraft’s landing-
gear bumper such that it alleviate high speed 
landing impact. The mathematical model and 
numerical solution have been studied for this 
idea, and a mathematical control law has been 
presented in this paper. 

2 Mathematical Model 

Fig.1 shows the simplified oil-air mixed 
construct and its model of a typical single-cavity 
landing gear[5], structural mass of which consists 
of two parts, one is elastic, m1, composed of 
airframe, bumper wall, oil and air cavities, etc. 
and the other is non-elastic, m2, composed of 
bumper piston-rod, wheel and its tire, etc. For 
the modeling simplicity, we take some 
assumptions as follows: 
1.the movement of landing gear is confined 
along the direction perpendicular to ground; 

f Chinese Society of Aeronautics and Astronautics                                                               1 



QIN SUN, YINGNAN GUO, HONGZHAO JIANG 

2.the elastic deformations of bumper cavity, 
bracing strut and wheel are neglected, and 
damping oil is considered non-compressive; and 
3.m1 can be accounted into an equivalent elastic 
mass around landing gear shaft, and m2 around 
wheel shaft. 

Based on the above assumptions, the 
mathematical model of a typical oil-air mixed 
landing gear can be written as  

uv ffym +=11 &&          (2.1a) 

tuv fffym +−−=22 &&         (2.1b) 

where fv indicates the air spring force;  fu oil drag;  
ft force provided by tire; y1 the displacement of 
gravity center of landing gear, and y2 the 
displacement of the wheel shaft. 

When taking the wheel as a linear spring with 
stiffness coefficient K, the force ft can be simply 
described by 

)( 2yyKf gi −=                     (2.2) 

where yg  is the displacement input by 
ground impact. Substitution of Eq. (2.2) into 
(2.1b) leads to

)( 222 yyKffym guv −+−−=&&    (2.3) 

It is assumed that landing impact can be 
considered as an adiabatic process because of 
very short time action and very difficult heat 

exchange with exterior. Hence, the air spring 
force is given by 
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where P0 means initial pressure of air 
cavity; V0 initial capacity of air cavity; A0 
effective air compressive area; S air 
compressive stroke; and r air compressive 
variable index with value through 2.1 to 2.4.  

When the oil medium of the landing gear 
bumper is replaced by ERF, the pressure drop of 
ERF flow is given to rise by viscous flow and 
electro-rheological shearing effect, which means 
that the flow drag is made up of both viscous 
and coulomb damping, that is, 

ERPPP ∆+∆=∆ η         (2.5) 
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drop brought by viscous damping[6]; and 

yER H
LCP τ=∆ , is pressure drop brought by 

coulomb damping. y2 
yg Thereby, the total drag provided by ERF for 

landing gear bumper can be expressed as  
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Fig.1 Simplified construct and model of a 
landing gear 

where C is a proportional coefficient with 
values through 2 to 3; FER is usually taken as a 
function of the static yielding stress, τy of 
ERF， which is invariant under certain electric 
field intensity E, and empirically taken as an 
exponent function of E with relationship of  

876.1324.0)( EEy ×=τ       (2.7) 

The Eqs.2.4 and 2.5 are substituted into the 
mathematical model 2.3, and after some real-life 
landing impact situation is taken into account, a 
simultaneous non-linear governing ordinary 
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differential equation group for the ERF damping 
type bumper can be written by 
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where S stands for bumper stroke in 
compression, δ for compressive quantity of 
landing gear tyre, L for influencing coefficient 
of lift download, g for gravity acceleration, ζ for 
upper mass coefficient equal to 
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 and Fs for drag of the bumper written as 
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3 Numerical Solution 

In order to determine the initial and 
boundary conditions for solving Eq.2.8, we 
should figure out the displacement and speed of 
the lower mass of landing gear before the 
movement of bumper piston. Then, the 
following equation should be solved, that is,  
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And the initial and boundary conditions of Eq. 
3.1 can be given as 

K
gmmLY

t

)( 21
0

+
=

=
                (3.2) 

 
0=t

Y& = the sinkage speed of aircraft.  

Solve the above problem and take the 
displacement and speed when balancing as 
those of bumper piston starting to move, and 

also as the initial and boundary conditions of 
Eq.2.8, which are assumed as 

11 ,,0,0 YandYSS &&&&& ==== δδ     (3.3) 

With help of the Rounger-kutta technique, 
the numerical results of the Eqs.2.8 under the 
initial and boundary conditions, Eqs.3.3 can be 
obtained. 

To proceed with finial destination, the 
following parameters of the dynamic system are 
taken into account, 
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Substitute the above parameters into 
Eqs.3.1 and 3.2, and some characteristic values 
are solved as follows, 
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Kω , being the natural 

frequency of the dynamic system,  
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, being the modal 

amplitude of the dynamic system, 
0439.01 =Y , being the initial displacement 

of bumper piston starting to move, and 
051.31 =Y& , being the initial speed of 

bumper piston starting to move. 
Now taking different electric field intensity, 

E and all the above concrete parameters, we can 
evaluate the Eqs.2.8 and 2.10, step by step 
under a numerically stable size, and plot all the 
numerical curves of the bumper stroke, S 
against its drag FS, which are shown as Fig. 2a.  
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Fig.2 Curves of bumper stroke vs. its drag 

(a) 

(b) 

4 Controllable Law 

Each work curve in Fig.2a, under certain 
electric field intensity is not satisfied with the 
requirement of comfortableness, and so we need 
to vary field intensity as the function of bumper 
stroke. Plot a goal work curve, shown as Fig.2b, 
and evaluate the intersections of the curve with 
all the original ones, as well as plot the 
intersectional curves in Figs.3and 4. Then fit the 
intersections and we can obtain the so-needed 
function in the Eqs 4.1. 
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Fig.3 Curve of intensity E vs. stroke  

 

 
Figure 4 Curve of intensity E vs. bumper drag 

Use the Eqs.4.1 and all the same physical 
parameters, numerically solve the non-linear 
dynamic system again and we can obtain final 
evaluations, drawn as Fig.5, which deviates the 
goal curve only with 4 percent of maximum 
relative error. 
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5 Concluding remarks  

This paper has developed an idea to use 
electro-rheological fluid as damping medium for 
controlling the work curve of landing gear 
subjected to impact. The dynamic governing 
equations of landing gear under such a damping 
medium have been worked out and numerically 
solved. To find the controllable law of electric 
field intensity with landing gear bumper stroke, 
a goal work curve is plotted and the fitting 
relation of electric field intensity with the 
bumper stroke has been obtained. Based on this 
controllable law, the dynamic equation of the 
landing gear is evaluated again and an ideal 
shock-absorbing effect on landing gear has been 
achieved. 

The authors gratefully acknowledge the 
partial support of the national foundation of 
natural science.  

References 
[1] K.P. Tan, R. Stanway and W.A. Bullough, Validation 

of dynamic torque response of an electro-rheological 
(ER) clutch, Mechanical Systems and Signal 
Processing, Volume 20, Issue 2, February 2006, 
Pages 463-492 

[2] W. J. Jung , W. B. Jeong , S. R. Hong and S. -B. Choi, 
Vibration control of a flexible beam structure using 
squeeze-mode ER mount,  Journal of Sound and 
Vibration, Volume 273, Issues 1-2, 21 May 2004, 
Pages 185-199 

[3] S. -B. Choi and Y. -K. Park, Active Vibration 
Control of a Cantilevered Beam Containing an 
Electro-Rheological Fluid, Journal of Sound and 
Vibration, Volume 172, Issue 3, 5 May 1994, Pages 
428-432 

[4] S. B. Choi, Y. K. Park and T. Fukuda, A proof-of-
concept investigation on active vibration control of 
hybrid smart structures, Mechatronics, Volume 8, 
Issue 6, 1 August 1998, Pages 673-689 

[5] F. C. Sui and H. Lu, Mathematical Model of 
Aircraft’s Landing Gear Bumper, Aircraft Design, (in 
Chinese), Issue 6, 1 June 2001, Pages 35-39 

[6] R. C. Liu, Design Handbook of Landing Gear 
Strength, Scientific and Technological Press (in 
Chinese), 1989 
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