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Abstract  

 This paper applies an exergy-based method on 
the two-dimensional airfoil and various three-
dimensional wing planforms to investigate the 
impact of exergy on aerodynamic designs. Our 
intent here is to report our efforts to couple a 
numerical code with an exergy analysis, a 
shape shifting algorithm and an optimization 
code to achieve desired airfoil and wing 
shapes. Exergy-based optimization is 
performed to minimize entropy generated on 
simple airfoils under  turbulent flow conditions. 
Entropy generation and its relationship to total 
and induced drag are studied for different 
twisted wing shapes. 

 
Nomenclature 

ρ  density 
Φ  viscous dissipation 
μ  dynamic viscosity 
τ   shear stress 
δ   Kronecker delta 
∞  subscript for reference state 
Cd drag coefficient 
Cl  lift coefficient 
Ed  Exergy destruction 
Fd  Drag force 
P  static pressure 
Re Reynolds number 

.

genS ′′′  volumetric entropy  
  generation rate 
Sgen total entropy generation rate 
T  temperature 
h  specific enthalpy 
i  tensor index  

j  tensor index 
h  specific enthalpy 
t   time 
u  streamwise velocity component 
v  vertical velocity component 
w  spanwise velocity component 
x  streamwise direction 
y  vertical direction 
z  spanwise direction 

1  Introduction  

There is a growing interest in the potential use 
of exergy-based strategies for aircraft systems 
integration and design. The approach focuses 
on the useful component of energy, i.e. exergy, 
necessary to operate the system. Since energy 
is somehow required for the functioning of any 
system, exergy naturally becomes a common 
tool for system designs. According to the 
second law of thermodynamics, exergy is not 
conserved during any real process. It is 
consumed to meet system objectives and some 
is irreversibly destroyed. The destruction of 
exergy is proportional to the corresponding 
entropy generation. Minimizing entropy 
generation leads to better use of exergy. That is 
why entropy generation minimization (EGM) 
methods have been used for many 
thermodynamic optimization problems.  

At the heart of exergy-based systems 
integration is the analytical methods used to 
characterize each system and to optimize 
within and between systems. As a start, we 
look at optimizing two-dimensional (2-D) 
airfoil shapes in such a way that we can 
determine the best shape for aircraft mission 
segments. We also examine the three-
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dimensional wing in terms of entropy 
generation and its relationship to total and 
induced drag. In concomitant studies, we are 
looking at the broader problem of integrating 
the three-dimensional aerodynamic shape 
optimization with shape controller models and 
intersystem energy flows to develop optimal 
shape shifting strategies. The overall purpose 
of the study is to present a tool for significant 
analysis and optimization into a design format. 

 
Two dimensional airfoil shape design is a 

classical problem in the aerospace industry. 
However, there have been few efforts to use the 
entropy minimization method for airfoil shape 
optimization. In this paper, we report on efforts 
to use a computational fluid dynamics (CFD) 
solver, which includes an assessment of full 
field entropy generation, to optimize 2-D airfoil 
shapes with imposed constraints, such as 
maximum lift/drag ratio. We perform a two-
objective optimization on the 2-D airfoil using 
a genetic algorithm based optimization scheme. 
Our intent here is to report our efforts to couple 
the numerical code with a shape shifting 
algorithm and optimization code. Another 
aspect of our study is the entropy generation 
evaluation in three-dimensional domain. We 
developed a unique approach of control volume 
analysis to relate exergy destruction to drag in 
low subsonic flows.  Future work to optimize 
wing shapes based on exergy-based analysis is 
underway. In a previous study [7], we 
examined a similar approach but with laminar 
flow only. In this paper, we will expand it to 
the fully turbulent flow and examine the issue 
of accuracy that arises with turbulent modeling.  

2  Approach 

2.1 Flow Solver  

The numerical simulations use the general 
viscous equations represented in a Reynolds-
averaged (RANS) form written as: 
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The local entropy generation rate (W/K-

m3) in a three-dimensional flow field is arrived 
by a balance of the conservation equations and 
the second law of thermodynamics across a 
differential fluid volume and results in the 
positive accruing general form[1]:  
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with the viscous dissipation term given by 
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Therefore entropy generation is not 
calculated directly but is calculated from other 
properties. The second term in Equation 4 
develops directly as a consequence of the 
velocity field around a moving body. The 
spatial information required to calculate this 
term is available from the full field viscous 
solver. It directly couples the flow field fluid 
dynamics with exergy. The first term results 
from thermal convective exchange between the 
body and its surroundings through direct or 
indirect means including internal and 
aerodynamic heating. It becomes important 
with high-speed aircraft or any aircraft using 
thermal methods, such as shape memory alloys, 
to implement shape change.  
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In laminar flows, the exact velocity field is 
directly obtained from the RANS solver so that 
Equation 4 can be used without modification. 
However, in turbulent flow, only the mean 
velocity profiles are given in the RANS solver. 
To account for the fluctuating velocity 
contribution, the effective viscosity, which is 
the sum of the laminar viscosity and the 
turbulence viscosity, replaces the laminar 
viscosity in Equation 4. It is in this manner that 
Drost and White [4] suggest extracting the 
local entropy rate from an existing numerical 
code; they applied it on an impinging jet.  
Shuja, et.al. [9] used the same minimum 
entropy concept on an impinging jet flow to 
evaluate various turbulence models. They 
report a dependency between the turbulence 
model used and the entropy generation 
estimate. This is a consequence of the differing 
estimates of the effective viscosity used in the 
different models. In the previous study [7], we 
greatly simplified things by assuming the 
laminar flow case so as to separate the 
turbulence model issue from the logistical steps 
to couple the numerical model with a shape 
shifting algorithm and the optimizer. In this 
paper, we address the approximation of the 
entropy generation using effective viscosity 
and compare the results versus experimental 
data.  

2.2 Entropy generation in turbulent flow 
using CFD 

First let’s examine entropy generation 
calculation in turbulent pipe flow as shown in 
Figure 1. Instead of showing entropy 
generation, the turbulent dissipation, which is 
the essential part of entropy generation, is 
shown. Bejan [1] derives an expression for 
turbulent dissipation in turbulent pipe flow and 
it was compared with CFD results. Bejan’s 
equation is for fully developed turbulence of 
infinite Reynolds number. We compare it with 
three cases of different Reynolds number. It 
can be seen for all three cases, the calculated 
turbulent dissipation has a good match in the 
region close to the wall, where high values are 
observed. There is some deviation away from 

the wall, which is due to the approximation 
nature of RANS solver. The exact turbulent 
dissipation is composed of the gradient of both 
mean velocity and fluctuating velocity. 
However, fluctuating velocity is not present in 
RANS solver, instead, it is replaced by 
turbulence models. The modeling is an 
approximation and causes deviation from exact 
results. Nonetheless, as can be seen in the 
following test case, this approximation 
performs very well in predicting the drag on an 
airfoil.  
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Fig 1. Turbulent Dissipation Comparison 

 
Next we chose a NACA0012 as the benchmark 
airfoil as it is well documented in the open 
literature. By comparing lift, drag and entropy 
generation from a numerical calculation, we are 
able to verify and validate the 
modeling/computational procedure.  
 
We modeled the NACA0012 in a wind tunnel 
with compressible flow. The freestream Mach 
number was set to be 0.2 and the ideal gas 
model was used for the fluid material. Running 
a case at three degrees of angle of attack, we 
obtained a lift coefficient of 0.3561, about 8% 
deviation from the thin airfoil theoretical value. 
The drag coefficient from surface integration is 
113 drag counts (one drag count is 1/10000 of 
drag coefficient Cd), which is 64% higher than 
the experimental value. This is due to a well-
known phenomenon of the over prediction of 
drag, present in all CFD solvers, and related to 
the surface integration method used. However, 
if we calculate the drag coefficient from 
entropy generation, it brings down the number 
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to 92 drag counts, almost half. Although it still 
over predicts the drag, it is much better than the 
traditional surface integration over the airfoil. 
In another case study, if we turned on the two 
layer approach, which essentially sets up a 
laminar zone around the leading edge, we see 
even better results in term of drag and entropy 
generation related drag. Therefore, we are 
confident to say that entropy generation in 
turbulent flow using the effective viscosity 
leads to a good approximation of the expected 
value.  

2.3 Drag and entropy generation 

Based on literatures and our study, we found 
that the drag and entropy generation in 2-D 
domain can be related by Equation 6. This is 
essential because drag can be directly estimated 
from entropy generation without other effects. 
The next section further shows this approach is 
also better and more accurate.  

  

∞

∞×′′′
=
∫∫∫

U

TdvS
D v

gen

.

 

(6) 

 

2.3.1 Two-dimensional study 
 
Two pipe flow cases are selected as 

examples within a two dimensional domain and 
the flow conditions and results are shown in 
Table 1. Both laminar flow and turbulent flow 
are studied. For each flow, two meshes are 
used. One coarse mesh is 100 by 20 and a finer 
mesh is 100 by 40. Air with constant 
densityand constant viscosity is used as the 
working fluid. Velocity is set to be constant. 
Flow fields are solved using a RANS solver – 
Fluent. Using the obtained velocity field, 
entropy generation and drag force from surface 
force integration on the airfoil are calculated. 
Here we use the surface integration technique 
to estimate drag as the benchmark because the 
flows are simple and the walls in the pipe are 
not curved so that CFD predicts drag on a pipe 

very well. Drag force from entropy generation 
using Equation 6 is compared with drag 
calculated using surface integration and is 
shown in the last two columns in Table 1. It 
can be seen they match very well with each 
other. These test cases verify that drag can be 
estimated from entropy generation with very 
high accuracies.  

 
Grid 
Spacing Sgen(W/K) 

Drag from 
surface 
integration Drag from Sgen 

% 
drag 
diff 

100*40 0.006795923 2.075 2.0387769 1.75%

100*40(tur) 0.00680896 2.073265 2.042688 1.47%

100*20 0.006793336 2.066852 2.0380008 1.40%

100*21(tur) 0.006806631 2.067505 2.0419893 1.23%
 

 
Table 1 Sgen vs Cd for Pipe Flows 

2.3.2 Three-dimensional(3-D) study 
 
The objective of linking exergy 

destruction to drag was extended to the 3-D 
domain as well. Here a method for calculating 
drag on a finite wing is introduced and applied 
to three different wing shapes. 

 
Linking exergy destruction to drag in a 

CFD simulation is identical in the 2-D and 3-D 
case.  However, due to the induced drag 
contribution in a 3-D model special attention 
must be given to calculating entropy 
generation.  This is because the trailing wing 
tip vortex, for example, may extend very far 
downstream of the wing.  In many CFD models 
it is computationally prohibitive to model the 
flowfield far enough downstream of the wing 
such that the velocity perturbations caused by 
the wing are damped out.  As a result a simple 
volume integration within the computational 
domain to calculate entropy generation is not 
sufficient to determining drag of a wing.   

 
The first step in the process of 

determining drag by calculating entropy 
generation as a result of the presence of the 
wing is to perform a volume integration of the 
viscous dissipation term within the CFD 
domain and together with Equation 4 an 
estimate for the entropy generation within the 
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model is obtained.  The next step is to obtain an 
estimate for the projected entropy generation 
seen in the flow after it leaves the CFD domain.  
This is accomplished by performing an exergy 
balance over a volume situated directly 
downstream of the CFD domain.  Calling the 
downstream control volume CV2 the resulting 
exergy balance over CV2 is: 
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Here surface 2 is the entrance of CV2 (or 

equivalently the exit of the CFD domain), and 
surface 3 is the exit of CV2. 

By assuming the following: 
1.) The sides of the CFD domain are far 

enough away from the wing that negligible 
flow leaves through any surface other than the 
inlet and outlet 

2.) Surface 3 is far enough downstream 
that the velocity profile is approaching that of 
the freestream velocity, i.e. u3 → U∞ as x→ ∞ 

3.) All flow properties are constant on 
surface 3 

4.) Temperature and density stay nearly 
constant (all flow studies performed at Mach 
0.2 here) 

 
The steady state exergy destruction rate 

for CV2 is: 
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Combining this with the entropy volume 

integration, and utilizing Equation 6 we obtain 
the following relation for drag force in low 
speed flows. 
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 Here, outlet corresponds to the exit 

surface of the volume used for the volume 
integration represented by CV in the first 
integral. 

 

2.3 Turbulent models 
As we discussed earlier, because of 

turbulent modeling, the evaluation of entropy 
generation in CFD is not exact. Instead, it is 
just an approximation of the precise one. This 
naturally leads to a question: which turbulent 
model gives us the best results in terms of the 
entropy generation calculation? A series of 
cases are done to investigate this aspect. We 
found that Fluent’s low Reynolds (Low-Re) 
number K-ε modes are among the best. Fluent 
provides 6 Low-Re K- ε  models. In the results 
shown in Table 2, they are all tested using the 
same mesh and boundary conditions. Similar to 
previous sections, drag and entropy generation 
(Sgen) are compared with their corresponding 
experimental values, either directly (drag) or 
indirectly (Sgen, using drag and Sgen relation 
equation). It can be seen that except model 3, 
all other models perform very well. Model 5 is 
the best performer but it’s not too much 
deviated from others. 

3 Results 

3.1 2-D Airfoil optimization 

An optimization of airfoil shape based on 
entropy generation minimization was 
accomplished. The airfoil shapes are 
represented by NURBS curve. The basis airfoil 
is based on Li’s [8] study but only 18 control 
points were selected to simplify the process. 6 
out of 18 points were allowed to move within a 
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specified range to change the airfoil shape. We 
chose three control points on the top surface of 
the airfoil and three control points on the 
bottom surface of the airfoil. To help keep the 
optimization solution within bounds, we apply 
a constraint of a fixed chord. Both leading edge 
and trailing edge points are fixed, so the chord 
remains constant. However, the volume will 
change as the shape varies. Two NURBS (non-
uniform rational b-spline) curves are fitted 
using these control points and the leading and 
trailing points. Figure 2 shows the control 
points and an approximation of the airfoil 
shape. The x coordinates of three top control 
points are fixed, which are 0.156869, 0.814025  
and 0.952611, respectively. The x coordinates 
of three bottom control points are also fixed, 
which are 0.159457, 0.811269 and 0.951315, 
respectively.  By varying the y coordinate of 
the control points, the airfoil shape could be 
changed. 
 

 
Fig 2. Representation of Airfoil Shape  

Using NURBS Curve 
 
A two objective optimization was performed 
for the stated conditions: To maximize lift-to-
drag (Cl/Cd) and to minimize entropy 
generation. The results are shown in Figure 3. 
As a note, because the optimization algorithm 
can only handle minimization, Cl/Cd was first 
calculated then its negative value is used as the 
objective function value. By doing this, 
minimizing negative Cl/Cd will be equivalent 
to maximizing Cl/Cd. The other objective is to 
minimize entropy generation, which is 
equivalent to minimizing drag as we stated 
previously. A genetic optimization algorithm 
[11] was modified and used in the study. 
 
In Figure 3, each point represents an airfoil 
shape that is a feasible optimal solution. As 
maximizing Cl/Cd and minimizing entropy 

generation are different objectives, we see in 
the pareto range that entropy generation 
increases with Cl/Cd. This does not mean 
Cl/Cd always increases with the entropy 
generation. Each airfoil shown in Figure 3 is a 
compromise between Cl/Cd and entropy 
generation. Depending upon the preference, a 
designer could choose any of the airfoils.  
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Fig 3. Pareto Curve of the Airfoil Shapes Optimization 

 

3.2 3-D Wing CFD Results Comparisons 
Three CFD finite wing models were 

constructed; two were geometrically twisted 
and the third was left untwisted. The two 
geometrically twisted wings were constructed 
to give elliptic and parabolic lift distributions. 
The untwisted wing was placed at an angle of 
attack to give the same lift as the other two 
wings. Lifting line theory was used to 
determine the geometric twist of the two 
twisted wings and was also used to determine 
the angle of attack the untwisted wing should 
be placed. 

The wings were composed of NACA 0012 
airfoil sections with a constant chord length. 
All three wings had a chord of 1 m and a span 
of 6 m, although a plane of symmetry was used 
at midspan so that only 3 m of the span had to 
be modeled. The flow conditions were Mach 
0.2, Rec=4,660,000 and at a temperature of 300 
K and a pressure of 1 atm abs. The turbulence 
model used was the realizable k-ε model. 

Before comparing the drag results of each 
wing it is important to note the respective 
resulting lift coefficients of each wing.  All 
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three wings were designed, using lifting line 
theory, to have the same lift coefficient of 0.43.  
Two methods of determining lift from the CFD 
results were used.  The first is the traditional 
surface integration technique where pressure 
and shear stress distributions are integrated and 
a resulting lift found.  The second method is a 
wake integration technique described by Giles 
et al. [5][6].  The results of these lift 
calculations are shown in Table 3.  In Table 3 it 
is seen that the parabolic wing deviates the 
most away from the theoretical lift coefficient 
using both methods of determining lift.  The 
elliptic and untwisted wings agree more 
favorably with the theoretical lift coefficient as 
compared with the parabolic wing.  These lift 
coefficients would of course be of importance 
when comparing relative Cl/Cd values between 
wings, however this comparison is not made 
here and the lift coefficients are provided only 
to make the reader aware.  

Equation 9 allows the drag force of a wing 
to be computed by performing a volume 
integration within the CFD domain and a 
surface integral over the outlet of the CFD 
domain.  The objective is, as mentioned above, 
to relate exergy destruction, or equivalently 
entropy generation, to drag.  To do this the total 
entropy generation due to the presence of the 
wing must be determined if accurate drag 
values are to be obtained.  Physically the 
volume integral in Equation 9 allows the 
entropy generation seen within the CFD 
domain to be determined.  The surface integral 
acts to determine the entropy generation due to 
the wing that is not captured by the CFD 
domain.  This is due to the fact that, in many 
cases, viscosity has yet to damp out all of the 
velocity perturbations on the exit plane of the 
CFD domain caused by the presence of the 
wing.  Therefore the kinetic energy put into the 
air by the wing, for example in the wing tip 
vortex, must be determined realizing viscosity 
will eventually damp out these perturbations 
resulting in entropy generation.  The idea here 
is that as the CFD domain extends further 
downstream of the wing the volume integral 
capturing entropy generation would increase 
and the surface integral, which captures the 

extra exergy destruction not seen in the CFD 
domain, would decrease. Therefore when the 
two components in Equation 9 are added 
together a constant drag force should be 
determined regardless how far the exit of the 
numerical model is aft of the wing. The 
limiting case would be when the numerical 
model captures the entire presence of the wing, 
in terms of entropy generation, and therefore 
the surface integral would be zero. As 
discussed earlier this is not likely since the 
computational requirements would be 
prohibitive for a numerical model this large.  

 To test this hypothesis the numerical 
model was separated into eight volumes. Each 
volume extends from the entrance of the 
numerical domain to a set distance aft of the 
wing. The volumes extend from one chord 
length behind the wing through consecutive 
integer chord lengths to eight chords behind the 
wing. For example, the first volume was 
composed of the entire numerical model from 
the front of the domain but only extended to 
one chord length behind the wing. In this case 
the surface integral was performed on a plane, 
perpendicular to the freestream velocity vector, 
one chord length behind the wing. The second 
volume is the same as the first but extended 
two chord lengths behind the wing and so on.  

 Figure 4 shows the increasing trend of 
entropy generation within the numerical model 
as the volume extends further downstream of 
the wing. This data agree with the expected 
increasing trend.  The plot also shows the 
elliptic wing generating less entropy than the 
other two within the CFD domain modeled.  
Lifting line theory predicts the elliptic wing to 
have the minimum induced drag.  Therefore the 
trend seen in the plot could be a result of the 
elliptic wing simply having less induced drag 
than the other two wings modeled.   
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 Fig 4.  Entropy Production Within Numerical 
 Volumes Extending the Indicated  
Length Downstream of the Wing 

 
Figure 5 shows the total drag values 

calculated with Equation 9 on the numerical 
volume as it extends further downstream. The 
expected result is a constant drag value 
regardless of how far the numerical domain 
extends downstream. There is a slight overall 
decreasing trend as the numerical volume 
extends downstream. However the largest 
change in values is with the untwisted wing and 
that change is 8.4%. The largest change in the 
elliptic and parabolic wings is 4.6% and 2.5% 
respectively.  
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Fig. 5 Total Drag Coefficient Determined as the 

Numerical Volume Extends Further Downstream of 
Wing 

 
 

The slight decreasing trend seen in Figure 
5 may be due to artificial, or numerical, 
viscosity that is not accounted for in Equation 
9. Artificial viscosity is a result of truncation 
error that arises from representing the fluid 
flow equations in discrete form. Since Equation 
9 determines drag from velocity gradients and 
perturbation velocities it can be expected that 
any viscosity that is not accounted for in 

Equation 9 will contaminate the results. 
Therefore it can be expected that as more of the 
numerical volume is used in Equation 9 more 
error from numerical effects will occur. A 
solution to this problem would be to take the 
drag results given in the near field of the wing 
at say one or two chord lengths downstream of 
the wing. Another solution is to increase the 
grid density in the wake region. However more 
cells will require longer solution times and 
increased memory requirements. Second order 
solution schemes help to reduce artificial 
viscosity and were used in this study.    

In the absence of experimental data a 
“semi-empirical” drag value was used to 
compare with drag values obtained from 
Equation 9.  This semi-empirical value is so 
called because it is a combination of 
experimental 2-D wind tunnel results and 
Prandtl’s lifting line induced drag estimate.   
Since induced drag is what separates drag on a 
two-dimensional airfoil from drag on a finite 
wing it is suggested to add the experimental 
two-dimensional drag coefficient to the 
theoretical induced drag coefficient predicted 
by lifting line theory for each wing to obtain a 
three-dimensional “semi-empirical” drag 
coefficient. The two-dimensional drag data is 
given as drag coefficients for various angles of 
attack [10].  The drag coefficient given for this 
airfoil at approximately the same Reynolds 
number and geometric angle of attack of the 
untwisted wing used in this study is 0.00785. 
The two-dimensional airfoil drag data was also 
used to obtain a two-dimensional drag 
coefficient for the elliptic and parabolic wings. 
This was accomplished by using an area-
weighted average for the geometric angle 
distribution on each wing. The two-
dimensional drag coefficient found using this 
method for the elliptic and parabolic wings is 
0.0078 and 0.00792 respectively.  

Table 4 shows the drag coefficients 
obtained from wing surface integration and the 
average value of eight numerical volumes from 
Equation 9 along with this semi-empirical drag 
value. The wing surface integration here refers 
to the method of integrating the surface 
pressure and shear stress distribution around 
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the wing to obtain a resultant drag value.  The 
drag coefficient obtained by Equation 9 at one 
and two chord lengths downstream of the wing 
are also included.   

Table 4 shows some expected trends. Drag 
calculated from wing surface integration was 
higher than both the semi-empirical value and 
the drag determined using Equation 9 for all 
three wings. As mentioned earlier this is most 
likely due to the boundary layer, which is 
assumed to be completely turbulent, and when 
combined with flat elements representing 
curved surfaces, may over predict drag due to 
the increased shear stress compared with 
laminar boundary layers. The average drag 
value obtained with the far-field method from 
one chord to eight chord lengths downstream of 
the wing agreed with the semi-empirical drag 
result to within 3.4%, 2.6%, and 4.4% for the 
elliptic, parabolic, and untwisted wing 
respectively. The best agreement with the semi-
empirical value was obtained at two chord 
lengths behind the wing. The drag value 
determined using Equation 9 at two chord 
lengths behind each wing was within 1.1%, 
1.6%, and 1.1% to the semi-empirical value for 
the elliptic, parabolic, and untwisted wing 
respectively. The agreement to the semi-
empirical value was less desirable when 
Equation 9 was performed at one chord length 
behind each wing, however the largest 
difference was with the untwisted wing at 6%. 
The drag value obtained through wing surface 
integration was off from the semi-empirical 
value by 12.5%, 13.2%, and 8.8% for the 
elliptic, parabolic, and untwisted wing 
respectively.  
The fact that Equation 9 predicts the closest 
agreement with the semi-empirical value when 
performed on a volume extending two chords 
behind the wing may be due to a number of 
factors.  First it is fairly close to the wing 
resulting in a relatively smaller volume in 
which to integrate.  This helps to reduce the 
effect of artificial viscosity simply because less 
of the numerical domain is included in the 
volume and surface integrations.  However, this 
doesn’t explain the difference between the one 
and two chord cases.  One possible source of 

error in the one chord volume may be due to 
the relatively large gradients on the one chord 
plane as compared to the two chord plane thus 
potentially stressing the surface integration of 
Equation 9.  No near field nor far field 
corrections are included in the results shown, 
however future research hopes to address this 
issue in an effort to achieve consistent drag 
values independent of the downstream plane 
location.  In Destarac[3] and Bourdin’s[2] 
study, they proposed a method to incorporate 
near-field and far-field corrections to the 
“apparent” reducing induced drag as the Treffiz 
plance moves away from the wing. Hunt et al. 
[6] have experienced the downstream plane 
dependency with their wake integration 
methods and have introduced cutoff parameters 
which attempts to determine the size of the 
wake plane needed while eliminating far field 
errors that may affect the results.  They note 
however that artificial viscosity still has the 
effect of reducing predicted vortex drag values 
as the wake integration plane is moved further 
downstream. 

4 Conclusion  

An exergy-based method was introduced for 
use in an airfoil shape optimization scheme. 
Entropy generation minimization is coupled 
with a RANS-based numerical flow solver, a 
shape shifting algorithm and an optimizer to 
create a new design methodology. A two-
objective optimization is performed to 
maximize lift/drag ratio and minimize entropy 
generated on simple airfoils under turbulent 
flow conditions. The resulting two objective 
pareto curve is a trade-off in shapes between 
larger lift/drag ratio and less exergy 
destruction.  
 
A 3-D study was performed to extend the 
exergy-based methodology for linking drag to 
exergy destruction.  A methodology for 
estimating drag with a RANS-based numerical 
flow solver in low speed flows was introduced.  
The methodology was applied to three test 
cases with the resulting drag value compared to 
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a semi-empirical drag value.  The results, 
especially when taken from a CFD domain 
extending 2 chord lengths aft of the wing, agree 
well with the semi-empirical value for each 
wing.  The results from the exergy-based 
method were in much better agreement with the 
semi-empirical value than the surface 
integration method of obtaining drag values.  
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Index Model Cd Sgen Cd deviation(%) Sgen deviation( %) 

0 Abid 0.008483 4.95319 26.61 8.24
1 Lam-Bremhorst 0.008368 4.94958

24.90 8.16
2 Launder-Sharma 0.011375 6.61105 69.77 44.46
3 Yang-Shih 0.007832 4.59388

16.90 0.38
4 Abe-Kondoh-Nagano 0.007317 4.31652

9.21 -5.68
5 Chang-Hsieh-Chen 0.007844 4.61249

17.07 0.79

 Table 2 Drag comparison for NACA0012 airfoils with 6 Low-Re models 
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 Elliptic Parabolic Untwisted 
Theory (Lifting Line) 0.43 0.43 0.43 
Surface Integration 0.424 0.406 0.42 
Average Wake Integral 0.437 0.408 0.432 

 
 

Table 3  Lift Coefficients Determined by Indicated Method 
 
 

 
 Elliptic Parabolic Untwisted 

Semi-Empirical  0.0176 0.0190 0.0182 

Surface Integration 0.0198 0.0215 0.0198 
Equation 4.19 Average 0.0170 0.0185 0.0174 
Equation 4.19 @ 1 Chord 0.0169 0.0186 0.0171 
Equation 4.19 @ 2 Chord 0.0174 0.0187 0.0180 

 
 

Table 4  Total Drag Coefficients Determined by Indicated Method 


