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Abstract  

An appropriate combination of the thin-layer 
Navier-Stokes (TLNS) and parabolized Navier-
Stokes (PNS) solvers is used to accurately and 
efficiently compute hypersonic 
transitional/turbulent flowfields of perfect gas 
and equilibrium air around blunt-body 
configurations. The TLNS equations are solved 
in the nose region to provide the initial data 
plane needed for the solution of the PNS 
equations. Then the PNS equations are 
employed to efficiently compute the flowfield for 
the afterbody region by using a space marching 
technique. Both the TLNS and the PNS 
equations are numerically solved by using the 
implicit non-iterative finite-difference algorithm 
of Beam and Warming. A shock fitting 
procedure is used in both the TLNS and PNS 
codes to obtain accurate solution in the vicinity 
of the shock. For turbulent flow simulations, 
both the Cebeci-Smith (CS) and the Baldwin-
Lomax (BL) turbulence models are analyzed 
with the present technique for the case of long 
slender blunt bodies. The Baldwin-Lomax 
turbulence model, which does not need the 
determination of the edge of the boundary layer, 
is modified in the present work for pressure-
gradient effects to accurately calculate flowfield 
characteristics. Detailed comparisons are made 
with other numerical and experimental results 
to assess the accuracy and efficiency of the 
present solution procedure for computing 
hypersonic flow over long slender blunt bodies. 
The results of these computations are found to 
be in good agreement with available data. The 

effects of real gas on the flowfield 
characteristics are also studied. 

1  Introduction 
Hypersonic flows are very important for design 
of high speed aircraft and reentry vehicles and 
some aerodynamic problems must be 
considered. Most of these problems arise 
because of extremely high flight altitudes, high 
flight velocities and high temperatures. The high 
temperatures and high convective velocities 
create an environment where real gas effects can 
be significant. The accurate and efficient design 
of thermal protection systems, as well as 
propulsion systems for such vehicles will 
require accurate information of various 
aerothermodynamics environments. Since the 
aerothermodynamics environment for these 
flight conditions (high speeds and high 
temperatures) is extremely difficult to simulate 
in ground-based or flight experiments, the 
design process for these vehicles will heavily 
based on computational methods to define the 
aerothermodynamics environment during re-
entry. 

Two common computational approaches 
for obtaining accurate aerothermodynamics 
predictions of these vehicles are to use the thin-
layer Navier-Stokes (TLNS) equations or the 
parabolized Navier-Stokes (PNS) equations. 
The numerical computations of hypersonic 
viscous flows using the TLNS equations 
especially for long slender blunt bodies are very 
time consuming and require very high storage 
and computer speed. Therefore, they are not 
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well suited for various parametric studies 
needed for design and analysis processes. 

An appropriate scheme for the computation 
of high speed flows over slender-body 
supersonic/hypersonic geometries is to use the 
PNS equations. The PNS equations are 
parabolic-like with respect to the streamwise 
direction; hence the PNS scheme can realize 
appreciable decreases in both computational 
time and memory requirements relative to the 
TLNS scheme. The main difficulty in applying 
the PNS approach over blunt-body 
configurations is that the PNS equations cannot 
solve the subsonic flowfield in the blunted nose, 
and therefore the TLNS equations must be used.  

An alternative is to utilize a dual-code 
solution procedure, that is, the use of a TLNS 
solver in the nose region and using a PNS solver 
for the afterbody region. This strategy can 
efficiently be implemented for computations of 
hypersonic blunt-body configurations [1,2,3]. 

Wood and Eberhardt [1] and Wood et al. 
[2] used such a solution strategy for 
computation of hypersonic flowfields over 
blunt-body geometries using two well-
established TLNS and PNS codes, LAURA [4] 
and UPS [5]. These two codes were based on 
finite volume, shock capturing algorithms. The 
application of the dual-code solution procedure 
was shown for the solution of perfect gas, 
equilibrium and chemically reacting hypersonic 
laminar flows about slender blunted cones. 

Esfahanian and Hejranfar [3] demonstrated 
that the PNS schemes can efficiently be used for 
providing basic flow models required for 
stability analysis of hypersonic axisymmetric 
laminar flows of the perfect gas over slender 
sharp and blunt cones. They used a combined 
TLNS-PNS solution procedure for the blunt 
cone case. This dual-code solution procedure 
has also been used to accurately and efficiently 
compute hypersonic laminar flows including 
real gas effects over long slender blunt bodies 
[6]. Both the TLNS and PNS equations were 
numerically solved by using the efficient 
implicit non-iterative finite-difference algorithm 
of Beam and Warming together with a shock 
fitting technique [3,6-9]. The numerical 
algorithms based on centrally differenced such 

as the Beam-Warming scheme in conjunction 
with a shock fitting procedure, can provide 
accurate and smooth solutions for geometries 
have small axial geometric variation. 

The main objective of the present work is 
to accurately and efficiently compute 
hypersonic transitional/turbulent flows 
including equilibrium gas effects over long 
axisymmetric blunt bodies.  In fact, for long 
slender blunt bodies at high Mach numbers, 
laminar flow at some distances becomes 
turbulent flow and flow solver has to be able to 
compute both flow regimes. The TLNS-PNS 
solution procedure used herein can be 
performed for both laminar and turbulent flows. 
The TLNS equations are solved in the nose 
region to provide the initial data plane needed 
for the solution of the PNS equations. Then, the 
PNS equations are employed to efficiently 
compute the flowfield for the afterbody region 
by using a space marching scheme.  

For turbulent flow simulations, the two-
layer eddy-viscosity turbulence models, namely 
the Cebeci-Smith (CS) [10] and the Baldwin-
Lomax (BL) [11] models are employed. For the 
transitional region, the present scheme uses the 
model proposed by Dhawan and Narasimha 
(DN) [12]. In this model, continuous transition 
is affected by defining a streamwise transition 
intermittency factor that modifies the eddy 
viscosity over the transition region. 
Gupta et al. [13] have studied the application of 
both the CS and BL turbulence models to the 
solution of high speed flowfields over blunt 
bodies. They have used a viscous shock layer 
(VSL) solver for the case of perfect gas model. 
Herein, a combined TLNS-PNS solution 
procedure is used for both the perfect gas and 
the equilibrium air.  

To demonstrate the accuracy and efficiency 
of using the present TLNS-PNS solution 
procedure, several computations are performed 
for hypersonic laminar and transitional/turbulent 
flows over blunt-body geometries. The results 
of these computations are compared with 
available numerical and experimental results 
and the effects of real gas on the flow variables 
are also studied. 



DUAL-CODE SOLUTION PROCEDURE FOR EQUILIBRIUM HYPERSONIC AXISYMMETRIC 
TRANSITIONAL/TURBULENT FLOWS 

 

 

2  Problem Formulation  
The TLNS and PNS codes [3,6-8] were 
previously developed for computing hypersonic 
axisymmetric laminar flowfield for the perfect 
gas or the equilibrium air over blunt bodies. 
Here, these codes are extended to allow 
computations of transitional/turbulent 
flowfields. 

2.1 The TLNS Equations 
The TLNS equations are obtained from the 
compressible Navier-Stokes equations by 
neglecting the streamwise viscous and heat flux 
terms compared to the normal derivatives. The 
resulting equations for axisymmetric 
compressible flow can be written in 
dimensionless and conservation form in the 
general nonorthogonal curvilinear coordinate 
system ( , , )τ ξ η  as 

0

, ,i i v i v

U F G H

F F G G G H H H

τ ξ η
∂ ∂ ∂+ + + =
∂ ∂ ∂

= = − = −

 (1)

where the solution vector is 

1 1 , , ,
T

U J U J u v Eρ ρ ρ− −  = =   
 

and iF , iG  and iH  are the inviscid flux vectors 
and vF , vG  and vH  are the viscous flux 
vectors. 

2.2 The PNS Equations 
The PNS equations are obtained by dropping the 
unsteady term in the TLNS equations and 
modifying the streamwise pressure gradient in 
the streamwise momentum equation to permit 
stable marching. The PNS equations for 
axisymmetric compressible flow in the 
generalized coordinate system ( , )ξ η  can be 
obtained from Eq. (1) as follows 

0F G H
ξ η

∂ ∂+ + =
∂ ∂

 (2)

The above equations have been 
nondimensionalized using the reference length 

NR  (dimensional nose radius) and freestream 
conditions. 

To "close" the preceding system of 
equations, relations between the thermodynamic 
variables are required along with relations for 
the transport properties µ∗  and k∗ . For the 
present equilibrium flow computations, 
approximate curve fits are employed for 
thermodynamic and transport properties.  
The thermodynamic properties are obtained 
using the correlations developed by  
Sirinivasan et al. [14] 

( , ), ( , ),

( , ), ( , ),

( , ), ( , )

e a a e

p p e T T e

T T p h h p

γ γ ρ ρ

ρ ρ

ρ ρ

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= =

= =

= =

 
(3)

These curve fits are valid for temperatures up to 
25000 K and density ratios ( 0/ρ ρ∗ ∗ ) from 710−  
to 310 . For both the equilibrium air and the 
perfect gas, the following relations between 
flow variables can be used 

2 21
2( - 1) , , ( ( ))hp e E e u v

e
ρ γ γ ρ= = = + +

The curve fits for the transport properties 
were developed by Srinivasan et al. [15] and 
include the following correlations 
 

( , ) , ( , )k k e eρ µ µ ρ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= =  
(4)

These curve fits are valid for temperatures up to 
15000 K and density ratios ( 0/ρ ρ∗ ∗ ) from 510−   
to 110 .  

For perfect-gas computations, γ γ∞= , the 
molecular viscosity µ  is determined by the 
Sutherland law and the coefficient of thermal 
conductivity is calculated by assuming a 
constant Prandtl number, 0.72Pr = . 

The PNS equations are a mixed set of 
hyperbolic-parabolic equations in the marching 
direction, provided that the inviscid flow is 
supersonic, the streamwise velocity component 
is everywhere positive, and the streamwise 
pressure gradient term is either dropped in the 
subsonic regions or the "departure behavior" is 
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suppressed using a suitable technique. For this 
study, the Vigneron et al. [16] technique is 
implemented to prevent departure solutions.  

In the Vigneron et al. approximation, the 
streamwise pressure gradient in the momentum 
equations is split into an implicit contribution 
and an explicit contribution 

implicit explicit
(1 )p p pω ω

ξ ξ ξ
∂  ∂   ∂ = + −   ∂ ∂ ∂      

 (5)

The weighting function ω  is determined as 
2

2min 1,
1 ( 1)

M
M
ξ

ξ

σγ
ω

γ
 
 =  + − 

 (6)

where M ξ  is the local streamwise Mach 
number and σ  is a safety factor to account for 
nonlinearities in the analysis. To introduce the 
Vigneron et al. technique into the PNS 
equations, a new vector F ∗   is defined as 

F F P∗ = −  (7)

Thus, the new form of the PNS equations 
appears as 

0F P G H
ξ ξ η

∗∂ ∂ ∂+ + + =
∂ ∂ ∂

 (8)

where the inviscid vectors F ∗ and P  are 
 

1 1

0

(1 )
,

(1 )

( ) 0

x x

y y

U

uU p p
F J P J

vU p p

E pU

ρ

ρ ωξ ξ ω
ρ ωξ ξ ω

∗ − −

   
   
   + −   = =   + −   
   
   +      

 

and U  denotes the contravariant velocity in the 
ξ  direction, x yU u vξ ξ= + . In the present PNS 
solver, the "elliptic'' part of the streamwise 
pressure gradient term ( / )P ξ∂ ∂  responsible for 
upstream disturbance propagation is omitted to 
permit the space-marching procedure to be 
stable. 

3  Turbulence Models  
Algebraic turbulence models are easily 
implemented and they require less 

computational efforts as compared to the one or 
two-equations models of turbulence. Two 
widely algebraic turbulence models, namely the 
Cebeci-Smith (CS) [10] and the Baldwin-
Lomax (BL) [11] models are employed, in the 
present solution procedure, for turbulent flow 
simulations over long slender blunt bodies.  

For turbulent-flow computations, a 
Reynolds averaged form of the TLNS and the 
PNS equations are used. Therefore, the 
dependent variables represent mean-flow 
contribution. By using the Boussinesq 
hypothesis, turbulence modeling is reduced to 
evaluate the turbulent viscosity coefficient tµ . 
Consequently, the Reynolds average form of the 
TLNS and PNS equations can be obtained by 
replacing the laminar flow coefficients with  
 

µ µ µ= +l t   ,   l t

l tPr Pr Pr
µ µ µ
= +  (9)

where the coefficient of viscosity lµ  is 
computed by Sutherland's law, lPr  is assumed 
to be constant and equals to 0.72 and a value of 
0.90 is used for tPr . The turbulent viscosity 
coefficient tµ  is calculated using the CS, BL 
and modified BL (MBL) turbulence models. 

3.1 Cebeci-Smith Model 
The CS turbulence model uses a two-layer eddy 
viscosity formulation (in dimensional form) 

m

m

if y y

if y y

≥

>
    ti

t
to

µ
µ µ=


 (10)

where y  is the normal distance from the wall 
and my  is the smallest value of y at which the 
value of tµ  from the inner and outer formulas 
are equal. The eddy viscosity in the inner region 
is defined by 

2
tiµ ρ= Ωl  (11)

where Ω  is the magnitude of the vorticity and l 
is the Prandtl's mixing length 

( )0.4 1 exp y
yl

A
 = − −  

 (12)



DUAL-CODE SOLUTION PROCEDURE FOR EQUILIBRIUM HYPERSONIC AXISYMMETRIC 
TRANSITIONAL/TURBULENT FLOWS 

 

 

The parameter A is usually referred to as the 
damping factor. The damping factor A is a 
strong function of the wall boundary conditions 
and is expressed as 

1
2w26A

τ
ν

ρ

−
=

    
 (13)

Eq. (12) was originally obtained for 
incompressible, zero pressure gradient 
(p =Constant, / 0=dp dx ) and solid-wall 
flow ( w w 0u v= = ). However, this relation are 
applied to compressible flows where p  and v 
are evaluated locally across the viscous sublayer 
region.  

In CS turbulence model, the Prandtl's 
mixing length for compressible flow is defined 
as follows 

1
w 20.4 1 exp ( ) yyl
A

ν
ν

   = − −    
 (14)

where ν  is the average value of the kinematics 
viscosity taken over the viscous sublayer;  

slN

i
sl i 1

1
N

ν ν
=

= ∑ . slN  is the number of grid points in 

the viscous sublayer region. It should be noted 
that the density and the viscosity appearing in 
Eq. (13) are evaluated locally.  

The eddy viscosity in the outer region can 
be expressed as follows 

*
inc kleb0.0168 F ( )to eu yµ ρ δ=  (15)

where *
incδ  is the incompressible displacement 

thickness 

inc
0

(1 )δ∗ = −∫
ey

e

u dy
u

  

and the Kelbanoff’s intermitency function 
( )klebF y  is defined by 

( )
16

klebF ( ) 1 5.5
y

y
δ

− = +   
  

The boundary-layer thickness is calculated 
using a total enthalpy model. In this model, it is 
assumed that an appropriate value for the 
boundary-layer thickness is equal to the value of 
the normal coordinate where 

=
0

0.995
∞

0 w

w

h - h

h - h
 (16)

3.2 Original Baldwin-Lomax Turbulence 
Model  
The BL turbulence model was initially 
developed based on the CS model with 
modifications that avoid the necessity for 
calculating the edge of the boundary layer. In 
the BL turbulence model, the eddy viscosity can 
be expressed by Eq. (10). This model employs a 
formulation similar to the CS model for the 
eddy viscosity in the inner region 

2
ti lµ ρ= Ω  (17)

where Ω  is the magnitude of the vorticity and l  
is  the Prandtl's mixing length 

0.41 1 exp
26
y

yl
+

= − −
       

  

where y +  is defined by 

w*

w
u

τ
ρ

=  ,    
*

w

w

u y
y

ρ
µ

+ =  

The eddy viscosity in the outer region of 
the viscous layer is based on the Kelbanoff 
expression 

( )to wake kleb0.0269 F F yµ ρ=  (18)

where the Kelbanoff’s intermitency function 
( )klebF y  is defined by 

( )
16

kleb
max

0.3
F 1 5.5

y
y

y

−

= +
        

  

and wakeF  is 

wake max maxF Fy=   

The quantity maxy  and maxF  are determined 
from the function  
 

( )F 1 exp
26
y

y y
+

= Ω − −
       
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The quantity maxF  is the maximum value of 
( )F y  that occurs in a profile and maxy  is the 

value of y  at which it occurs. 
The present calculations for hypersonic 

equilibrium flows over blunt bodies have 
indicated that the original BL turbulence model 
can not accurately predict the surface heating 
rates. Here, the BL turbulence model which 
does not require any calculation of the edge of 
the boundary layer is modified to improve the 
accuracy of the results. 

3.3 Modified Baldwin-Lomax Turbulence 
Model  
The original BL turbulence model was proposed 
for constant pressure boundary layer at 
transonic speeds. This model has been modified 
as discussed in Ref. [13] to include the effects 
of pressure gradient on the damping factor. This 
model employs a formulation similar to the CS 
model for the eddy viscosity in the inner region. 
The eddy viscosity in the inner region is defined 
by Eq. (11) and the Prandtl's mixing length l is 
given by Eq. (12) except that the damping 
constant is defined as 

1
2

w
26A τ

τ

−
=

        (19)

τ  is the local shear stress obtained from 

l t( )τ µ µ= + Ω    (20)

In the outer region, the eddy viscosity is 
obtained similar to the original BL turbulence 
model. The eddy viscosity in the outer region is 
defined by Eq. (18) in which the damping factor 
A  is determined by Eq. (19). This modification 
improves the accuracy of the results 
considerably.  

3.4 Transition Region 
For the transitional region, the present scheme 
uses the model proposed by DN [12]. In this 
model, continuous transition is affected by 
defining a streamwise transition intermittency 
factor ( trγ ) that modifies the eddy viscosity 
over the transition region ( trx x≥ ). In the 

transition region, the streamwise intermittency 
factor is evaluated using the following relation 

[ ]2
tr 1 exp( 0.412 ) 1xγ = − − ≤  (21)

where 

tr

tr

2.96( )x xx
x
−=  (22)

 

Both continuous and instantaneous transition 
from laminar to turbulent flow are include in the 
present calculations. 

4 Boundary Conditions and Initial Data 
Plane 
The boundary conditions at the wall consist of 
no-slip conditions for velocity components 
( 0u v= = ), a specified wall-temperature or an 
adiabatic wall, and zero pressure gradient 
approximation normal to the wall. For a perfect 
gas, the density at the wall is determined using 
the perfect gas relation. For a real gas, the wall 
density is calculated implicitly from the curve 
fit expression, * *( , )T T pρ= . At the upper 
boundary, the bow shock is fitted using a shock 
fitting technique to obtain an accurate solution 
of both the TLNS and PNS equations near the 
shock. 

The starting data of the PNS equations are 
provided by the solution of the TLNS equations 
in the nose region of the blunt-body 
configuration. The starting solution on an initial 
data surface where the inviscid flow is 
supersonic is obtained from the solution of the 
TLNS solution. 

5  Computational Grid 

An algebraic grid scheme is utilized to compute 
flowfield. The lines of constant ξ  are 
distributed uniformly along the body surface 
and are orthogonal to the body. To insure that 
the viscous regions are adequately resolved, the 
lines of constant η  are clustered near the body 
surface according to [17] 
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max

max

(1 / )

(1 / )

,

1 11 ,
11

w w

s w s w

x x x xa a
x x x x

aa a
a

η η

η η
ββ
β

−

−

− −= =
− −

 − + = + =  −+ 

 (23)

in which the clustering parameterβ  is typically 
assigned in the range of 1.001-1.01.  

6  Numerical Solution 
The numerical solution of both the TLNS and 
PNS equations for equilibrium-air calculations 
is obtained by using the efficient implicit non-
iterative finite difference algorithm of Beam and 
Warming together with a shock fitting 
procedure. Details of the derivations of the 
TLNS equations for equilibrium airflows and 
the numerical algorithm have been reported in 
Refs. [6,18]. The numerical algorithm for the 
PNS equations for a marching step ξ∆  can be 
written in delta form as 
 

1

1 2

2 1
1 12 2

2( )1
1 2 , ,

i i iF G H iU
U U U

iG i iH F P

i i iF G H

U U U UU

θ ξ

θ η

θξ
θ η θ

θ ξ
ξ

ξ θ η ξ ξη η

∗
∂ ∆ ∂ ∂ ∂

+ + ∆ =
∂ + ∂ ∂ ∂

∆ ∂ −− + + ∆ − ∆
+ ∂ +

∗ ∆∂ ∂ ∂ ∂
−∆ − +

∂ + ∂ ∂ ∂

 
 
  

                         

                     

 

(24)

where the derivative / U ∂ ∂   is referred to as 
Jacobian matrix and the subscripts U and Uη  
represent terms that are evaluated with U and 
Uη   held fixed. The algorithm utilizes the first-
order backward Euler implicit scheme 

1 2( 1, 0)θ θ= =  in the marching direction ξ  and 
the second-order central scheme in the normal 
directionη . 

The inviscid and viscous flux vectors for a 
real gas can be written in the functional form of 
U and ( , )eγ γ ρ= , For example, the flux vector 
F ∗ is expressed as ( , )F U γ∗  and therefore the 
Jacobian matrix *A  of the flux vector F ∗  is 
given by [19,20] 

*

2

U

e

F FA J
U

a e
eU U

γ

ρ

γ

γ ρ γρ
ρ γ ∗∗

∗ ∗

∞
∞ ∗ ∗

∞

   ∂ ∂   = +   ∂∂   
   ∂ ∂ ∂ ∂      +         ∂ ∂       ∂ ∂        

 (25)

For a real gas, the derivatives (  e
ρ

γ ∗
∗ ∂ ∂   ) and 

(
e

γ ρ∗∂ ∂ ∗
    ) can be computed directly from 

curve fit expression ( , )eγ γ ρ∗ ∗= . 
The preceding system of equations along 

with the boundary conditions at the wall and the 
shock gives a block tridiagonal system of 
equations for iU∆  with a block size of 4 4× . A 
block-tridiagonal solver is used to calculate the 
incremental solution vector iU∆ , and then the 
solution vector is determined as follows 

1i i iU U U+ = + ∆  (26)

High-order dissipation terms must be 
added to this scheme in order to damp high 
frequency oscillations associated with the 
central differencing of derivatives in the η -
direction. Therefore, second-order implicit and 
fourth-order explicit dissipation terms of the 
form 

( )

( )

*
1 , 2

* 121 ,
8

i
F iD J J U ei i iU

i
F iD J JUe e eU

ε ε εη η

ε εη η

∂−= − ∇ ∆ ∆ =
∂

∂ −= − ∇ ∆ <
∂

 
 
   

 
 
   

 
(27)

are added to the left and right-hand sides of Eq. 
(24). The explicit and implicit dissipation 
coefficients are set to 0.01eε =  and 2i eε ε= . 

6.1 Shock Fitting Procedure 
For the PNS solution, at each station, the shock 
slope is iteratively corrected in an explicit 
manner and the flow properties behind the 
shock are computed by using the compatibility 
and Rankine-Hugoniot relations. The pressure 
behind the shock for the equilibrium-air 
computation is determined by integrating the 
energy equation in the non-conservative form as 
follows 



KAZEM HEJRANFAR, VAHID ESFAHANIAN, RAMIN KAMALI MOGHADAM 

 

1

0

p p p
U V U V

u v u v v
p x y x y y

γ γ
ξ η γ ξ η

γ ξ ξ η η
ξ ξ η η

∂ ∂ ∂ ∂
+ − + +

∂ ∂ − ∂ ∂
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 (28)

The iterative process is repeated at the shock 
until the solution converges and then the 
solution marches on the next solution plane. 

7  Numerical Results 
The present TLNS-PNS solution strategy is 
used to accurately and efficiently compute high 
Mach number transitional/turbulent flows of 
perfect gas and equilibrium air over blunt-body 
configurations. The results of these 
computations are compared with available 
numerical and experimental results and the 
effects of real gas on the flow variables are also 
studied. 

7.1 Laminar Flow 
The first test case is hypersonic laminar flow of 
equilibrium air over a long slender blunted 
cone. The flow conditions for this test case 
correspond to the Reentry-F flight altitude of 
120,000 ft [21]. The Reentry-F configuration is 
a 5-deg half angle sphere-cone and an overall 
length of 13 ft with an initial nose radius of 

0.114NR = in. The flow conditions are 
 

-5 -3kg.m

19.25, = 7670.4,
768.27Pa, 243 K,

67.144 10 , 477.77-361.11Kw

M Re
p T

Tρ

∞

∞ ∞

∞

∞=
= =

= × =

 

 

This is a challenging case to compute high 
Mach number over such a large scale model. 
The present TLNS-PNS approach is applied to 
this case to show the efficiency and accuracy of 
the proposed method [6]. 

The TLNS solution in the nose region 
( 3.0S ≤ ) is obtained by using the grid points 
(30, 100)  in ( , )ξ η  directions, respectively, to 
provide the initial data for the PNS solver. The 
PNS solution is obtained by using the stepsize 

0.1S∆ =  in the marching direction and the 
wall-normal grid points Jmax 100=  and the 
stretching parameter 1.005β = . Figure 1 

indicates the computed flowfield for the Mach 
number contours for the region 6.0S ≤ . This 
figure also shows the initial conditions and the 
marching procedure for the PNS equations.  

Figure 2 demonstrates the effect of grid 
refinement on the surface heating rates for the 
equilibrium airflow. It is found that the surface 
heating rate is more sensitive to the number of 
grid points and grid distribution used, especially 
for the afterbody region of long blunt-body 
configurations. The study shows that the 
clustering of the grid near the wall can improve 
accuracy of the results computed with a lower 
number of grid points. The numerical results 
suggest that max 100J =  and 1.005β =  are 
sufficient for the computations even for the 
downstream of the flowfield.  

Figure 3 compares the computed surface 
heating rates from the present technique with 
the experimental Reentry-F flight data, the VSL 
solution [22] and also the results of Bhutta and 
Lewis [23] obtained using a PNS scheme. The 
PNS solution by Bhutta and Lewis was obtained 
by the initial data surface from a VSL solution 
in the nose region. The Reentry-F flight 
experiment involved the accurate measurement 
of surface heating rates on long slender conical 
RV under laminar flow conditions. The results 
of the present solution are found to be in good 
agreement with the experimental data and those 
of Bhutta and Lewis. The study shows the VSL 
method underpredicts the surface heating rates 
especially near the pressure 
overexpansion/recompression region. This may 
be because the VSL solution scheme is very 
sensitive to the accuracy of the input shock 
shape data for long slender configurations. It 
can be seen that the surface heating rates for the 
perfect gas is lower than that of the equilibrium 
case. 

For the equilibrium airflow computation, 
the typical CPU time of the PNS solution, using 
200 grid points in the wall-normal direction and 
15000 sweeps in the streamwise direction, is 5 
min and the CPU time of the TLNS solution in 
the nose region using (30,100)  grid points is 
about 1 h (on a personal computer).  It is clear 
that the present TLNS-PNS solution strategy 
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significantly reduces the computer time and 
storage required to obtain the equilibrium 
flowfield with reasonable accuracy. 

7.2 Transition/Turbulent Flow 

7.2.1 Perfect Gas  
The present computations are performed for 
hypersonic transitional/turbulent flow of perfect 
gas over a long slender blunted cone with 5  
half angle. The nose radius is 1.5NR = in. and 
the solution is computed for a body length of 

1200S = . The flow conditions are: 
 

-5 -3kg.m

15, = 19210.887,
130.4488Pa, 265.556 K,

171.16 10 , 1255.556Kw

M Re
p T

Tρ

∞

∞ ∞

∞

∞=
= =

= × =

 

 

In this case, the TLNS-PNS solution procedure 
is also employed. The TLNS solution in the 
nose region ( 3.85S ≤ ) is obtained by using the 
grid points (40,100)  in ( , )ξ η  directions, 
respectively. Then the PNS solution is 
performed by using the stepsize 0.1S∆ =  in the 
marching direction and Jmax 100=  and 

1.001β = . 
For this case, both laminar and 

transitional/turbulent flows are studied. For the 
turbulent flow the CS turbulence model is used 
and the DN model is applied in the transition 
region in which the transition point occurs at 

192S = . Figure 4 indicates the computed 
surface heating rates of the perfect gas for the 
different number of grid points. It is found that 
Jmax 100=  with the stretching factor 1.001β =  
is adequate.  

In Fig. 5, the computed surface heating 
rates for laminar and transitional/turbulent flows 
are compared with the VSL results [13]. For the 
laminar flow, the computed surface heating 
rates and the VSL results are in geed agreement. 
To simulate the turbulent flow, both the CS and 
BL turbulence models are employed. It is found 
that the calculated results of the CS model are in 
good agreement with the VSL results, but the 
original BL model overpredicts the surface 
heating rates in the turbulent region by 
approximately 23%. The original BL turbulence 
model is obtained for constant pressure 

boundary layers. In this study, the BL model is 
modified to include the effect of pressure 
gradient on the damping factor. As shown in 
this figure, the results of this modification 
indicate significant improvement in comparison 
with the CS results. 

For computing the eddy viscosity, the CS 
model uses the enthalpy gradient (Eq. 16) to 
determine the boundary layer edge. The effect 
of definition of boundary layer edge on the 
surface heating rates is shown in Fig. 6. It is 
found that the results based on the CS model are 
very sensitive to the definition of the boundary 
layer edge. It should be noted that the BL model 
computes the eddy viscosity without the 
necessity of determining the edge of boundary 
layer, and therefore, the modified BL turbulence 
model is preferable than the CS model for 
computing hypersonic equilibrium turbulent 
flows. 
 

7.2.2 Equilibrium Gas 
The third test case is hypersonic 
transitional/turbulent flow of equilibrium air 
over a long slender blunted cone with a total 
length of * / 1500Nx R = . The flow conditions 
for this test case correspond to the Reentry-F 
flight altitude of 80,000 ft. [21]. The Reentry-F 
configuration is a 5-deg half angle sphere-cone 
with an initial nose radius of 1.4NR = in. The 
flow conditions are 
 

-5 -3kg.m

19.97, = 65898.745,
2803.868Pa, 219.5K,

4447136 10 , 430.5 603.33Kw

M Re
p T

Tρ

∞

∞ ∞

∞

∞=
= =

= × = −

 

 

The grid size and the grid distribution for 
the solution of the TLNS code in the nose 
region are similar to the previous test case. In 
the transition region, both the instantaneous 
transition and the DN model are applied to fully 
turbulent conditions. For instantaneous 
transition, the transition point occurs at location 
of / 7550Nx R∗ =  and for the DN model occurs 
at / 6000Nx R∗ = .  

The effect of grid refinement on the results 
of surface heating rates is shown in Fig. 7. 
These results are computed using the modified 
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BL model in the turbulent region.  The results 
show no difference between the 100 and 200 
grid points in the normal direction, whereas 50 
grid points predict inadequate results. For the 
CS turbulence model, the effect of definition of 
boundary layer edge on the surface heating rates 
is shown in Fig. 8. It is found that the results are 
very sensitive to definition of boundary layer 
edge based on enthalpy gradient (Eq. 16). 
Therefore, in the CS model, selecting a regular 
value for the enthalpy gradient is relatively 
difficult and finer resolution and accurate 
solutions near the edge of boundary layer are 
essential. 

The present computations for the surface 
heating rates for the equilibrium airflow based 
on the CS, BL and modified BL (MBL) 
turbulence models are compared with the 
experimental data [21] and the Bhutta and 
Lewis results [23] as shown in Figs. 9 and 10. 
The present results in Fig. 9 are computed with 
instantaneous transition whereas Fig. 10 
indicates the results using the DN transition 
model in the transition region. The calculated 
results of the CS turbulence model are in good 
agreement with the experimental data and the 
Bhutta results, but the original BL turbulence 
model overpredicts the results in the turbulent 
region by approximately 36% without using the 
transition model and 25% with using the DN 
transition model. It is obvious, with the 
modification in the BL formulation, similar to 
the perfect gas case, the results of equilibrium 
air are extremely improved and corresponded 
with the experimental data. The BL and CS 
turbulence models have been studied by Gupta 
et al. [13] only for the perfect gas. In the present 
study both the equilibrium air and the perfect 
gas are considered. 

Figure 11 demonstrates the velocity 
profiles of the equilibrium airflow for the BL, 
CS and MBL models at the station 

1200* / Nx R =  where the flow is fully turbulent. 
The results indicate that the velocity profiles 
using the MBL and CS turbulence models are 
nearly the same, and the original BL model can 
not accurately predict the velocity profile. 

To investigate the real gas effects, a 
comparison of the surface heating rates for the 
perfect gas and the equilibrium air with the 
experimental results is shown in Fig. 12. The 
results indicate that the perfect gas model 
underpredicts the surface heating rates by 
approximately 7% in the laminar region and 
18% in the turbulent region. 
 

8 Concluding Remarks 
A combined TLNS-PNS solution procedure has 
been implemented to accurately and efficiently 
compute hypersonic laminar and 
transition/turbulent flowfields over blunt-body 
configurations. Both the TLNS and PNS 
schemes have been solved by using the efficient 
implicit non-iterative finite-difference algorithm 
of Beam and Warming in conjunction with a 
shock fitting procedure.  

For turbulent flows, two algebraic 
turbulence models, namely, the Cebeci-Smith 
(CS) and the Baldwin-Lomax (BL) models have 
been used for application to the hypersonic 
equilibrium air flows over long slender blunt 
bodies. The CS model is sensitive to the 
definition of the edge of boundary layer and 
requires finer resolution near the edge. The BL 
model, that does not require the determination 
of the boundary-layer thickness, has been 
corrected and applied successfully to the 
hypersonic equilibrium flows. Both of the CS 
and modified BL (MBL) turbulence models are 
shown to result in similar heating predictions for 
hypersonic equilibrium airflows over long blunt 
bodies. 

The grid refinement study shows the wall 
heating rates especially for long blunt-body 
geometry are sensitive to the number of grid 
points and the grid distribution used. The wall 
heating rates in laminar and turbulent region for 
the equilibrium airflow are higher than those of 
the perfect gas case.  

The results of present computations of 
hypersonic flows over long blunt bodies are 
found to be in excellent agreement with 
available data. The present solution strategy 
significantly reduces the computational time and 
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memory required for computations of 
hypersonic equilibrium transitional/turbulent 
flows over long blunt-body geometries. 
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Fig. 1 Computed Mach contours and solution strategy for 

hypersonic laminar flow of equilibrium air over  
50 sphere-cone, 19.25M∞ = . 

Fig. 4 Grid refinement study on surface heating rates for 
transitional/turbulent flow of perfect gas over  

50 sphere-cone, 15∞ =M   

 

 

 

Fig. 2 Grid refinement study on surface heating rates for 
hypersonic laminar flow of equilibrium air over  

50 sphere-cone, 19.25M∞ =  

Fig. 5 Comparison of surface heating rates for 
transitional/turbulent flow of perfect gas over  

50 sphere-cone, 15∞ =M . 

  

Fig. 3 Comparison of surface heating rates for hypersonic 
laminar flow of equilibrium air over  

50 sphere-cone, 19.25M∞ =  

Fig. 6 Effect of definition of boundary layer edge on 
surface heating rates for transitional/turbulent flow of 

perfect gas over 50 sphere-cone, 15∞ =M . 
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Fig. 7 Grid refinement study on surface heating rates for 

transitional/turbulent flow of equilibrium air  
over 50 sphere-cone, 19.97∞ =M  

Fig. 10 Comparison of surface heating rates for 
transitional/turbulent flow of equilibrium air  

over 50 sphere-cone, 19.97∞ =M   
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Fig. 8 Effect of definition of boundary layer edge on surface 
heating rates for transitional/turbulent flow of equilibrium air 

over 50 sphere-cone, 19.97∞ =M  

Fig. 11 Comparison of velocity profiles at / 1200Nx R∗ =  
for transitional/turbulent flow of equilibrium air  

over 50 sphere-cone, 19.97∞ =M  

  
Fig. 9 Comparison of surface heating rates for 
transitional/turbulent flow of equilibrium air  

over 50 sphere-cone, 19.97∞ =M  . 

Fig. 12 Effect of real gas on surface heating rates  
for transitional/turbulent flow  

over 50 sphere-cone, 19.97∞ =M  




