
25TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

TOWARD A FIPA COMPLIANT MULTI-AGENT REAL-
TIME ARCHITECTURE FOR INTEGRATED MODULAR

AVIONICS

Johann Duscher*, Dr. Norbert Oswald**, Dr. Rupert Reiger*
*EADS CRC/LG-AS, **EADS Military Aircraft

Keywords: modular avionics, multi-agent system, peer-to-peer, distributed blackboard

Abstract

In our work we propose a multi-agent based
real-time architecture for the implementation of
multi-agent based heterogeneous Integrated
Modular Avionics (IMA). It utilizes a distributed
blackboard architecture with rule-based event
notification in order to efficiently minimize
communication overhead and to provide a
flexible, scalable, and fault-tolerant peer-to-
peer infrastructure for information
dissemination between agents situated in
arbitrary safety partitions. Moreover, the
proposed architecture conforms to the widely
accepted standards defined by the Foundation
for Intelligent Physical Agents (FIPA) – an
organization coping with multi-agent
technology.

1 General Introduction
Consider an unmanned aerial vehicle (UAV)
autonomously acting in a network-centric
concerted actions scenario. It will be confronted
with a vast of sensor data originating from its
own sensors and other data sources (like other
UAVs, Satellites, Ground Station, etc.). Ideally,
its avionic system should process all this data in
real-time and initiate appropriate actions. But
because of a UAV’s limited energy, intra-
avionics communication bandwidth, and
processing resources, this may not be feasible.

A solution for this problem is to enable
avionic components to intelligently adapt to the
current system needs and situation context in
order to control the focus of information
processing. An IMA architecture is thus
required to provide a huge amount of flexibility.

Another requirement that must be considered
(regardless of a concrete architecture design) in
order to make it a viable approach for IMA is to
implement fault-tolerance and to provide
support for safety partitions, which guarantee
physical bounds with respect to failure
propagation in case of malfunction of some
subsystem(s).

1.1 The Client-Server Based Approach
Currently, there are some efforts to realize IMA
using real-time operating system (e.g. LynxOS
or VxWorks) and client-server based
middleware technologies (e.g. RT/FT-CORBA)
that enable transparent communication over the
network and fault-tolerant integration of
heterogeneous hardware and software
components.

Those client-server based architecture
approaches, however, have some drawbacks
with respect to flexibility and fault-tolerance.
Additionally, the CORBA standard is very
complex which complicates the necessary
certification of CORBA orbs, not to mention the
resulting high costs.

1.2 The Peer-to-Peer Based Approach
In contrast to purely client-server based
approaches some new research efforts focus on
the realization of systems in a peer-to-peer
fashion, because the latter approach promises
considerable advantages over the former one
regarding fault-tolerance, scalability, and
flexibility.

However, in a peer-to-peer system new
problems arise that have to be dealt with. A

1

Johann Duscher, Dr. Norbert Oswald, Dr. Rupert Reiger

UAV and, consequently, its avionic components
should draw decisions based on currently
available information about the global system’s
state and the environment. This implies that all
decision-support and decision-making
components should have access to all
information about the current situation context
they may be interested in and, hence, some
repository is needed where all this information
is stored to provide such an access. But in a
peer-to-peer system there generally is no (or at
least should not be) a central server component.
Consequently, peers have to communicate
relevant information to other peer nodes
efficiently and in a reliable fashion, which
requires an appropriate information
dissemination infrastructure that covers real-
time, safety, and fault-tolerance aspects.

1.3 The Multi-Agent Based Approach
A promising approach to tackle all these
problems in a peer-to-peer fashion is to
implement IMA using a real-time enabled
multi-agent system (MAS). Multi-agent systems
generally are peer-to-peer in nature, and –
though no commonly agreed definition for
agents exists – there is, however, often a
consensus about some important properties:
they are assumed to possess some degree of
autonomy and intelligence, and they may act
proactively and goal-oriented. Within a well-
defined border this allows an agent to act and
draw decisions autonomously in order to reach
its goals in a flexible and intelligent way. For
this reason our work focuses on a multi-agent
based architecture for IMA.

2 Blackboards as a Means for Multi-Agent
Coordination and Information Exchange
A modern avionics system for manned aerial
vehicles fulfills complex mission management
tasks and must deal with uncertainty (sensor
data can be erroneous or inaccurate, and the
environment is open, non-deterministic, and
non-cooperative). Clearly, this especially
accounts for UAVs where autonomous mission
accomplishment is required. Managing highly

complex problems like autonomous mission
management in real-time is a very difficult task.
In a MAS based IMA architecture this would
require the agents to cooperate and coordinate
with each other necessitating an appropriate
infrastructure. Additionally, as already
mentioned earlier, some kind of a repository is
needed that provides access to each aspect of the
current situation context and global system state
agents might be interested in. Only this way
IMA agents can optimally adapt to their needs.
As we will see later the Blackboard architectural
pattern is a perfect candidate for both the
required data repository and the required
infrastructure for highly complex problem-
solving tasks. Accordingly, our proposed RT-
MAS architecture for IMA builds upon a
(distributed) variation of the Blackboard
architectural pattern.

In order to recognize all the benefits of our
suggested approach a general understanding of
the Blackboard pattern is very important. Thus,
we decided a brief introduction to the general
pattern should follow first. Subsequently, we
describe our suggested blackboard architecture
which supports efficient multi-agent
coordination by minimizing communication
overhead necessary for information exchange
through the application of a rule-based
notification scheme. Finally, we show how
several instances of such blackboards can be
“plugged” together in order to realize a
distributed blackboard which we will use as a
means for an efficient and fault-tolerant
infrastructure enabling information
dissemination between agents located in
arbitrary safety partitions of an IMA system.

2.1 The Blackboard Architectural Pattern
In general, a blackboard architecture is a data
repository that represents an area of shared
memory. Agents (or “knowledge sources” in
terms of the Blackboard architectural pattern
respectively) use this repository to share
knowledge and (partial) solutions in order to
cooperatively solve a complex problem. With
other words, the blackboard is the source of all
data on which an agent will operate and is the

2

 TOWARD A FIPA COMPLIANT MULTI-AGENT REAL-TIME ARCHITECTURE FOR IMA

destination of all conclusions from an agent.
Once it finds the information it needs on the
blackboard, it can proceed without any
assistance from other agents. Thus, there is no
direct dependency between agents, but only
between their exchanged information, which
leads to great flexibility. Also, a blackboard
usually contains information on different
abstraction levels at the same instant of time
and, hence, problem solving occurs on different
level of abstraction in parallel.

The loose coupling of the agents and the
ability to solve problems on different
abstraction levels in parallel are the key
strengths responsible for the great success of the
Blackboard architectural pattern in real
applications. It has been widely used to tackle
the problems with the characteristics of
uncertainty, and non-deterministic, because
there is often no direct algorithmic solution to
these problems and, thus, only a best effort
approach remains feasible. Applications of this
pattern can be found in different kinds of
software systems requiring communication,
mobility, coordination, and real-time.

2.2 Rule-Based Agent Notification

2.2.1 Motivation
A common problem to solve when
implementing a blackboard is how and, more
important, when information is exchanged
between the blackboard and cooperating agents.
With other words, the performance of a
blackboard implementation strongly depends on
the efficiency of the communication model
required to provide agents with newly available
information.

A very inefficient communication model
would be a pull-based approach, because agents
would have to frequently query the blackboard
for new information (polling) and, thereby,
wasting a lot of resources. A much more
efficient model is a push-based/event-driven
mechanism where agents subscribe to a
blackboard together with descriptions telling it
what kind of information each agent is
interested in. The blackboard then notifies a

specific agent only when new information had
been written on the blackboard it might be
interested in. Clearly, this approach seeks to
claim network resources only when they are
needed. Besides reducing communication
overhead such an approach also has another
advantage. Agents have to interrupt their work
in progress only in case new relevant
information might be available. This idea of an
event-driven blackboard is not new, but the key
to an efficient implementation of a blackboard
architecture suitable for distributed real-time
multi-agent systems is for an agent to be able to
tell the blackboard as exactly as possible when
and what kind of information it needs such that
notification really occurs only when agents are
in fact interested in newly published
information.

2.2.2 A Brief Architectural Overview
The blackboard architecture we implemented
fully addresses this requirement and reduces
communication overhead to a minimum,
because agents can (at least theoretically)
provide arbitrary complex notification rules
during subscription with the blackboard. Every
time the blackboard is updated these notification
rules are matched against the data written on the
blackboard. If some rules fire the corresponding
agents are notified. Upon an agent’s
deregistration rules associated with that agent
are removed from the blackboard again. Fig. 1
gives an overview over the three main
components of our blackboard implementation:

• a knowledge base where the data written
on the blackboard is actually stored,

• a rule base for the storage of the agents’
notification rules,

• a rule engine which interprets an agents’
individual notification rules and matches
them against available data on the
blackboard.

Typically, a knowledge-based system also
consists exactly of these three components, so
we used the efficient open source reasoning
engine CLIPS to implement the blackboard (as a
proof of concept). As far as we know there is no
similar blackboard architecture that realized the
idea of rule-based agent notification already.

3

Johann Duscher, Dr. Norbert Oswald, Dr. Rupert Reiger

Fig. 1 A blackboard with rule-based agent
notification

2.2.3 Syntax & Semantics of Notification Rules
Due to limited space we cannot discuss the rule
syntax and the rule matching semantics in detail
here. Instead, we provide the most important
excerpt of the rule specification grammar and
try to explain the rule matching semantics with
the help of an exemplary rule. Readers not
familiar with rule-based systems might have a
look at [8] which provides a good introduction
to rule-based systems.

Rules in rule-based systems generally are
specified in a form equivalent to statements like
IF <condition> THEN <action> ENDIF

known from ordinary programming languages.
However, in terms of rules the condition part is
called antecedent, whereas the action part is
called consequent. We use the following syntax
to express rules (terminal symbols are colored
red and written in bold style):
<rule_def> ::=
 (rule <rule_name>
 <antecedent> → <consequent>)

<antecedent> ::=
 [-]<constraint> {, [-]<constraint>}*

<constraint> ::=
 <objclass_constr> | <boolean_constr>

<objclass_constr> ::=
 <variable> : <objclass_name>

<variable> ::= ?<variable_name>

<consequent> ::= <action>

The antecedent of a rule is a series of constraints
(serving as conditions) concatenated by commas

which denote the logical AND operator. The
minus sign denotes a logical NOT operator.

The semantics of the rule matching process
generally is as follows. If during matching a
constraint does not contain any free variables
then the rule engine interprets it as a boolean
expression and evaluates it accordingly.
However, if it does then the rule interpreter tries
to instantiate all free variables by binding them
to specific values. In case of object class
constraints the interpreter tries to match the free
variables with objects (data instances) of its
knowledge-base. In case of other constraints the
interpreter tries to unify the free variables with
values such that the constraint is fulfilled. If a
free variable cannot be instantiated the
constraint evaluates to a logical false.

For instance, suppose the store_mgr of an
avionics system wants to be notified about
possible threats. Further assume it considers all
objects simultaneously reported by infrared and
radar sensors as possible threats. During
registration with its local blackboard bb_C, the
agent might subscribe with a notification rule
looking similar to the one shown in Fig. 2.

(rule bb_C::store_mgr::report_threats
?IR : InfraredSensor,
?RAD : RadarSensor,
?OS1 = ?IR.objectSet,
?OS2 = ?RAD.objectSet,
?OS1 <> ∅,
?OS2 <> ∅,
?OS3 = (?OS1 ∩ ?OS2),
?OS3 <> ∅

→
(inform
 :receiver store_mgr
 :content ?OS3)

)

Fig. 2 Example notification rule
During the matching process the engine would
interpret this rule as follows. By inspecting the
first constraint it finds the free variable ?IR and,
in order to fulfill this constraint, it tries to find
an arbitrary data instance of the specified type
InfraredSensor. If there is such a data
instance in the knowledge-base the free variable
is instantiated by binding it to the corresponding
data instance. Analogously, variable ?RAD is

4

 TOWARD A FIPA COMPLIANT MULTI-AGENT REAL-TIME ARCHITECTURE FOR IMA

instantiated with a data instance of type
RadarSensor. During inspection of the third
constraint the free variable ?OS1 is found. Again
the rule engine tries to instantiate it by binding
values to it such that the constraint is fulfilled.
In this case it simply binds ?OS1 to the values
associated with the attribute objectSet. The
subsequent constraint is handled identically.
The next constraints make sure each sensor has
sensed a non-empty set of objects and that their
exist some objects sensed by both sensors. This
is achieved by calculating the intersection of
both object sets and “storing” the result in the
free variable ?OS3. In case ?OS3 is bound to a
non-empty set of objects the rule fires and sends
an inform message about these objects to the
store_mgr. On the other hand, if any of these
constraints cannot be fulfilled the rule will not
fire and, hence, no message will be sent over the
network.

2.3 A Distributed Rule-Based Blackboard

2.3.1 Motivation
Theoretically, a single central blackboard would
be sufficient to implement the required agent
coordination and problem-solving
infrastructure. But besides the fact that a single
blackboard might surely become a bottleneck in
real-time applications IMA needs safety
partitions as a physical bound regarding failure
propagation for fault-tolerance reasons. If
several subsystems had to rely on a single
central blackboard then a failure of the
blackboard component would inevitably
propagate to all dependent subsystems,
regardless of a concrete partitioning. However,
if each partition owned a separate blackboard
then even a complete partition could fail without
big impact. Assumed a good partitioning other
partitions may still work without failure albeit
with reduced functionality and/or suboptimal
performance.

Certainly, maintaining a separate
blackboard for each partition may require the
content of a blackboard (or at least parts of it) to
be disseminated to blackboards contained in
other safety partitions, because agents may

depend on information provided by agents not
residing locally. The following section describes
a scheme for a distributed blackboard that
disseminates data to dependent blackboards
transparently to the agents.

2.3.2 Conceptual Details
Assume an arbitrary number of safety partitions
together with their corresponding blackboards
and agents. In order to maintain the advantage
of a loose coupling of agents the distributed
nature of the blackboard must be transparent.
Otherwise, an agent would have to know all the
partitions (or their blackboards respectively)
that could contain information it might be
interested in and issue corresponding
subscriptions to all these blackboards. More
trivial solutions would be to always register
with all blackboards, or all agents could write
their knowledge on all blackboards using an
appropriate broadcast mechanism; but then we
would loose all of the scalability and efficiency
we expect to gain when we use blackboards
together with rule-based notification. Ideally, an
agent just tells its partition-local blackboard
what information it is interested in, and under
which circumstances it wants to be notified –
regardless where the corresponding “source
agent” is located; and the partition-local
blackboard somehow makes sure this
information is locally available every time a
local agent would be interested in changes.

Fig. 3 pictures an exemplary situation
where five blackboards are involved. On each
blackboard A, B, and C an agent publishes a
data instance 1, 2, and 3 respectively. Upon
registration with blackboard D an agent
informed the blackboard about its interest in
data instances 1 and 2 in order to be able to
calculate data instance 4, whereas another agent
pointed out its interest in the data instances 1
and 3 for calculating data instance 5. As a
consequence, blackboard D maintains local
replicas of the data instances 1, 2, and 3. The
agent on blackboard E wants to be informed
about changes of the data instances 2 and 5. So
E maintains replicas which stem from
backboards B and D respectively. As can be
seen in this example each blackboard gets the

5

Johann Duscher, Dr. Norbert Oswald, Dr. Rupert Reiger

replicas from the blackboards that contain the
original data instances. For the rest of this paper
we assume this always to be true.

Fig. 3 Data exchange between blackboards
The fact that a blackboard has to make sure
requested replicas from data instances of other
blackboards are maintained locally implies that
a blackboard knows where to get replicas from.
For this purpose there exists a globally known
list of mappings that allows a blackboard
requiring a specific data instance copy to find
the blackboard containing the original one. Of
course, a replicate of this globally known
mapping must be available for each partition
because, otherwise, there would again be one
central component all safety partitions had to
rely on. For maintaining these replicas in a
consistent way well known algorithms can be
used. Note that such a mapping may also be
determined ahead of time and remain
unchanged during runtime if agents are not able
to move from partition to partition. In this case
the globally known mapping is not subject to
changes, so a static copy of the mapping list for
each partition suffices and no algorithm for
maintaining consistency between these copies is
needed.

2.3.3 Decomposing & Distributing Notification
Rules to Minimize Communication Overhead
Suppose an agent registers with its local
blackboard together with its specific set of
notification rules. Each rule matches some data
instances which must be locally available in
order to make rule firing possible at all.
However, it may be the case that some or all of
these instances are not maintained locally. Even
if all required replicas are maintained locally
(because other agents already registered with the
same local blackboard and initiated gathering
replicas through their notification rules) then it
is still not guaranteed that each data instance is
updated as frequently as needed, because the
other agents may need updates only in special
situations. As a consequence, the blackboard
must ensure not only the existence of local
replicas but also appropriate update rates.

A rather trivial solution to this problem is
for the blackboard to register with blackboards
maintaining the original data instances and tell
them that it wants to be notified with replicas
anytime a change to one of them occurs. But
this would again result in a loss of the
advantages the rule-based notification approach
could provide in order to minimize inter-
blackboard communication overhead. Instead,
we suggest to apply a rule splitting algorithm,
which is able to generate a set of sub-rules from
a given rule. More specifically, given a rule that
matches (and hence depends) on a set of data
instances and given a specific partitioning of
this set, then the rule will be split into sub-rules,
such that they each only depend on data
instances of a specific partition.

For instance, suppose the store_mgr agent
registers with its local blackboard bb_C and
provides the notification rule shown in Fig. 2.
Blackboard bb_C then in turn detects that the
rule depends on data instances of type
InfraredSensor which are provided on
blackboard bb_A, and RadarSensor instances
which are maintained on blackboard bb_B. The
splitting algorithm would then generate the two
sub-rules depicted in Fig. 4.

The first one will be sent to bb_A, the
second one to bb_B, and the original rule in Fig.

6

 TOWARD A FIPA COMPLIANT MULTI-AGENT REAL-TIME ARCHITECTURE FOR IMA

2 will be added to the store_mgr’s local
blackboard bb_C. As a consequence, the first
two rules will fire every time the objectSet of
a sensor instance changes and is not empty.
Other changes of the sensors’ attributes,
however, will not trigger an update of the
corresponding replicas on blackboard bb_C.
Note that some conditions of the original rule
depend on information stemming from both
blackboards bb_A and bb_B. Thus, these
conditions do not reflect in the sub-rules, but are
contained only in the original rule.

(rule bb_A::store_mgr::report_threats
?IR : InfraredSensor,
?OS1 = ?IR.objectSet,
?OS1 <> ∅

→
(inform
 :receiver bb_C
 :content ?IR)

)

(rule bb_B::store_mgr::report_threats
?RAD : RadarSensor,
?OS2 = ?RAD.objectSet,
?OS2 <> ∅

→
(inform
 :receiver bb_C
 :content ?RAD)

)

Fig. 4 Sub-rules for blackboards bb_A, bb_B

As can be inferred by looking at this example
such a rule splitting algorithm will eventually
have to transform the antecedent of a given rule
into an equivalent expression which can easily
be split into several independent parts. In [1]
such a decomposition algorithm is described. It
is based on the manipulation of queries given as
relational expressions. We believe a rule
splitting algorithm suitable for our needs will
likely be based on the same principles.

3 The FIPA Compliant Multi-Agent
Architecture for IMA
In this section we describe our proposed FIPA
compliant multi-agent architecture for IMA by
way of a simplified exemplary MAS which is

shown in Fig. 5. It is composed of two safety
partitions each containing a Blackboard Agent,
a separate GPS Agent in each partition, and a
Mission Mgmt Agent in partition 2.

Fig. 5 Exemplary FIPA RT-MAS for IMA
with two safety partitions
The Mission Mgmt Agent in partition 2 wants
GPS data produced by GPS Agent 1 and 2 to be
placed on its partition-local blackboard for
fault-tolerance reasons. Hence, its registration
message will contain notification rule(s)
matching on sensor data provided by GPS
Agent 1 and 2. Upon reception the blackboard
system will analyze the rule set and, eventually,
register itself with Blackboard Agent 1 in a
transparent way. As a consequence, every time
the GPS Agent 1 updates its partition-local
blackboard the new information is sent to the
blackboard in partition 2. The Mission Mgmt
Agent will finally be notified about changes to
both types of sensor data. In this example the
Mission Mgmt Agent prefers GPS data provided
by the GPS Agent 2 but in case of a malfunction
of GPS Agent 2 it could still use the GPS data
disseminated by the blackboard in partition 1.

Generally, a FIPA compliant MAS for
IMA will implement the FIPA Abstract
Architecture Specification as defined in [4] like
every other FIPA compliant platform. However,
it will likely provide additional services or ACL
(agent communication language) extensions in
order to be suited for real-time applications (see
[5,6] as examples). Additionally, each safety
partition running agents that implement IMA
functionality will also host a blackboard like it
is described in the previous section.

7

Johann Duscher, Dr. Norbert Oswald, Dr. Rupert Reiger

4 Conclusions
In this paper a flexible, and fault-tolerant multi-
agent based FIPA compliant architecture for
IMA has been proposed which utilizes a rule-
based notification scheme together with a
distributed blackboard to efficiently disseminate
data between different safety partitions. Agents
cooperate and coordinate their actions solely by
exchanging information using their partition-
local blackboards. During registration, agents
provide notification rules specifying as exactly
as possible when and what information they
would like to be notified of in case of changes
regarding the blackboard’s content. The
distributed blackboard mechanism transparently
makes sure information required by an agent is
supplied on its local blackboard. While in this
manner all agents may have access to arbitrary
parts of the global system state the proposed
mechanism minimizes communication between
partitions by splitting the agents notification
rules into sub-rules and, accordingly, spreading
them to blackboards contained in other safety
partitions. Consequently, information is
exchanged between blackboards only when
required.

First test results obtained from our
prototypical implementation of our idea of a
blackboard with rule-based notification suggest
this concept can indeed save a lot of
communication overhead, especially in cases
where agents must cooperate in order to solve a
common problem. In such cases, agents depend
on partial solutions provided by other agents
and, thus, they often have to wait until they are
available and possibly fulfill some criterions.
Rules can be specified which fire not until all
required partial solutions are written on the
blackboard. This way, network resources are not
wasted for unnecessary communication and,
hence, are available for other information,
which is likely to be exchanged more
frequently. Sensor data, for instance, may be
needed throughout the system which requires
them to be disseminated to all partitions with
high frequency.

4 Future Work
Before we are able to implement a demonstrator
of our proposed architecture some issues have to
be addressed first.

In section 2.3.3 we talked about a rule
decomposition algorithm that is able to generate
the sub-rules which can be disseminated to other
partitions. We did not, however, provide an
appropriate algorithm. This is due to the fact
that we have to figure out first how powerful the
expressivity for conditions within the antecedent
of a (splittable) rule has to be at least/most,
because on the one hand very complicated
expressions may be difficult to split and, more
important, they may have a drawback on
computation time during the rule matching
process. A significant slowdown is not feasible,
however, because it would directly slow down
information exchange. On the other hand, if
expressiveness is too restrictive not much
network traffic can be saved because rules
cannot be specified as exactly as necessary
which would result in more agent notifications
than theoretically required.

Additionally, another very important issue
has to be considered in advance. How to
evaluate distributed rules correctly? After
decomposition, the sub-rules are sent to the
corresponding blackboards. Their task is to
collect consistent local results and to forward
them to their “superordinate” blackboard. In [1]
it is stated that “a distributed evaluation
algorithm is correct if and only if, first, it
reports all rules whose conditions have
occurred, (i.e. whose conditions are true
globally), and, second, it does not report rules
whose conditions have not occurred.”. We have
to further investigate if and how we can ensure
this requirement in our special distributed
blackboard context, because due to lack of a
global clock and communication delay,
consistent rule evaluation is not trivial. For
example, Chakravarthy et al. identified four
different strategies for the detection of
composite events1 – Recent, Chronicle,

1 Note that (composite) events can be defined to occur
when the condition of a rule matching on (several) data
instances is fulfilled.

8

 TOWARD A FIPA COMPLIANT MULTI-AGENT REAL-TIME ARCHITECTURE FOR IMA

Continuous, and Cumulative – because they
were unable to find a strategy suitable for all
applications (see [11]). Moreover, it might be
necessary to implement communication
protocols for knowledge exchange between
blackboards that preserve the casual order of
messages (e.g. like those defined in [3]).

Finding answers to these questions should
be subject of our future efforts. A lot of work
has already been done in the fields dealing with
“causal relationships” [7], “detection of
composite events” [10], “detection of global
predicates” [2,9], “active databases” [1,10], and
“monitoring of distributed applications” [1].
These areas are very closely related to our
problem domain. So finding answers should be
merely a matter of finding appropriate existing
theories and solutions and adapting them to our
needs, if necessary.

References
[1] Ing-Miin Hsu, Mukesh Singhal and Ming T. Liu;

Distributed rule monitoring in active databases and
its performance analysis. Dep. of Computer and
Information Science, The Ohio State University,
1992.

[2] R. Cooper, K. Marzullo; Consistent detection of
global predicates. Proc. ACM/ONR Workshop on
Parallel and Distributed Debugging, Santa Cruz,
California, pp. 163-173, 1991

[3] R. José de Araújo Macêdo; Casual order protocols
for group communication, Proc. of Brazilian Symp.
nn Computer Networks (SBRC), Universidade
Federal da Bahia, 1995

[4] FIPA Abstract Architecture Specification,
http://www.fipa.org/specs/fipa00001/index.html

[5] Lekshmi S. Nair; Extending ACL to support
communication in a real-time multi-agent system,
University of Rhode Island, 2000

[6] SIMBA – multi-agent system based on ARTIS,
http://www.dsic.upv.es/users/ia/sma/tools/simba/inde
x.html

[7] R. Schwarz, F. Mattern; Detecting causal
relationships in distributed computations: in search
of the holy grail, Dep. of Computer Science,
University of Kaiserslautern/Saarland, 1994

[8] M. D’Hondt; Hybrid aspects for integrating rule-
based knowledge and object-oriented functionality.
PhD thesis, Vrije Universiteit Brussel, 2004.

[9] Guy Dumais; Detection of separable predicates on
series-parallel systems. Concordia University,
Montréal, Québec, Canada, 1998

[10] S. Chakravarthy, V. Krishnaprasad, E. Anwar, S.-K.
Kim; Composite events for active databases:
semantics, contexts and detection. Proc. of the 20th
VLDB Conference Santiago, Chile, 1994

9

http://www.fipa.org/specs/fipa00001/index.html
http://www.dsic.upv.es/users/ia/sma/tools/simba/index.html
http://www.dsic.upv.es/users/ia/sma/tools/simba/index.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

