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Abstract  

One of the most great barriers in practical 
implementation of standard optimization 
methods in engineering design problems, 
especially in aerodynamic optimization 
designs，is a potential high computational cost. 
Variable fidelity optimization methods，which 
combine high and low fidelity physics 
analyses ， can converge to the high fidelity 
solution at a fraction of the computational cost 
of standard optimization methods performed on 
the high fidelity analyses alone. The scaling 
functions matching the low and high fidelity 
models in values and gradients play key roles in 
the whole optimization frameworks. Existing 
scaling functions most commonly are first-order 
multiplicative or additive, which can be 
insufficient to some problems.    

In this paper, we propose a new second-
order additive scaling function and present a 
Sequential Quadratic Programming (SQP) 
based variable fidelity optimization framework, 
which is carried out successfully on airfoil 
optimization designs. The proposed scaling 
function is a sum of quasi-Newton 
approximation of the high fidelity model and a 
term concerned to the low fidelity model and its 
quasi-Newton approximation. This paper also 
introduces a new set of design variables for 
airfoil optimization. Navier-Stokes equations 
evaluated on fine grids with high degree of 
convergence accuracy represent the high 
fidelity flow model, while Navier-Stokes 
equations evaluated on coarse grids with low 

degree of convergence accuracy represent the 
low fidelity flow model. One-point and two-
point optimization designs performed on 
RAE2822 airfoil are discussed. Compared to 
standard SQP optimization the presented 
optimization framework yields 58.64% and 
71.18% CPU time reduction for one-point and 
two-point airfoil design, respectively. The study 
indicates the proposed optimization procedure 
can be applied in industry. 

1 Introduction  
During recent years, computational fluid 
dynamics (CFD) has brought about optimization 
method in aerodynamic design. A CFD analysis 
code is coupled with an optimization algorithm 
in such a way as to create a design tool. 
Aerodynamic quantities such as lift, drag, 
pitching moment are computed by the CFD 
code for a certain configuration and are used in 
defining an objective function to be minimized/ 
maximized by the optimizer through 
automatically and gradually modification of its 
shape. Finally, the aerodynamic characteristics 
of a baseline configuration are improved [1][2][3]. 
This is a standard optimization procedure in 
aerodynamic design. 

One of the most significant barriers in 
practical applications of these kinds of standard 
optimization methods is an enormous 
computational cost. Employing a lower-order 
flow model can save computational time, but 
the physical response of the design will not be 
optimum, and may even be adverse [4].   
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To save computational time while assure 
design quality, variable fidelity optimization, 
which combine high and low fidelity physics 
analyses, is a promising choice. Alexandrov et 
al proposed a general approach to design 
optimization, the first-order approximation and 
model management optimization (AMMO) 
framework, that integrates engineering and 
physical modeling concepts with trust region 
approach [5]. AMMO was applied to airfoil 
design, wing design [5] and multi-element airfoil 
optimization [6], resulted in enormous savings in 
terms of high-fidelity analysis. M.S. Eldred et al 
demonstrated that first-order consistency 
between the high and low model can be 
insufficient to achieve desirable convergence 
rates in practice and presented second-order 
additive, multipliable and combined corrections 
[7]. Shawn E. Gano et al developed second-order 
additive scaling methods based multilevel 
variable fidelity optimization approach applied 
to morphing unmanned aerial vehicle design [8]. 

The work in this paper is based on the first- 
order AMMO presented by Alexandrov et al. 
We propose a new second-order additive scaling 
function using approximated second-order 
information. The proposed scaling function 
satisfies first-order consistency between the 
high and low fidelity models at two points, 
increasing global accuracy of the correction and 
convergence rate of the optimization. We 
describe a variable fidelity optimization 
framework, using this scaling function, based on 
SQP and trust region approach, verified by 
analytical test problem and transonic airfoil 
designs. 

2 Second order scaling function based 
AMMO  
Mathematically, a constrained optimization 
problem can be stated as: 

Minimize   ( )xf
Subject to  ( ) Eixci ∈= ,0  
                 ( ) Iixci ∈≥ ,0                           (1) 

where x is the n-dimensional vector of design 
variables, is objective function, are 
constraint functions, E and Ι are the index sets 

of the equality and inequality constraints, 
respectively. 

Let be high-fidelity and low-fidelity 
models of , respectively. Let , be 
high-fidelity and low-fidelity models of , 
respectively. Problem (1) can be solved by 
solving a sequence of k trust region 
optimization sub-problems of the form. 

lohi ff ,
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( )xfwhere the approximation model of  at k 

iteration is denoted as ,  is the center 
point of the trust region, 

( )xf kˆ
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kμ is the penalty 
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initial valve for Δ  at  is user-defined. 0=k
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( )xc ihi ,  and ( )xc ilo,  at  , respectively. 
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infeasibility of the trust region sub-problem [9]. 
The constraint functions are approximated 

using first-order multi-point scaling method. 
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(3) 
εwhere  is user-defined small positive number. 

The trust region sub-problem (2) can be 
solved using SQP method.  
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We propose the second-order multi-point 
scaling function for objective function 

If ,0≠ft  the second-order multi-point 

scaling function ( )xf kˆ  satisfies ( ) ( ) ( ) ( )

( ) ( )( )

( ) ( ) ( ) ( )[
( ) ( )( )⎥⎦
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That is to say, the proposed scaling 

function satisfies first-order consistency 
between the high-fidelity and the low-fidelity 
models at the two successional iteration points, 

and . This provides a much more 
substantial correction capability over the 
existing first-order or second-order scaling 
functions. 
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When  becomes zero under four 
conditions in (5), the scaling function 
degenerates to BFGS approximation of high-
fidelity model. This mechanism is devised for 
two purposes: keep the algorithm stable when 
high or low fidelity model is not convex; reduce 
the low-fidelity model evaluations at the late 
stage of the optimization. 

ft

   (5) 

( )kx μ,ΦLet  be merit function for the 
high-fidelity problem  
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quasi-Newton approximations to the Hessian 
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The damped BFGS update of  is defined 

by the following  
kΒ

The SQP based second-order AMMO 
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 The identity matrix Ι  is used for  prior 
to the first update. 

0Β

The updating of ( )klo xΒ  may be deduced 
by analogy. 

Construct ( )xf kˆ  and  with second and 
first order matching at , respectively;  

( )xck
iˆ

kx
Solve approximately the SQP problem (2);    

( )kx μ,Φ ( )kx μ,Φ̂, ; Compute merit function 
Update , kx kμ  and  based on the values 
of 

kΔ

( )kx μ,Φ̂( )kx μ,Φ ,  
End do 
Details of the updating strategy can be 

found in [5][7][8].  
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In this work, gradient information is 
calculated using a centric finite difference 
defined as 

The optimizations start from the initial 
point (-1.2, 1.0). The initial trust region size 0Δ  
is calculated by the initial point and the low 
fidelity minimum points. Table 1 shows the 
results of the second-order AMMO and SQP 
method. For the three low fidelity functions, the 
proposed approach works well, converging to 
the high fidelity solution with far fewer high 
fidelity function evaluations than standard SQP 
method. In the case of low fidelity function with 
offsets, the reduction of high fidelity function 
evaluations is as great as 72.51%.  

( ) ( )
δ

δδ
2

−−+
≈

∂
∂ ii

i

xtxt
x
t                          (12) 

where  is either the objective or constraint 
function and 

t
δ  is a small perturbation value for 

the design variables. 
The choice of initial trust region size, 0Δ , 

has a notable effect on the convergence rate of 
the AMMO algorithm. We suggest the 
following procedure to select : the solution 
to the low-fidelity problem, , can be 
cheaply obtained by using SQP method; 

0Δ

min,lox
4 Airfoil optimization 

0Δ  can 
be determined by the following  

               
20min,0 xxlo −=Δ                     (13) 

3 Analytic test problem  
We employ the standard Rosenbroke function as 
the high fidelity function (HFF) and perform the 
following optimization: 

 Minimize   2
1

22
12 )1()(100)( xxxxfhi −+−=

 Subject to    22 1 ≤≤− x
22 2 ≤≤− x                             (14) 

This high-fidelity problem has a theoretic 
minimum  at . 
M.S.Eldred et al define two  “low-fidelity” 
Rosenbroke functions to examine different 
corrections [7]. The two low fidelity functions 
(LFF) are just the high fidelity function with 
two kinds of noise factors. The low fidelity 
function with offsets is  

0=∗f )1,1(),( 21 =∗∗ xx

2
1

22
12 )8.0()2.0(100)( xxxxflo −++−=     (15) 

 with a low-fidelity minimum at (0.8, 0.44). 
The low fidelity function with scaling is  

2
1

22
12 )25.11()25.1(100)( xxxxflo −+−=   (16) 

with a low-fidelity minimum at (0.8, 0.512). 
We add another low-fidelity function with 

both offsets and scaling 
2

1
22

12 )25.18.0()2.025.1(100)( xxxxflo −++−=      (17)                                                                  
with a low-fidelity minimum at (0.64, 0.16768). 

 

 

 

 

 

 

 

 

Table 1 Second-order AMMO results 
for Rosenbrok’s function 

 
LFF 
with 

offsets & 
scaling 

LFF 
with 

offsets 

LFF 
with 

scaling 
SQP  

*
1x 1.0002 1.0003 0.9998 1.0000  
*
2x 1.0004 1.0005 0.9995 1.0000  
*f 4.62E-8 6.59E-8 5.84E-8 3.91E-12 

HFF 
Evals 58 87 67 211 

LFF 
Evals 245 1215 352 0 

0Δ  2.08 2.06 2.02  

4.1 Design Variables 
This paper proposes a new set of design 
variables for airfoil optimization.  

The design procedure starts with a baseline 
airfoil. New airfoil is generated by adding 
smooth perturbations on upper and lower 
surfaces of the baseline airfoil. The new airfoil 
geometry is represented by the following 
equations 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

)(1
1

xPxyxy i

n

i
iubu

u

δ                       (18) 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

+

+=

)(1
1

xPxyxy i

nn

ni
ilbl

lu

u

δ                       (19) 

ywhere  and x are the dimensionless 
coordinates of the baseline airfoil, u and l 
denote upper and lower surface of the airfoil, 
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respectively, b denote baseline airfoil,  are 
Chebyshev or Legendre polynomials at ［0,1］, 

and  are the number of Chebyshev or 
Legendre polynomials added to the upper and 
lower surface, respectively. The weighting 
coefficients, 

iP

un ln

iδ , are the design variables. 
 is the number of variables. lu nnn +=

Because the Chebyshev or Legendre 
polynomials are used in airfoil parameterization, 
the optimization algorithm become more 
effective and the baseline airfoil is modified 
regularly. 

In this investigation, twelve Chebyshev 
polynomials  are selected in airfoil 
parameterization for RAE 2822  optimization 
( ). 6== lu nn

 

4.2 Flow Model 

The two-dimensional Navier-Stokes equations 
read 

0=++Ω
∂
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dsndsnd
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An in-house multi-grid N-S solver is 
employed to analyze the flow field around 
airfoil. 

In this research, the high-fidelity flow 
model (HFFM) is a N-S equations’ solution on 
fine grids with high degree of convergence 
accuracy, while the low-fidelity flow model 
(LFFM) is a N-S equations’ solution on coarse 
grids with low degree of convergence accuracy. 
Here the fine/coarse grids are 256×64/128×48 

grids with C-mesh topology having a first grid 
spacing at the surface of 0.001/0.005 percent of 
the chord. The high/low degree of convergence 
accuracy means that flow calculation is 
performed until the maximum residual is 
reduced to 10-4 /10-2.       

73.0=MFor RAE2822 airfoil at , 
, 803.0=lc6105.6Re ×= , the pressure 

distributions predicted by the two flow models 
are shown in Fig.1 and the experimental data is 
obtained from [10]. Even though the low-fidelity 
flow model may not be accurate enough for 
performance analysis, it captures the main 
characteristics of the flow field and can be used 
for the purposes of optimization design. For 
RAE2822 airfoil at transonic speed, the CPU 
time per high-fidelity model analysis is roughly 
seven times the low-fidelity model analysis.  

 
Fig. 1 RAE 2822 pressure distribution: 

predictions vs. experiment 

4.3 Single-point design  
In this study, all the designs are performed on 
RAE 2822 airfoil on a Hisense PC ( Pentium 4 
CPU 3.0GHz,RAM 1.0GB ) . The optimizations 
start from the initial point . 00 =x

The objective of the single-point design is 
to obtain an airfoil geometry which produces 
minimum transonic drag at 73.0=M  , 

 , °= 61.2α6105.6Re ×= , meanwhile the lift 
and the airfoil area are not decreased. To put 
this design problem in the mathematical form 

0d

d

C
CMinimize      
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01
0

≥−
l

l

C
CSubject to   

01
0

≥−
A
A                                                    (22) 

where  and are the drag and lift 
coefficients, respectively, A is the airfoil area, 
and the sub-0 indicates the value of baseline 
airfoil. 

dC lC

The results for SQP design and AMMO 
design are shown in Table 2 and Fig. 2.1~2.5. 
The strong shocks on the upper surface of 
baseline airfoil are removed. SQP and AMMO 
produce a 22.56% drag reduction respectively, 
while the lift and airfoil area maintain almost 
unchanged. AMMO produces an optimal airfoil 
very similar to SQP, but requires only 34.22% 
high-fidelity flow model evaluations and 
41.36% CPU time as the SQP design.    

 
Fig. 2.3 Mach number contours: 

baseline airfoil 

 
Fig. 2.4 Mach number contours: 

                SQP designed airfoil Fig. 2.1 Airfoil geometry: 
baseline vs. single-point designed 

  

  Fig. 2.2 Pressure distribution:   Fig. 2.5   Mach number contours: 
baseline vs. single-point designed AMMO designed airfoil 
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The optimization results are shown in 
Table 3 and Fig. 3.1~3.10. At the primary 
design-point, the second-order AMMO 
approach results in 9.60% drag reduction, 
0.41% lift increasing and 1.88% pitching 
moment increasing, while the SQP method 
results in 9.60% drag reduction, 0.54% lift 
increasing and 2.33% pitching moment 
increasing. At the secondary design-point, the 
second-order AMMO approach results in 1.89% 
drag reduction, 0.00% lift increasing and 4.96% 
pitching moment increasing, while the SQP 
method results in 0.94% drag reduction, 0.00% 
lift increasing and 5.19% pitching moment 
increasing.  The comparison of polar curves 
indicates that the two optimization procedures 
improve the overall characteristics of baseline 
airfoil evidently.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2  Single-point design results 
for RAE 2822 

Para Base SQP / (%)△-meter -line AMMO 
0.8030 / 0.00 / 

lC  0.8030 0.8020 -0.12 
0.0127 / -22.56 /

dC  0.0164 0.0127 -22.56 
-0.0904 / -2.16 / 

mC  -0.0924 -0.0904 -2.16 
0.0778 / 0.00 / A 0.0778 0.0780 0.26 

HFFM 
Evals 

225 /   77 
LFFM 
Evals 

0 /   315 
7h 18min 38sec/ CPU Time  3h 1min 25sec 

Again, the two optimization approaches 
obtain very similar optimal airfoils, but the 
high-fidelity flow model evaluations and CPU 
time of AMMO are only 25.86% and 28.82% as 
its SQP counterpart, respectively. 

4.4 Multi-point airfoil design 
Multi-point design improves the overall 
performance of the airfoil with respect to a 
single-point design. In this study, the objective 
of multi-point design is to reduce transonic drag 
at two design points, without decreasing the lift 
and airfoil area. The two design points are as 
following: 

 
 

The primary design point, 1: 73.0=M , 
, 6105.6Re ×= °= 06.2α ; 

The secondary design point, 2:  , 
 , 

73.0=M
6105.6Re ×= °= 56.1α . 

To put this in the mathematical form  

 Minimize  ( )
02

2

01

1 1
d

d

d

d

C
C

C
C

θθ −+  

Subject to   01
01

1 ≥−
l

l

C
C

 

                   01
02

2 ≥−
l

l

C
C

 

01
0

≥−
A
A                           (23) 

where θ  is weighting parameter given 
according to the importance of every design 
point in the optimization. For this investigation, 

6.0=θ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Two-point design results 
for RAE 2822 

 
design 
point 

Para Base SQP / (%)△-meter -line AMMO 

lC  0.7000 0.7038 / 0.54 / 
0.7029 0.41 

dC  0.0125 0.0113 / -9.60 / 1 0.0113 -9.60 

mC  -0.0903 -0.0924 / 2.33 / 
-0.0920 1.88 

lC  0.6022 0.6022 / 0.00 / 
0.6022 0.00 

dC  0.0106 0.0105 / -0.94 / 2 0.0104 -1.89 

mC  -0.0887 -0.0933 / 5.19 / 
-0.0931 4.96 

 A 0.0778 0.0778 / 0.00 / 
0.0778 0.00 

 HFFM 
Evals 

642 /   166 
 LFFM 

Evals 
0  /   424 

 CPU 
Time 

19h 19min 57sec/  5h 34min 20sec 
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Fig. 3.4 Mach number contours at the secondary  Fig. 3.1 Mach number contours at the Primary design 

point: baseline airfoil design point: baseline airfoil 
  

        Fig. 3.5 Mach number contours at the secondary design 
point: SQP designed airfoil 

Fig. 3.2 Mach number contours at the primary design   
point: SQP designed airfoil 

     Fig. 3.6 Mach number contours at the secondary design 
point: AMMO designed airfoil 

Fig. 3.3 Mach number contours at the primary design 
point: AMMO designed airfoil 
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Fig. 3.7 Airfoil geometry:  

baseline vs. two-point designed Fig. 3.10 Polar curves: 
                                              baseline vs. two-point designed 

5 Conclusions  
This paper describes a variable fidelity 
optimization framework, the second-order 
AMMO, which is the modification to the first-
order AMMO presented by Natalia M. 
Alexandrov et al. The framework is based on a 
new second-order additive scaling function, 
which is a sum of quasi-Newton approximation 
of the high fidelity model and a term concerned 
to the low fidelity model and its quasi-Newton 
approximation.  The framework can converge to 
the high fidelity solution at a fraction of the cost 
in terms of high fidelity evaluations compared 
to a standard SQP optimization method. Its 
efficiency has been preliminarily demonstrated 
by an analytical test problem and transonic 
airfoil optimization. The framework obtains 
very similar optimal airfoil profiles compared to 
SQP method, with significant performance 
improvement, but the CPU time are only 
41.36% and 28.82% as its SQP counterpart for 
one point and two point airfoil design, 
respectively. With higher design quality, less 
computational expense and easier programming, 
the proposed variable fidelity optimization 
framework is suitable for performance 
improvement of an existing baseline airfoil to 
meet specified engineering requirements. As a 

 
      Fig. 3.8 Pressure distribution at the Primary design 

    point: baseline vs. two-point designed 

 
Fig. 3.9 Pressure distribution at the secondary 

design point: baseline vs. two-point designed 
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general procedure to design optimization, the 
proposed framework can also be applied in 
other disciplines.   
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