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Abstract

Direct methods for trajectory optimization are
traditionally based on a priori temporal dis-
cretization and collocation methods. In this
work, the problem of node distribution is for-
mulated as an optimization problem, which is
to be included in the underlying non-linear
mathematical programming problem (NLP).
The benefits of utilizing the suggested method
for on-line trajectory optimization are illus-
trated by a missile guidance example.

1 Introduction

The paradigm of qualitative control design,
that is associating a measure of the “utility”
of a certain control action, has been a foun-
dation of control engineering thinking. Conse-
quently, optimal control is regarded as one of
the more appealing possible methodologies for
control design. However, as captivating and
appealing as the underlying theory might be,
real-world applications have so far been scarce.
Some of the reasons for this might be the
level of mathematical understanding needed,
doubtful viability of optimization under un-
certain conditions, and high sensitivity against
measurement and modeling errors. Another
particularly important factor origins from the
high computational demand for solving non-
linear Optimal Control Problems (OCP). As

a matter of fact, by extending their “free path
encoding method” [3], Canny and Reid have
demonstrated the NP - hardness of finding a
shortest kinodynamic path for a point moving
amidst polyhedral obstacles in a three dimen-
sional environment [4]. Consequently, atten-
tion have been paid to approximation methods

and computationally efficient algorithms that
compute kinodynamically feasible trajectories
that are “near-optimal” in some sense. Due to
the rapid development of both computer tech-
nology and computational methods, the above
picture has begun to change. Besides avionics
and chemical industry, increasingly many new
industrial applications of optimal control can
now be observed. In this paper, the problem
of missile guidance will be in focus.

It is a well-established fact in numerical
analysis, that a proper distribution of grid
points is crucial for both the accuracy of
the approximating solution, and the compu-
tational effort (see e.g. [22, 15]). In general,
grid adaption is carried out by some combi-
nation of re-distribution (strategically mov-
ing the nodes), refinement (adding/deleting
nodes), or employing higher order numerical
schemes in regions where the local accuracy
needs to be improved (consult e.g. [2]). In
most cases however, there exist a trade-off be-
tween accuracy and efficiency in terms of com-
putational effort. In this paper, the focus is on
improving accuracy for a given efficiency re-
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quirement. More precisely, once the number of
nodes in the temporal discretization has been
decided (depending on e.g. computational re-
sources), the question of optimal node distri-
bution is raised.
Although adaptive grid methods - which
mainly concern node distribution in the spatial

domain - have been an active field for the last
couple of decades, to the best of our knowl-
edge, utilizing them for adaptive node distri-
bution (in the temporal domain) and on-line
trajectory optimization has not been consid-
ered elsewhere.

This paper is organized as follows. In
Section 2 some background material regard-
ing computational methods for solving opti-
mal control problems is presented. Subse-
quently in Section 3, we advocate that in any
computationally efficient method, node distri-
bution should be a part of the optimization
process and show that the receding horizon
control (RHC) method can be considered as
an outcome of such a paradigm. In Section 4,
the benefits of utilizing the suggested method
are confirmed by a missile guidance example.
Finally, this paper is concluded in Section 5
with some expository remarks.

2 Computational Optimal Control

Consider the following trajectory optimization
or Optimal Control Problem (OCP):

minimize
u J =

∫ T

0
L(x, u)dt + Ψ(x(T ))

s.t. ẋ = f(x, u)
g(x, u) ≤ 0

x(0) ∈ Si

x(T ) ∈ Sf ,

where the state x ∈ R
n, the control u ∈ R

m,
and the constraints g : R

n × R
m → R

p. All
mappings in this paper are assumed to be
smooth and the dynamical system complete
so that every control input, u(·), results in
a well-defined trajectory, x(·). An underly-
ing assumption however is that due to imper-
fect information, the kinematic constraints, as
well as the target set, might change drastically

during the course of flight. Consequently, we
can not use the family of techniques that rely
on off-line generation of a trajectory database
for on-line interrogation [5, 12, 18, 20]. Also,
assuming the problem originates from a com-
plex, real-world application, the existence of
analytical solutions is disregarded, thus seek-
ing fast computational algorithms for solving
the OCP.

Problem Transcription

For the actual design of the computational al-
gorithm, the infinite dimensional problem of
choosing a control function in a given space,
have to be turned into a finite dimensional

optimal parameter selection problem, i.e. a
non-linear mathematical programming prob-
lem (NLP). This process of representing the
continuous time functions by a finite num-
ber of parameters, is referred to as transcrip-

tion and is typically achieved by either tempo-
ral discretization or finite sum of known basis
functions1 [1]. Since this latter transcription
method leads to implicit constraints and gra-
dient expressions, which in turn may give in-
creased computational complexity, the focus
in this paper will be on transcription methods
based on temporal discretization.
It is further conceptually important to differ
between direct and indirect transcription
methods (see Figure 1). For a given OCP, in-

Nλ

consistency

consistency

LagrangianHamiltonian

Lagrange multipliers

KKT

Adjoints

PMP

direct transcription

indirect trancription

OCP OCP

OCP

λ

N
OCP

Fig. 1 Direct and in-direct transcription
methods.

direct methods, which are based on the calcu-

1Certain choices for basis functions, blur the dis-
tinction between the two mentioned transcription
methods (see e.g. [7, 8]).
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lus of variations, start off by introducing the
Hamiltonian and formulating the optimality
conditions according to the Pontryagin Maxi-
mum Principle (PMP). They then proceed by
transcribing the associated two point bound-
ary value problem (TPBVP) (denoted OCPλ

in Figure 1).
In contrast, direct methods transcribe the
OCP directly, hence turning it into a large
NLP (denoted OCPN in Figure 1). The dual
to this NLP and the Lagrange multipliers may
be achieved by way of the Lagrangian and the
Karush-Kuhn-Tucker (KKT) conditions. The
direct- and indirect methods have a particu-
lar simple relation for the so called complete

methods [9], for which transcription and dual-
ization indeed commutes, so that the Lagrange
multipliers of the NLP are a multiple of the
discretized values of the adjoint variables as-
sociated with the PMP.

Although indirect methods are considered
to produce more accurate results, they are not
typically used to solve problems having com-
plex dynamics or constraint set. Neither are
they suitable for problems where the under-
lying OCP is considered to be changeable in
terms of the final manifold, Sf and/or the con-
straint set, g(x, u). This is mainly due to the
inherent ill-conditioned properties of the TP-
BVP, but also the occasionally tedious deriva-
tion of the necessary conditions via PMP.
Bearing in mind the type of problems consid-
ered in this paper, the focus will therefore be
on direct transcription methods.
In most direct methods (see e.g. [1] and the ref-
erences therein), transcription is achieved by
a priori partition of the time interval into a
prescribed number of subintervals whose end-
points are called nodes. The NLP variables
may then be taken as the value of the con-
trols and the states at these nodes. The inte-
gral cost functional and the constraint set are
discretized similarly and approximated by any
preferred quadrature rule (consult e.g. [22, 6]).
Finally, additional constraints are imposed on
the NLP variables so that the state equations
are fulfilled at the so called collocation points.

3 Adaptive Node Distribution

It is a well-established fact in numerical anal-
ysis, that a proper distribution of grid points
is crucial for both the accuracy of the ap-
proximating solution, and the computational
effort (see e.g. [22, 15]). Consequently, the
use of adaptive grid methods has for long been
an essential element in the sphere of numer-
ical solution of partial differential equations
(PDE) as well as ordinary differential equa-
tions (ODE) [11]. Despite being an active field
for the last couple of decades, to the best of
our knowledge, utilizing adaptive grid meth-
ods for finding on-line solutions to the trajec-
tory optimization problem has not been con-
sidered elsewhere. The basic idea is that by
concentrating the nodes and hence computa-
tional effort in those parts of the grid that
require most attention (e.g. areas with sharp
non-linearities and large solution variations),
it becomes possible to gain accuracy whilst re-
taining computational efficiency.
This is in fact one of the explanations to the
success of the receding horizon control (RHC)
or model predictive control (MPC) methods
(see e.g. [16, 19]). Here, the doubtful viabil-
ity of long term optimization under uncertain
conditions is adhered, so that instead of solv-
ing the OCP on the full interval [0, T ], one
repeatedly solves it on the interval [tc, tc + Tp]
instead. Here tc denotes the current time in-
stance and Tp is the planning horizon. How-
ever, even in the RHC case, the sub-horizon
OCP on [tc, tc +Tp] is most often solved based
on, if not equidistant (uniform), but at least a

priori temporal discretization techniques.
In general, there exist three types of grid

adaption techniques [2]:

1. h-refinement : strategically adding extra
nodes to the existing grid in order to im-
prove local grid resolution.

2. p-refinement : employing higher order
numerical schemes in regions where the
local accuracy needs to be improved.
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3. r-refinement : maintaining a fixed num-
ber of nodes, but relocating them strate-
gically over the interval.

Generally, trajectory optimization run-times
are critically depending on the number of vari-
ables in the NLP. These in turn, are propor-
tional to the number of nodes in the temporal
discretization, hence-forth denoted N . How
the solution time varies as a function of N is
depending on the particular NLP solver used.
Figure 2 illustrates the average, and maxi-
mum run-times of NPOPT; the solver used
for all simulations here-within. NPOPT is
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Fig. 2 The increasing average and maximum
run-times of NPOPT as a function of N . Com-
putations are performed on a shared Linux
cluster, using one of its four 2.80 GHz Intel r©
Xeon processors.

an updated version of NPSOL; a sequential
quadratic programming (SQP) based method
for solving NLPs [10]. It it worth mention-
ing, that the average and maximum have been
taken both over a number of planning hori-
zons (typically 10 different values) and itera-
tions (typically 100 − 150 iterations per plan-
ning horizon).
The essence of Figure 2 is that the choice of
N , is to a large extent restricted by real-time
computational requirements. Hence, it is ex-
tremely important to keep N as low as possi-
ble when aiming at constructing computation-

ally efficient methods for trajectory optimiza-
tion. Therefore, it is the idea of r-refinement
that suits our purposes best. To this end, let
p = [t1, · · · , tN ] ∈ R

N denote a partition of
[0, T ],

0 = t1 < t2 < · · · < tN−1 < tN ≤ T.

Adaptive grid methods are then based on ei-
ther equidistribution of a monitor function, or
functional minimization (FM)[2, 13, 15].
The equidistribution principle (EP) requires
a chosen positive definite monitor function
(or weight), w, to be equidistributed over all
subintervals. Mathematically, the EP can be
expressed in various equivalent forms, e.g.:

mi(p)=

∫ ti+1

ti

w dt−
∫ T

0
w dt

N − 1
= 0, i = 1, · · ·, N−1,

mi(p)=

∫ ti

ti−1

w dt−
∫ ti+1

ti

w dt = 0, i = 2, · · · , N−1.

As an example, w ≡ 1 gives rise to the of-
tenly used uniform (equidistant) discretization
method. Other commonly employed monitor
functions include the “arclength monitor func-
tion”, w =

√
ε + ẋ2 (claimed to be the most

efficient among all choices), and “curvature

monitor function”, w = (ε + ẍ2)
1

4 . Here the
design-parameter, ε ≥ 0, decides how dense
the nodes are lumped in the circumvent of ar-
eas with large solution variations.
The functional framework to grid generation
(FM), is based on the principle of specifying
a measure of the grid quality. Traditionally,
principles as smoothness, orthogonality and
clustering properties of the grid are included in
the functional, I(p), [13, 15]. Minimizing I(p)
will produce an optimal partition with respect
to the chosen grid quality measure.

Based on the two existing frameworks for
adaptive grid generation (EP and FM), we
now outline a generalized approach. Regard-
less the choice of w, we remark that node al-
location by the EP, can be determined by im-
posing a number of grid constraints, m(p) ≤ 0.
These constraints are to be augmented with
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the original constraints, g(x, u). Note that
this approach introduces constraints and state
variables (namely p) in the augmented NLP.
However, it also enable us to use a partition
with smaller number of nodes compared with
an a priori and fixed discretization method,
so that the total number of variables and con-
straints might still be reduced.
The idea is then to formulate the problem of
node distribution as a constrained optimiza-
tion problem:

minimize
p

I(p) (1)

s.t. m(p) ≤ 0,

which is to be augmented with the underlying
NLP. From (1) it is plainly seen that EP and
FM are merely special cases of the suggested
approach. We conclude this section by giving
examples of the usage of this approach.

Example 1 Setting di = ti+1 − ti, i =
1, · · · , N − 1, the solution to the following op-
timization problem:

minimize
d I(d) =

∑N−1
i=1 di − ε ln di

s.t. m(d) =
∑N−1

i=1 di − T ≤ 0 (di ≥ 0),

is the equidistant RHC discretization scheme
with ε deciding the step length (and hence
planning horizon). This follows since if (N −
1)ε ≤ T , then

∇iI(d) = 1 − ε

di

= 0 =⇒ di = ε.

Example 2 The linear constraint

m(d) =

ε1(N−1)∑
i=1

di − ε2T ≤ 0,

reflects the objective of distributing ε1 parts
of the nodes in the first ε2 parts of the time
interval.

The main reason for being interested in this
types of constraints lies along the line of
thought of RHC/MPC approaches; that is
considering current information as perishable
so that it is favorable to concentrate the nodes
in the near future.

4 Design study: missile guidance

Traditionally, the problem of steering a missile
to its target is broken down into (at least) two
subproblems: the problem of trajectory opti-

mization and the problem of auto-pilot design.
This can be viewed as a control system hav-
ing two degree of freedom; an inner loop (the
auto-pilot) and an outer loop (the trajectory
optimizer) (see Figure 3). The trajectory op-

Auto−pilot

PlantOptimizer
Trajectory

Constraints

Objectives

PSfrag replacements
uref

xref

uc

u y

Fig. 3 Two level separation of the missile
guidance problem.

timizer provides a feasible feed-forward con-
trol and reference trajectory that is optimal in
some specified sense with respect to e.g. time
to intercept or intercept velocity, and subject
to constraints on e.g. terminal aspect angle
(given by warhead efficiency and target vul-
nerability) or path segment location (dictated
by tactical considerations). It is then the task
of the auto-pilot to perform the trajectory fol-
lowing.
By virtue of this separation, only suboptimal

solutions can in general be found, but the ad-
vantage is that the details of the dynamics of
the missile only enters into the trajectory op-
timization part of the problem as (relatively
simple) conditions on the reference trajectory.
In this work, the existence of an auto-pilot is
assumed, so that the focus will solely be on
the trajectory optimization part.

By means of standard approximation pro-
cedures in flight-community (see e.g. [17, 21]),
the six-degree-of-freedom (6DoF) equations of
motion of the missile in R

3, can be reduced
to 3DoF planar movement in two orthogonal
subspaces, namely the pitch-, and yaw-plane.
Since the 3DoF equations of motions in these
planes are similar and decoupled, in what fol-
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lows, just the pitch-plane dynamics will be
considered.
The 3DoF equations of motion in the pitch
plane consider the rotation of a body-fixed co-
ordinate frame, (Xb, Zb) about an Earth-fixed
inertial frame, (Xe, Ze) (see Figure 4).
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Fig. 4 Missile system variables.

The governing dynamic equations are

u̇ =
Fx

m
− qw − g sin θ

ẇ =
Fz

m
+ qu + g cos θ

q̇ =
M

Iy

θ̇ = q

ẋe = u cos θ + w sin θ

że = −u sin θ + w cos θ,

where u and w are the Xb and Zb components
of the velocity vector, xe and ze denote the
position of the missile in the inertial frame
(Xe, Ze), q is the pitch angular rate, θ denotes
the pitch angle, m is the missile mass, g is
the gravitational force, while Iy denotes the
pitching moment of inertia. The system in-
puts are the applied pitch moment, M , to-
gether with the aerodynamic forces, Fx, Fz,
acting along the Xb and Zb axis respectively.
During the simulations we adopt the constants
given in Reference [14] and set m = 204.02 kg,

g = 9.8 m/s2 and Iy = 247.437 kg m2.
Referring to Figure 5 and 6, the first simu-
lation shows the terminal guidance part of a
missile trajectory optimization problem. The
missile starts off horizontally from (0, 10) aim-
ing at a target in (700, 0) with terminal aspect
angle −π

2
. Figure 5 depicts the reference tra-

jectories with the missile velocities (in the in-
ertial frame) indicated by small line segments.
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Fig. 5 Reference trajectories: static (◦) and
adaptive (�).

In the adaptive case, an EP based on the ar-
clength monitor function together with a lin-
ear I(p) is used. Seeing beyond the unequal
axis scales, the nodes have been distributed
more evenly over different path segments. In
fact, there are 7 nodes/100 m path segment in
the adaptive case, while the same figure varies
between 5 − 13 in the static case.
Figure 6 shows the optimal control approxima-
tion error as a function of N . It can be noted
that, for a given N , the extra degree of free-
dom provided by distributing the nodes is used
constructively to improve accuracy. This illus-
trates the soundness of the proposed approach.
Moreover, Figure 6 reveals the nonuniform
convergence rate of the approximation error
which - in our particular case - is seen to be
minimized for N = 25. The reason for this
is the pronounced nonlinearity of the consid-
ered NLP together with the fact that the used
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Fig. 6 The accuracy of the approximating
control.

optimization routine (NPOPT) is a local opti-
mizer, i.e. does not guarantee convergence to
a global minimum. It is therefore not possible
to expect that a higher value on N should al-
ways yield a better trajectory approximation.
As previously mentioned, in general, there is
a trade-off between accuracy and efficiency
in terms of computational effort. Once we
have observed that re-distributing the nodes
improves the accuracy of the approximation,
one might wonder how this effects the com-
putation time. Figure 7 shows the average
CPU-time used in the simulations for different
values on N . It can be noted that adopting
the proposed adaptive grid generation scheme,
does not bring any increase in the average
computational time. We believe that the non-
linearity of the original set of equations de-
scribing the motion of the missile, is one of
the main reasons for this.

5 Concluding Remarks

The main purpose of this paper have been
to advocate the use of adaptive grid gener-
ation techniques for on-line trajectory plan-
ning. In this work, we have chosen to concen-
trate on the use of the so called r-refinement
technique; that is strategically re-distributing
a given number of nodes over the time domain.
The main reason for this have been the pro-
nounced inter-relation between the number of
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Fig. 7 The average CPU-time for the
uniform- and adaptive grid generation scheme
as a function of N .

nodes in the temporal discretization and tra-
jectory optimization run-times.
It is argued that in any computationally
efficient method, node distribution should be
a part of the optimization process. This,
in order to minimize the discretization er-
ror and gain accuracy, without bringing any
drastic increase in the computational effort.
Here-within, re-distributing the nodes have
been formulated as a constrained optimization
problem which is to be included in the under-
lying NLP.
The missile guidance problem considered,
showed that the extra degree of freedom pro-
vided by distributing the nodes is used con-
structively to improve accuracy. These ad-
vantages accrue particularly in the case when
having a nonlinear dynamic system at hand.
The reason for this being that having the node
positions as variables in the underlying NLP,
turns a linear system into a bilinear one, which
may then give rise to an undesirable increase
in computational complexity.
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