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Abstract  

High aspect ratio aircrafts, such as High-
Altitude Long-Endurance (HALE) UAVs, can 
experience large static deflections during 
normal flight operations that could severely 
reduce the flutter speed. At such speeds, Limit 
Cycle Oscillations (LCOs) may occur, reducing 
their operational life. A time-marching solver of 
a nonlinear aeroelastic model is proposed as a 
design analysis tool for highly flexible aircraft. 
Within this nonlinear aeroelastic model, 
moderate to large structural deflections and 
linear/non linear static and dynamic aeroelastic 
responses of such flexible aircraft can be 
properly considered. A geometrically consistent 
non-linear structural model is adopted based on  
Hodges and Dowell, including Da Silva second 
order geometrical non-linear terms. The 
structural model has been coupled with an 
unsteady aerodynamic model for an 
incompressible flow field, based on the Wagner 
aerodynamic indicial function, in order to 
obtain a non-linear aeroelastic model. This 
procedure enables one to expedite the 
calculation process. The influence of selected 
design aeroelastic parameters, such as tip 
deflection and stiffness ratio, is studied.  
In addition to analytical and computational 
results, a high aspect-ratio wing model has been 
selected as a candidate for a feasibility 
experimental study and to validate the 
theoretical model. Preliminary results on a 
balsa wing model and theoretical comparisons 
are presented1. 
 
                                                 
1 Copyright 2006 by G. Romeo, G. Frulla, E. Cestino, P. 
Marzocca. Published by ICAS with permission. 

 
 
Nomenclature 

a          = Elastic axis location. 
b          = Semi-chord. 
e          = Section mass center from elastic.  
                 Axis. 
E          = Modulus of elasticity. 
G          = Shear modulus. 
U          = Free-stream velocity. 
m          = Mass per unit length.  
g          = Acceleration of gravity. 
α           = Angle of attack. 
Iη, Iζ      = Vertical and chord-wise area.   
                 moments of inertia. 
ρ           = Air density. 
J           = Torsional stiffness constant. 
ωr           = Reference frequency. 
L           = Wing span. 
ζ̂            = Dimensionless in-plane 
                 generalized deformation. 
η̂            = Dimensionless out of  
                 plane generalized deformation. 
φ̂             = Dimensionless torsional  
                  generalized deformation. 

1 2,ε ε         = Wagner function constants. 
, ,v w φ     = lag, flap displacements and  

                  torsional rotation. 
w3/4c        = Downwash velocity at ¾ chord. 

, ,v wF F Mφ       = Generic in-plane, out-of plane    
                          and aerodynamic moment   
                          resultant expressions. 

, ,EI EI GJζ η   = Bending and torsion rigidity. 
    ,v wG G Gφ′ ′ ′     = Added non-linear 2nd order  
                          terms. 
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1  General Introduction 
Very low weight combined with high 

aspect ratio gives rise to slender and flexible 
wing structure. Such high degree of flexibility 
forces the designer to deal with specific 
phenomena not usually considered in classical 
aircraft definition proposing different design 
indications [8,9,10]. As we strive to reduce 
weight and raise performance levels using 
directional material, thus leading to an 
increasingly flexible aircraft, there is a need for 
reliable analysis tools, which model all the 
important characteristics of the fluid-structure 
interaction problem: aeroelastic instabilities 
always constrain the flight envelope and thus 
they have to be considered fundamental during 
the design process. One essential limitation of 
linearized analysis is that it can only provide 
information up to flight speed at which the 
aeroelastic instability occurs. Furthermore, these 
analyses are restricted to cases where the 
transient aeroelastic response amplitudes are 
small. Often this assumption is violated prior to 
the onset of instability. To study the behavior of 
aeroelastic systems near the point of instability, 
nonlinearities should be included. In recent 
years, studies of nonlinear fluid-structure 
interactions have been motivated by evidence 
that nonlinear effects in aeroelastic systems may 
be either favorable or unfavorable or a 
combination of both. For HALE UAVs it has 
been shown [3-4] that nonlinearities could 
induce Limit Cycle Oscillations (LCOs) even 
below the nominal flutter velocity. Whether 
such nonlinear effects are favorable or not will 
depend very much on the particular 
circumstances and parameters involved. 
Nonetheless it is clear that nonlinear effects 
often lead to LCO, which in turn, even if not 
catastrophic in nature, can lead to fatigue 
damage. In their absence the alternative would 
be a catastrophic flutter and consequently 
structural failure.  To achieve an efficient design 
of flexible airplanes, a better understanding of 
all the factors contributing to the occurrence and 
increase of the flutter instability boundary, as 
well as of those determining if the limit cycle 
oscillations are stable or unstable are required. 

2  Aeroelastic Model 
In this paper a geometrically non-linear 

moderate to large deflection structural model, 
based on [1] and modified according to the 
second order geometrical non-linear terms 
introduced in [15], has been coupled with an 
unsteady aerodynamic model for an 
incompressible flow field based on the Wagner 
indicial function [2,13,19]. The strain 
displacement relations are developed from an 
exact transformation between the deformed and 
undeformed coordinate systems. The wing is 
assumed to be clamped in the plane of 
symmetry and the equations of motion are 
obtained from Hamilton’s principle. These 
equations are also valid for beams with a mass 
centroid axis offset from the elastic axis, non-
uniform mass and stiffness section properties, 
and variable pre-twist. Terms up to second order 
have been retained in the final expression. 
Higher non-linear coefficients have been 
neglected assuming they would have a 
negligible effect on the system dynamics. 
Rotary inertia has been neglected according to 
the slender beam hypothesis. The effect of shear 
deformation has also been neglected. The 
resulting equations (1a-c) are valid to second-
order for long, slender, homogeneous, isotropic 
beams undergoing moderate to large 
displacements. Such assumptions are consistent 
with [1] and the reader is referred to [1,15] and 
the references cited therein for further details.  
In Eqs. (1a-c) , ,v wG G Gφ′ ′ ′  are second order non-
linear terms derived from Da Silva [15]. 
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In order to solve the system of governing 
equations and to study the subcritical and 
supercritical aeroelastic response as well as the 
flutter boundaries, the introduction of a small 
dynamic perturbation about a non-linear static 



 

3  

NON LINEAR AEROELASTIC BEHAVIOUR OF HIGLY FLEXIBLE HALE WINGS

equilibrium is applied. In-plane, out-of-plane 
and torsional deformations (v, w, φ) are 
considered to be a summation of the static and 
dynamic components in the undeformed 
reference system. The deflections are shown 
below: 
 

s

s

s

v v v
w w w
φ φ φ

= +
= +
= +

                      (2a-c) 

 
where vs , ws , and φs are the static in-plane 
lagging, out-of-plane bending and torsion 
deformations due to the aeroelastic trim, 
corresponding to a specific flight condition, 
respectively. The deformed beam scheme used 
in the present model is reported in Figure 1. 

 
Fig. 1. Wing reference system 

 
A moderate/large deflections small 
perturbations approximation has been 
introduced and the static variables are 
considered only x dependent. The dynamic 
deformations , ,v w φ  are time and space 
dependent. Using modal analysis techniques, the 
solution of the problem can be expressed as: 
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The form of the solution is independent of the 
trial functions employed to discretize the 

system, but the proximity of the discrete system 
to the original one is dependent on selection of 
the functions. A well chosen set of trial 
functions can accurately represent the original 
continuous system in terms of a few discrete 
coordinates. Previous investigations on 
cantilever beams [14], using uncoupled mode 
shapes for flap-lag-torsion stability analysis, 
indicated that results would be accurate with as 
few as one or two modes. The example 
presented in this paper is obtained using six 
modes (two for each degree-of-freedom) with 
mode shapes derived from a vibrating uniform 
cantilever beam. The partial differential 
equations governing the dynamics of the 
flexible beam [1,6,9,10,15] were reduced to a 
system of ordinary differential equations using a 
series discretization technique [12], along with 
Galerkin’s method, to obtain the aeroelastic 
governing equations. Substituting Eqs. (2a-c) 
into Eqs. (1a-c) it is possible to identify two sets 
of governing equations: a static aeroelastic 
equilibrium system and a perturbed dynamic 
system. The static equilibrium non-linear 
system can be expressed as: 
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(4a-c) 
 

where , ,vs ws sG G Gφ′ ′ ′   are counterparts of the 
terms derived from [15] for the static 
equilibrium case. Given a free-stream velocity 
U and an angle-of-attack α , the static 
displacements sv , sw , sφ  for the corresponding 
trim condition can be computed. Notice that, in 
the perturbed dynamic system, the static 
configuration will couple with the dynamic 
components through the non-linear terms. 
Introducing the variables ( )ˆ ˆ ˆ ˆ/ , ,x x L w w x= =  

( )ˆ ˆ ˆ ,v v x= ( )ˆ ˆ x̂β β= , a dimensionless form of 
the dynamic governing equations can be cast as: 
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where prime refers to differentiation with 
respect to the dimensionless coordinate along 
the span.  The terms ˆ ˆ ˆ, ,v wG G Gφ′ ′ ′   couple the 
equations through torsional stiffness, even if 

( ) 1EI EIζ ηΓ ≡ = . Their full expressions can be 
found in [9,10]. The dimensionless parameters 
introduced in the  Eqs. (5) are expressed as: 
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                                                                    (6a-h) 
 
The unsteady aerodynamic forces can be 
obtained using Wagner’s indicial function in 
Duhamel integral form [11,13] as reported in 
Eqs (7a-b). 
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(7a-b) 
where ( )τΦ  is the Wagner’s function and a is 
the offset of the elastic axis position from the 
mid-chord, positive aft. Approximate 
expressions of the Wagner’s function have been 
derived and the R.T. Jones approximation has 
been used [22] in the present application such 
as: 

( ) 1 2
1 21 b bA e A eτ ττ − −Φ = − − , ( )τ > 0          (8) 

 
 where the coefficients are: ( )335.0;165.0iA  and 

( )300.0;0455.0ib . Due to the existence of the 
integral terms in the aerodynamic integro-
differential equations [13], it is cumbersome to 
integrate them numerically. However, applying 
properties of the integration by parts, and 
introducing the variables [2,19,9,10]: 
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                                                                 (9) 
the airloads can be rewritten in general form 
containing just differential operators leading to 
a state-space form. 
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where the coefficients ˆ
iC  and ˆ

iD  are functions 
of the elastic axis location a, the reduced 
frequency k, the mass parameter µ  and the 
unsteady indicial function coefficients. F0 and 
P0 are the aerodynamic loads due to initial 
conditions. Their expressions can be found in 
[9]. The dimensionless state vector 
{ } { }1 20,..., TX x x=  become function of the 
displacement variables and the additional 
aerodynamic lag states as: 
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Applying the convolution integral property 
[2,19], the remaining constraint equations can 
be derived in order to complete the system. 
Constraint equations obtained from Wagner’s 
indicial theory are expressed as: 
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The aeroelastic system can finally be written in 
a state-space form as: 

 
{ } [ ] { } [ ] { }LIN NLIN

X A X G X= +&         (13)                                                     
 

where [ ]LIN
A  is a matrix containing linear terms 

that are functions of  the equilibrium solution 
and [ ]NLIN

G is a matrix containing only non-
linear terms. Flutter speed & frequency are 
defined by [13] as the lowest airspeed and 
corresponding frequency at which a given 
structure flying in a specific atmosphere will 

exhibit sustained simple harmonic oscillations. 
Flutter condition is a borderline situation or 
neutral stability due to the fact that small 
motions must be stable at a speed below linear 
flutter speed, whereas divergent oscillations 
occur in a range of speed above flutter speed. 
Linear flutter speed calculations can be 
performed setting the matrix  [ ]NLIN

G  equal to 
zero. The stability of motion about the 
equilibrium operating condition is determined 
by the eigenvalues of  the [ ]LIN

A  matrix.  The 
reduced linear perturbation system originates a 
linear approximation of the behaviour of the 
system in the neighborhood of the static 
equilibrium point with the possibility of 
calculating a flutter speed for each trim 
condition. Linear flutter speed can be computed 
assuming the equilibrium static configuration as 
zero with no coupling effect computing 
eigenvalues of ( )......, 0, 0, 0s s s LIN

A v w φ = = =  . 
Including equilibrium terms, non-linear flutter 
speed calculations can be performed computing 
eigenvalues of ( )......, 0, 0, 0s s s LIN

A v w φ ≠ ≠ ≠   
[9,10,20]. The system response is then analyzed 
via time marching integration by the non-linear 
Mathematica® solver. Linear integration, 
maintaining [ ] 0

NLIN
G = , or non-linear 

integration, [ ] 0
NLIN

G ≠ , can be carried out to 
investigate the post-flutter behaviour. 

3  Results and Discussion 

3.1  Linear and nonlinear Flutter 

To validate the proposed non-linear 
aeroelastic model, Patil and Hodges [3,4] and 
Tang and Dowell [5] models have been 
considered. The present results are in very close 
agreement with [3-5]. High-aspect-ratio wings 
undergo large deflections for relatively low 
aerodynamic loadings as compared to low-
aspect-ratio wings, and the natural frequencies 
of the high-aspect-ratio wings are quite low. 
Under aerodynamic loading the wing exhibits 
large static deflections, that is, effectively is a 
curved wing, for which a non-linear coupling 
between torsion and lagging bending occurs [1].  
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The classical linear flutter speed, obtained 
by linearizing the non-linear model about a zero 
deflection steady state, is calculated first. 
Throughout this paper it will be referred to as 
VFLEC that is: “flutter velocity in linear 
equilibrium condition”.  Linearizing the system 
about a deformed steady state, the perturbed 
motion is influenced by the chosen equilibrium 
point. The reduced linear perturbation system 
generates a linear approximation of the behavior 
of the system in the neighborhood of the static 
equilibrium point, with the possibility of 
calculating a flutter speed for each condition. In 
this case, the flutter speed is identified 
throughout this paper as VFNLEC that is: 
“flutter velocity in non-linear equilibrium 
condition”. To appreciate the importance of the 
non-linear effect of static deformation, a 
preliminary analysis was carried out introducing 
static deformations relative to imposed load 
distributions. Structural and aeroelastic 
characteristics of the wing were investigated by 
linearizing the problem about a non-linear 
statically deformed state. In Figure 2 the first 
four modes obtained by NASTRAN linear and 
non-linear analysis are presented for the same 
beam. The modal content of the undeflected 
wing structure at zero speed consists of six 
modes: first and third modes (ω1/ωr=0.022, 
ω3/ωr=0.1386) are typical flapping-bending 
modes, second and fifth modes (ω2/ωr=0.0983, 
ω5/ωr=0.5836) are typical lagging-bending 
modes, finally fourth and sixth modes 
(ω4/ωr=0.3052, ω6/ωr=0.9151) are two torsional 
modes. It is clear from both, the theoretical and 
FE analysis, that the variation in frequency is 
mostly due to lagging/torsion coupling. For 
even higher deformations there is further 
decrease in the torsional/lagging bending 
frequency, pushing the mode closer to the first 
bending mode. There is also a further decrease 
in the flutter speed, therefore the flutter 
characteristics of a deflected wing are very 
different from those of a straight wing due to the 
structural geometric nonlinearities. A 
subsequent flutter analysis has been performed 
and preliminary flutter calculations for a typical 
slender wing configuration are reported. The 

VFLEC has been determined first and 
correspond to the stability characteristics of the 
unloaded, undeformed wing. Some preliminary 
numerical results are presented in the following, 
referring to the wing data reported in [3]. A 
VFLEC of about 0.9 has been obtained showing 
a good correlation with results reported in [3]. 
The aeroelastic model has been than linearized 
about nonlinear steady states corresponding to 
different static load conditions. This analysis 
gives a more realistic prediction of the stability 
of the wing. 
 

 
Fig. 2. NASTRAN and theoretical 

frequency content. 

 
Fig. 3. Tip deflection effect 

 
It has been pointed out [3,8], that the flutter 
instability is greatly influenced by a static tip 
displacement. Similar results has been obtained 
for the case under study. Considering, for 
example, the case of a static tip displacement 
ratio wtip/wref of  0.4, the VNFLEC reduce to  
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0.5 and, for wtip/wref of 1, VNFLEC become 
lower than 0.4 showing a reduction of about 47-
54%. The VNFLEC behavior as a function of 
the tip displacement ratio is reported in Figure 
3. This is an important fact to consider when 
analyzing the non-linear aeroelastic behavior of 
such wings. Another design indication derived 
from [8] and confirmed by results published in 
[9] shows as the stiffness ratio between in-plane 
stiffness EIζ and out-of-plane stiffness EIη could 
play an important role in increasing the flutter 
boundaries; in [8,9] has been pointed out the 
positive effect of increased flutter speed when 
an higher value of  the stiffness ratio is 
introduced in the airplane structure design. The 
static wing deflection, previously considered, 
was not the real deflection obtained solving the 
equilibrium system in Eqs. (6a-c). For this 
reason a change in the calculation procedure has 
to be introduced. A correct procedure to 
compute the critical flutter speed can be 
performed according to the scheme in Figure 4. 
As an example, if we consider that at every 
speed a level flight condition has to be satisfied, 
then the flutter speed and frequency could be 
obtained as follows: 1) choose a flight speed 
and the correct angle-of-attack to satisfy the 
vertical equilibrium condition 2) calculate the 
static equilibrium deformed shape at the flight 
speed, 3) linearize about the deformed shape, 4) 
calculate the eigenvalues of the linearized 
system, 5) check for stability, if stable, increase 
the flight speed and repeat all of the preceding 
steps until instability speed is reached.  
 

 
 

Fig. 4. Flutter speed calculation 

A similar procedure has been suggested by Patil 
[15] and applying this approach, a higher 
VFNLEC flutter speed could be obtained. 

3.2  Post-Flutter Behaviour 
The flutter results obtained in the previous 

section give the velocity at the onset of flutter. 
These flutter results imply that small 
disturbances will grow exponentially for 
velocities higher than the flutter speed. 
However, as the amplitude of oscillations 
grows, additional non-linear stiffness is 
produced. Thus, the vibrations do not grow to 
infinity but instead converge to a limit cycle 
oscillation (LCO). The amplitude of the LCO 
gives an idea of the amount of stress/strain on 
the structure therefore its study could be useful 
in analysis and design. The amplitude of the 
LCO can only be determined by time-marching 
the non-linear governing equations of the 
aeroelastic system, while qualitative studies of 
the character of the flutter boundary, that is the 
identification of a stable or unstable LCO, can 
be done, for example, via a Lyapunov based 
approach proposed in [21]. In this paper, the 
effect of nonlinearities on the post-flutter 
behavior has been investigated by considering a 
small initial disturbance and by analyzing the 
response via time marching integration scheme 
using the non-linear Mathematica® solver. To 
provide a better understanding of how 
nonlinearities, incorporated in the aeroelastic 
model, affect the response of the system, Figure 
5 shows the time histories for the tip deflections 
at a speed higher then the flutter speed. The 
linear system show the typical unstable behavior 
with growing amplitudes as time unfolds. It 
clearly appears that the nonlinearities constrain 
the system to a limit cycle. For the fully 
nonlinear system LCOs are present above the 
non-linear flutter speed, as presented in Figure 
6. Herein the in-plane and out-of-plane wing tip 
deflections reach a stable LCO within 18 sec. 
This behavior is also representative of the 
torsional deflection. Considering the effect of 
steady-state system configuration in the flutter 
and post-flutter behavior, we have assumed a 
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level flight condition that is verified at every 
speed. 

 

 
Fig. 5. Time histories of linear and nonlinear 
systems 
 

A VFNLEC of 0.6 was computed 
considering lagging, flapping and torsional 
static deformations and a VFLEC of 0.862 was 
determined for the case of an undeformed 
steady state equilibrium. After the non-linear 
flutter velocity an LCO was recorded.  This 
clearly demonstrates the importance of 
incorporating geometric nonlinearities in the 
aeroelastic model because it not only affects the 
flutter speed, but also the post-flutter aeroelastic 
behavior.  

  

 
Fig. 6. Post-flutter behaviour 

4.  Experiments and Numerical Results 
In addition to analytical and computational 

results, experiments will be conducted on a 
high-aspect-ratio wing model with a slender 
body at the tip in order to validate the 
theoretical model previously described. A 

preliminary experimental study has been 
conducted on a balsa wood wing. Three aspect-
ratio wings have been tested both below and 
above VFLEC and VFNLEC flutter speeds. As 
highlighted in [5], a hysteresis phenomenon was 
also found during the test, confirming that these 
highly flexible wings exhibit a subcritical, 
unstable LCO behavior. Above the non-linear 
flutter speed, a stable LCO occurs. This LCO 
remains stable and its amplitude increases as the 
speed increases (Fig 11). In the descending 
speed phase, the LCO remain stable even below 
the VFNLEC flutter speed.  In all the 
experiments a magnetic sensor, Vernier MB-
BTA (200 samples per second), was used to 
record the variation in magnetic field produced 
by a rare-heart magnet (low mass, high 
magnetic field) attached to the wing (Fig 7). 
Magnetic field is correlated with displacement, 
so it was possible to record tip displacement and 
LCO post-flutter behavior. The wings were 
mounted, through a variable angle-of-attack 
support, vertically into the wind-tunnel to 
overcome the effect of gravity loading (Fig 7). 
The main characteristics of the tested wing in 
terms of dimensionless aeroelastic parameters 
for the balsa wing are reported in the Table 1. 

 
k  µ  

hΩ  αΩ  Γ  xα
2rα  a

variable 10.8064 0.40303 210.946 96.77 0 0.5327 0
 

Table 1 
 

Experimental tests show a flutter speed 
ratio of Uflut/Uref=0.514 in the increasing 
velocity phase and a flutter speed of about 0.468 
in the decreasing velocity phase. A static 
deflection of approximately 65 mm at the flutter 
velocity was recorded, confirming the 
theoretical prediction of the deformed 
equilibrium (Fig.7). Theoretical results have 
shown the non-linear behavior of these high-
aspect-ratio wings. A linear flutter speed 
VFLEC of about 0.871 was computed using the 
dynamic perturbation approach explained in the 
previous section (Fig.8a,b). The linear value is 
quite far from the flutter speed recorded during 
the experiment. Introducing an imposed static 
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deflection with a tip displacement of 65mm, a 
non-linear flutter speed ratio of approximately 
0.5 was computed by the theoretical model 
(Figs 10a-b), showing a good correlation with 
the experimental results. 

 

 
Fig. 7. Balsa wing static deflection  

 
Fig. 8a. Undeflected balsa wing  

 
Fig. 8b. Undeflected balsa wing computations 

 
Figures 8, 9,  show a graphical representation of 
the perturbation equations eigenvalue analysis, 
in the form of real eigenvalues Re(λi) 

(damping) versus the flow velocity. When the 
real part of the eigenvalues become positive we 
can recognize the flutter speed for the two cases 
of linear and non-linear equilibrium. 

 
Fig. 9a. Deflected (65mm) balsa wing  

 
Fig. 9b. Deflected (65mm) balsa wing 

computations 
 

A clear flutter and LCO response has also been 
observed in the present wind tunnel tests. The 
LCO results characterizing the post flutter 
behaviour show hysteretic response with 
increasing and decreasing flow velocity. As 
shown in [5], this phenomena is caused by both 
structural and aerodynamic nonlinearity due to 
separations at high angle-of-attack. The 
evolution of LCOs at speeds higher than non-
linear flutter speed was studied for different 
speeds and angle-of-attacks. One of the 
measured time histories for the wing at an 
angle-of-attack of 8 degrees is shown in Figure 
10. A second experimental model is also 
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proposed. The advanced stereo-lithography 
model has been constructed and will be tested in 
the low speed wind tunnel at Clarkson 
University [9,10]. Results of this advanced 
model will be presented elsewhere. The wing is 
rectangular, untwisted, and flexible in flap, lag 
and torsion. An extremely fine aerodynamic 
shape is obtained. The wing is composed by 
several pieces of NACA 0015 resin parts 
supported by a metallic bar. Resin parts are only 
bonded to the metallic bar leaving microgaps 
between the resin parts in order to reduce 
torsional stiffness. 

 
Fig. 10a. Balsa wing time histories and 

recorded LCOs 

 
Fig. 10b. Balsa wing time histories and 

recorded LCOs 

5.  Conclusion 
High Altitude Long Endurance (HALE) 

aircrafts aero-structural interactions are 
presented and defined. An advanced flutter 
calculation is presented and applied to the 
aeroelastic performance of slender structure, as 

used in HALE wings. The effect of the deflected 
equilibrium configurations, obtained by non-
linear approximation, is taken into consideration 
when solving the aeroelastic small motions 
system. The Galerkin approach in reduced form 
is considered as an analytical tool used to 
perform the calculations. Aerodynamic loads 
are derived according to the Wagner function 
approach and are simplified in these preliminary 
calculations. Post-flutter behaviour and LCO 
evolution has been studied using a time-
marching approach by means of Mathematica® 
non-linear solver. In addition to analytical and 
computational results, a high-aspect-ratio wing 
model has been selected for a feasibility study 
case and for validation of the theoretical model. 
Preliminary tests have been conducted showing 
a good correlation between the theoretical 
model and the experimental results. More 
experiments are being conducted on an 
advanced stereo-lithography model. 
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