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Abstract

Acoustic liners are widely used in jet engine in-
let and exhaust ducts as a passive means of noise
reduction, and the problem of liner optimization
has received some attention recently. The use
of circumferentially non-uniform liners has been
shown to lead to an attenuation in the acoustic
amplitude of some of the modes present in the
duct. However, the sound attenuation perceived
by an observer in the far-field is arguably the
most important effect to be achieved. In this pa-
per the far-field acoustic pressure field radiated
from the exit of a lined cylindrical duct is con-
sidered and the case of uniform and circumferen-
tially non-uniform liners is compared.

The radiation of sound from the duct to the
free space is specified by a Kirchhoff integral,
the sound source distribution being specified by
the pressure distribution on the duct exit plane.
This pressure distribution depend on the radial,
axial and circumferential modes in the cylindri-
cal duct, which are determined by the impedance
boundary conditions. When the impedance dis-
tribution varies circumferentially, the evaluation
of the wavenumbers involves the determination
of the roots of an infinite determinant.

The evaluation of the radiation integrals show
that (i) the total acoustic field consists of a spher-
ical wave multiplying a sum of directivity factors
which depend on the radial n = 1, . . . ,∞ and az-
imuthal m = 1, . . . ,∞ modes; (ii) each mode con-
sists of a monopole term and a dipole term and
depend on the frequency and the radial and ax-

ial wavenumbers that had been determined by the
boundary condition at the duct wall. In the case
of external noise of an aircraft, the observer is on
the ground, at a distance much greater than the
duct diameter, and the radiation integrals for an
observer in the far-field can be simplified, since
the dipole term is weak.

The evaluation of the acoustic pressure for an
observer in the far-field, shows that the directivity
factors depend on the radial wavenumbers in the
nozzle, which are specified by the wall bound-
ary conditions, and thus depend on the acoustic
impedance distribution. This allows compari-
son of hard-walled nozzles, with liners with con-
stant impedance and non-uniform liners, the lat-
ter with impedance distribution varying circum-
ferentially.

1 Introduction

In a cylindrical nozzle noise can be absorbed in
its interior by vortical flow [1–6] and at the walls
by acoustic liners, which may have uniform [7–9]
or non-uniform [10–17] impedances. The sound
field received by an observer in the far-field is de-
termined by radiation out of the open end of the
nozzle [18–22] or inlet of a fan [23, 24]. In the
case of nozzle there is a refraction effect which
can be represented either by a vortex sheet [25]
or an irregular shear layer [1, 2] issuing from the
lip.

The aim of the present paper is to relate the
acoustic field radiated through the nozzle exit
to the far-field to the acoustic modes in a noz-
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zle with non-uniform wall impedance. The ra-
diation from the disk in the nozzle exit plane,
to an observer in the far-field, consists, to lead-
ing order, of monopole and dipole terms. The
acoustic pressure distribution in the nozzle exit
plane is expressed in terms of duct modes, al-
lowing the evaluation of radiation integrals. The
latter involve the acoustic eigenfunctions, corre-
sponding to the eigenvalues for propagating or
cut-on modes, in the case of rigid walls or walls
with uniform impedance, and also walls with im-
pedance varying circumferentially. As an exam-
ple, the radial wavenumbers and the directivity
factors were calculated for uniform liner duct in
comparison with weakly and strongly circumfer-
entially non-uniform liners; the benefits of the
non-uniform lining are assessed, not including
the effects of transmission across the irregular
and turbulent shear layer issuing from the jet noz-
zle lip.

2 Sound radiation from an open pipe

The radiation of sound from an open pipe (Fig. 1)
is represented by a pressure distribution on a disk
(2.1), viz. the exit plane; the radiation integrals
are simplified (2.3) for an observer in the far-field
(2.2).
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Fig. 1 Sound radiation from the disk on the exit
plane of a cylindrical pipe to an observer in the
far-field

2.1 Source distribution on a circular disk

The radiation of sound in free space, i.e. without
obstacles, is specified by the Kirchhof integral:

p(x) =
1

4π

Z
D

1
|x−y|e

−iω(t−|x−y|/c)q(y)d3y,

(1)
for a spatial source distribution of strength q at
position y in the domain D , with frequency ω,
and radiation to the observer at x, in a homoge-
neous medium at rest, for which the sound speed
is c. In the case of a disk of radius a on the XOY -
plane with centre at the origin, the position of the
source is written in polar coordinates (R,α):

0≤ α≤ 2π, 0≤ R≤ a;
y = R(ex cosα+ ey sinα), (2)

and the position of the observer in spherical co-
ordinates (r,θ,ϕ):

x = r(ex cosθ+ ez sinθ), (3)

where ϕ = 0 because the XOZ-plane can be taken
through the observer. The radiation integral (1)
becomes in this case

p(r,θ, t) =
e−iωt

4π
×Z 2π

0
dα
Z a

0
dR

R
D(R,α)

ei(ω/c)D(R,α)q(R,α) (4)

where q(R,α) is the source distribution, and

D(R,α) = |x−y|= |R2 + r2−2Rr sinθcosα|1/2,
(5)

is the distance between observer and source.

2.2 Reception by an observer in the far-field

In the case of external noise of an aircraft, the
observer is on the ground, at a distance D(R,α)
much greater than the nozzle diameter. Then
R2 ≤ a2 << r2 and the distance by inverse dis-
tance may be simplified by:

D(R,α) = r−Rsinθcosα+O(R2/r2), (6a)
1

D(R,α)
=

1
r

+
R
r2 sinθcosα+O(R2/r2). (6b)
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Substitution of (6a, 6b) in the radiation integral
(4) specifies

p(r,θ, t) =
e−iωt

4π

Z 2π

0
dα
Z a

0
dR q(R,α)×

R
r

[
1+

R
r

sinθcosα
]

ei(ω/c)(r−Rsinθcosα) (7)

the acoustic field received by the observer in the
far-field.

2.3 Decomposition into monopole and dipole
terms

The acoustic pressure received in the far-field (7)
may be written

p(r,θ, t) =
eiω(r/c−t)

4πr
(I1 + I2), (8)

as a spherical wave radiated from the origin (or
disk or nozzle centre) to the observer, multiplied
by monopole (9a) and dipole (9b) terms

I1 =
Z 2π

0
dα
Z a

0
dRq(R,α)Re−i(ωR/c)sinθcosα)

(9a)

I2 =
Z 2π

0
dα
Z a

0
dR q(R,α)×

Re−i(ωR/c)sinθcosα)(R/r)sinθcosα (9b)

where the latter is related to the former by

I2 =−1
r

d
d(iω/c)

I1, (10)

since differentiation with regard to iω/c is equiv-
alent to multiplication by Rsinθcosα. Substitu-
tion of (9a) and (10) in (8) yields:

p(r,θ, t) =
eiω(r/c−t)

4πr

{
1+ i

d
d(ωr/c)

}

Z 2π

0
dα
Z a

0
dRq(R,α)Re−i(ωR/c)sinθcosα, (11)

as the acoustic pressure received by an observer
in the far-field, from a source distribution q(R,α)
on a disk. The latter is specified next in terms of
the acoustic modes of a nozzle.

3 Acoustic modes in a cylindrical nozzle

The source distribution on the nozzle exit plane
(3.2), which allows the evaluation of radiation in-
tegrals, is specified by the radial, axial, and cir-
cumferential modes, in the cylindrical nozzle.

3.1 Radial, axial and circumferential modes

In the absence of mean flow, the modes in a
cylindrical nozzle are specified by the solution of
the classical wave equation in cylindrical coordi-
nates:{

1
R

∂
∂R

R
∂

∂R
+

1
R2

∂2

∂α2 +
∂2

∂z2 −
1
c2

∂2

∂t2

}
Q = 0.

(12)
Since the coefficients of the wave equation de-
pend only on radius R, it is convenient to use a
Fourier decomposition in (z,α, t), viz.:

Q(R,α,z, t)= e−iωt
+∞

∑
m=−∞

eimα
Z +∞

−∞
dk eikzPm(R,k),

(13)
a wave of frequency ω, with longitudinal
wavenumber k and circumferential wavenumber
m. Substitution of (13) in (12) shows that the
radial dependence is specified, for a cylindrical
nozzle, by a Bessel function of order m:

Pm(R,k) = Jm(κR), (14a)

with radial wavenumber

κ =
√

(ω/c)2− k2, (14b)

specified by a boundary condition at the nozzle
wall R = a, which specifies the radial modes κnm
with n = 1, . . . ,∞, which may be distinct for each
circumferential order m.

3.2 Amplitudes of sound generation in a noz-
zle

Thus the acoustic field in the nozzle consists of a
superposition (13, 14a) of:

Q(R,α,z, t) = e−iωt
+∞

∑
m=−∞

eimα×
∞

∑
n=1

Jm(κmnR)eikmnzAmn, (15)
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where m is the azimuthal and n the radial order,
the radial wavenumbers κmn are specified by the
boundary condition at the nozzle wall R = a, the
axial wavenumbers are related by (14b), viz.:

kmn =
√

(ω/c)2− (κmn)2, (16)

and the amplitudes Amn of each mode are speci-
fied by the source distribution in the nozzle. The
pressure distribution q(R,α)e−iωt in the nozzle
exit plane z = 0 is thus specified by:

q(R,α) = Q(R,α,0,0) =
+∞

∑
m=−∞

eimα
∞

∑
n=1

Jm(κmnR)Amn, (17)

which may be substituted in the radiation integral
(11) to specify the sound field received by the ob-
server in the far-field:

p(r,θ, t) =
eiω(r/c−t)

4πr

+∞

∑
m=−∞

∞

∑
n=1

pmn(r,θ)Amn,

(18a)
which is specified by a superposition of radiation
integrals for each mode:

pmn(r,θ) =
{

1− i
d

d(ωr/c)

}

Z 2π

0
dα
Z a

0
dRRe−i(ωR/c)sinθcosαeimαJm(κmnR).

(18b)

It has been shown [27] that (18b) can be ex-
pressed in terms of Bessel functions as:

pmn(r,θ) = a2
Z 1

0
Jm(κmnas)

{
Jm(sΩsinθ)−

i
a
r

[m
Ω

Jm(sΩsinθ)− sinθJm−1(sΩsinθ)
]}

sds,

(19)

where a dimensionless radial distance (20a) and a
dimensionless frequency (20b) were introduced:

s = R/a (20a)
Ω = ωa/c. (20b)

Thus: (i) the total acoustic field (18a) consists
of a spherical wave multiplying a sum of radial
modes n = 1, . . . ,∞ and azimuthal modes of order
m = 0,1, . . . ,∞; (ii) each mode (19) consists of a
monopole term (first in the braces) and a dipole
term (in square brackets); (iii) the parameters are
the dimensionless frequency (20b), the ratio of
the the nozzle radius to the distance of the ob-
server a/r in the dipole term (which is weak be-
cause a2 << r2 for observers in the far-field), and
the radial wavenumbers κmna, determined by the
boundary condition at the duct wall.

4 Acoustic effects of non-uniform impedance

The acoustic pressure for an observer in the far-
field depend on the radial wavenumbers in the
nozzle, which are specified by the wall boundary
conditions (4.1). This allows comparison of hard-
walled nozzles, with liners with constant im-
pedance and non-uniform liners with impedance
distribution varying circumferentially.

4.1 Rigid, impedance and non-uniform walls

The simplest case (I) is a nozzle with rigid walls,
for which the normal velocity at the wall is zero,
implying from the momentum equation that the
normal derivative of the pressure is zero:

0 = iωvn(R = a) = ρ−1 ∂p
∂r

∣∣∣∣
r=a

, (21)

where ρ is the mass density. Thus: J′m(κmn a) = 0,
so that the radial wavenumbers κmn are deter-
mined by the zeros jmn of the derivative of the
Bessel function Jm. Since these zeros are real,
the radial wavenumbers κmn are real, and the cor-
responding (16) axial wavenumbers:

kmna =
√

Ω2− ( jmn)2, (22)

are: (i) either real, for propagating or cut-on
modes, if | jmn| ≤Ω; (ii) or imaginary, for evanes-
cent or cut-off modes, if | jmn| > Ω. Since the
zeros of the derivative of the Bessel function
J′m form an unbounded sequence jm1, jm2, . . . ,
there is a finite number of cut-on modes, larger
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for larger dimensionless frequency. The cut-off
modes make a negligible contribution to radiation
to the far-field, so the sum in the total acoustic
pressure (18a) is restricted to cut-on modes. The
amplitude of the latter cut-on modes has been
found to be weakly dependent on mode order for
turbomachinery noise, and thus Amn may be taken
as a constant factor, and omitted together with the
spherical wave term eiω(r/c−t)/2πr and a2, which
are common factors, regardless of the wall con-
dition, and thus do not affect the comparison be-
tween rigid and lined walls. For a rigid wall, the
far-field acoustic pressure is thus specified by a
directivity factor:

P(θ) =
∞

∑
m=0

jmn<Ω

∑
n=1

Z 1

0
Jm( jmn s)Jm(sΩsinθ)s ds,

(23)
where only the monopole term was considered,
since it dominates the dipole term.

In the case (II) of a wall with uniform im-
pedance Z̄0, the radial wavenumbers are specified
by the roots of:

iZ0J′m(κmna) = Jm(κmn a), (24)

where Z0 is the specific impedance, i. e. the im-
pedance divided by that of a plane wave:

Z0 = Z̄0/ρc. (25)

The radial wavenumbers κmn are generally com-
plex, and the axial wavenumbers (16) also:

kmna =
√

Ω2− (κmna)2. (26)

Although the distinction between cut-on and cut-
off modes is not so clear in the case of an im-
pedance wall, the sum for the total acoustic field
is taken for the cut-on modes of a rigid wall, as
in (23), but for the complex radial wavenumbers,
so that (23) remains valid, and can be evaluated
(cfr. [26]). The acoustic pressure received in the
far-field is:

pmn(θ) =−2ikmna
[
(κmna)2− (Ωsinθ)2]−1

[
Ω sinθJmn(κmna)J′m(Ωsinθ)−

κmnaJm(Ωsinθ)J′(κmna)
]
. (27)

4.2 Circumferentially non-uniform liners

Expression (27) for the directivity of the acoustic
pressure in the far-field can also be used in the
case of non-uniform wall impedance Z(θ,z), ex-
cept that radial wavenumbers are no longer deter-
mined as the roots of (24). In the case of a cir-
cumferentially non-uniform distribution, which
is represented by the first two terms of a Fourier
series:

ZA(θ) = Z0(1+2εcosθ), (28)

the radial wavenumbers are specified exactly by
the roots of an infinite determinant,

det
[

i
Ω
κa

Jm(κa)δmm′−Zm′−mJ′m(κa)
]

= 0, (29)

where all the impedance Fourier coefficients
Zm = 0 except Z0 and Z±1 = εZ0.

5 Noise reduction for far-field observer

The eigenvalues and eigenfunctions are calcu-
lated for circumferentially non-uniform liners, to
assess the noise reduction benefit relative to uni-
form liners.

5.1 Eigenvalues for the dimensionless radial
wavenumbers

Arguably the best measure of the effectiveness of
an acoustic liner is the effect on the reduction of
far-field noise. As a numerical example consider
a nozzle of radius a = 1m, and a wave frequency
f = 1kHz or ω = 2π f = 6.28× 103s−1, corre-
sponding, for a sound speed c = 340ms−1, to
a dimensionless frequency or Helmholtz number
Ω = ωR/c = 18.5.

The condition jmn < Ω for the roots jmn of the
derivatives of the Bessel functions J′( jmn) = 0,
specifies the propagating or cut-on modes.

The radial wavenumbers can be determined
using (24) for a uniform specific impedance im-
pedance:

Z0 = 2.5− i0.4, (30)

and (29), for circumferentially non-uniform im-
pedances (28), with relative amplitude of the har-
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monic

ε = 0.1+0.1i, (31a)
ε = 0.2−0.3i. (31b)

The former is designated comparatively the
‘weakly’ (31a) and the latter the ‘strongly’ (31b)
non uniform liner, although in both cases the im-
pedance is the same (30) on the mean, and the
variation from the mean is small in absolute terms
in both cases.

5.2 Radiation integrals

The non-dimensional radial wavenumbers deter-
mined can now be used in the specification of the
radiation integrals (27) for an angle θ between the
duct axis and the observer in the far field, where
0≤ θ < π/2.

In figure 2 the modulus and the phase of
pmn as a function of θ are represented for ra-
dial orders n = 1− 4, for uniform impedance
Z0 = 2.5−0.4i and for ‘weak’ (31a) and ‘strong’
(31b) impedance non-uniformity, for m = 0. The
radiation integral is almost unchanged for ‘weak’
non-uniform impedance, but for ‘strong’ non-
uniformity the changes both in modulus and in
phase are significant, and are greater for higher
radial orders n.

In figure 3 the modulus and the phase of pmn
as a function of θ are represented for the ra-
dial wavenumbers corresponding to the first ra-
dial order n and to circumferential orders m =
0,2,4,6,8,10,12, and 14, for uniform impedance
(30) and ‘weak’ and ‘strong’ non-uniformities.
As in the previous cases, the radiation inte-
gral is almost unchanged for ‘weak’ non-uniform
impedance, but for ‘strong’ non-uniformity the
changes both in modulus and in phase are sig-
nificant and depend strongly both on the angle θ
and on the circumferential order m.

Note that the maximum of the radiation inte-
grals in the interval 0≤ θ < π/2 decreases as the
circumferential order increases, and is obtained
for greater values of θ. As a result, the effects of
impedance non-uniformity, which are greater for
higher circumferential orders, are stronger for di-
rections far from the duct axis.

6 Discussion

The effect of non-uniform impedance on sound
radiation to the far-field has been assessed on the
basis of the acoustic pressure on the disk cor-
responding to the nozzle exit plane, without ac-
counting for edge diffraction effects which can
be quite important [25], in particular in the pres-
ence of a mean flow, when a turbulent and irregu-
lar shear layer [1,2] is issued from the nozzle lip.
The latter causes spectral and directional broad-
ening of sound, which further reduces the noise
levels. Although the latter effects have not been
modelled here, it is clear that an attenuation of
the ‘input’ sound field incident on the shear layer
from the interior of the jet will result in a fur-
ther attenuated sound field transmitted to an ob-
server in the far-field outside the shear layer. The
attenuations shown for the basic in-duct sound
field are clear even though: (i) the non-uniform
liner (28) has the same average impedance as the
uniform liner; (ii) only one liner impedance ‘har-
monic’ was used, involving a single parameter ε,
which was not optimized. By considering multi-
harmonic impedance distribution

Z(θ) = Z0

[
1+

L

∑
l=1

εl cos(lθ)

]
, (32)

and optimizing the parameter εl , greater noise re-
duction could be obtained. In the present exam-
ple a relative impedance variation |ε| of 20−30%
was shown to be sufficient to affect significantly
the sound fields.
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Fig. 2 Modulus and phase of the radiation integral pmn as a function of θ in the cases of uniform
impedance Z0 = 2.5−0.4i (×) and non-uniform impedance with ε = 0.1+0.1i (– –) and ε = 0.2−0.3i
(—) for m = 0 and radial orders: (a) n = 1; (b) n = 2; (c) n = 3; (d) n = 4.
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Fig. 3 Modulus and phase of the radiation integral pmn as a function of θ in the cases of uniform
impedance Z0 = 2.5−0.4i (×) and non-uniform impedance with ε = 0.1+0.1i (– –) and ε = 0.2−0.3i
(—) for radial order n = 1 and circumferential orders: (a) m = 1; (b) m = 2; (c) m = 4; (d) m = 6.
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Fig. 3 (Cont.) Modulus and phase of the radiation integral pmn as a function of θ in the cases of uniform
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