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Abstract

A 5-year R&D project has been in progress in
Japan toward the development of an
environmentally friendly high performance
small jet aircraft since 2003. We developed and
applied a Multidisciplinary Design
Optimization (MDO) tool to a wing design in
the conceptual design phase where a block fuel
optimization was performed through aero and
structural optimization. To be used as a
practical design tool, we have introduced a
flexible airfoil representation method to ensure
a sufficient design space, and an optimization
acceleration method to obtain the optimum in
the practical time. As a result, by applying the
CAD based geometry representation method
and the Variable-Fidelity method to our MDO
tool, the expansion of the design space was
achieved and the optimization time was reduced
to 10%. These techniques were applied to an
engine-airframe integration, which is one of the
most important items of the airplane design.

1 Introduction

In Japan, a 5 year R&D project has been in
progress toward the development of an
environmentally friendly high performance
small jet aircraft aiming for a generation of the
new industries under auspice from NEDO [1]
(New Energy Development Organization) since
2003, in which new technical features have been
investigated including advanced aerodynamics,
new materials and so on. Mitsubishi Heavy
Industries, Ltd. (MHI) is in charge of the
aerodynamic design as a prime contractor of the
project.

In this program, we developed a multi
disciplinary optimization (MDO) tool by
coupling a high-fidelity aerodynamic evaluation
method such as Navier-Stokes solver with a
genetic algorithm (GA) through a joint R&D
study between MHI and Tohoku University [2].
However, there still remained some concerns
about the design space definition and the
computational cost in chapter 2.

To overcome these concerns and to
perform wing-body design optimization, we
introduced two new techniques in our MDO tool.
The first was a flexible geometry representation
method based on the Non-Uniform Rational B-
Spline (NURBS)[3] technique, which was used
in the CAD field, and the second was the
effective optimization tool based on the
Variable-Fidelity technique. By applying these
techniques to our optimization tool, both the
expansion of the design space and the
acceleration of the optimization were achieved
in the preliminary design phase.

Then we extended this MDO tool to a
much complicated and practical engine-airframe
integration problem as a next step. To overcome
not only an aerodynamic complexity but also
the trade-off among other features such as
weight, flutter etc, an automatic and robust
mesh generator for wing-body-nacelle
geometries were developed.

2 Wing-Body design optimization

2.1 Airfoil representation method
In the MDO, the adequacy of the design

space of an optimization problem strongly
affects whether we can reach practically enough
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optimized solution or not. Especially in the
wing optimization problem, the most dominant
factor is how to define the wing shape. In the
optimization field, many airfoil shape
representation methods have been developed
such as discrete point representation method,
polynomial function, partial polynomial
function expression and CAD based expression
method [4]. However, some methods cannot
represent transonic airfoils precisely because of
the large camber and curvature around the
leading edge. Though the way of the definition
of the airfoil shape is most important, there is
still no general way.

In our previous work, we applied the
PARSEC [5] method for the airfoil shape
representation. However, we could not reach the
optimized solution whose high speed drag was
smaller than that of the airfoil designed by the
conventional way based on the experience and
knowledge of the engineer. It was assumed that
the PARSEC method did not contain the true
optimized solution in its design space.

Nowadays, a NURBS (Non-Uniform
Rational B-Spline) is widely used in the CAD
area and it has the capability of modifying the
geometry locally. After investigation on the
improvement of the airfoil shape definition we
apply the NURBS method to enhance the
flexibility of an airfoil shape. NURBS
expression is shown below.
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n :number of control points
m :order of NURBS curve
T :knot vector
t :parameter
N :B-spline basis function
q/ :coordinate of control points

P/ :coordinate of NURBS points
ω :weight parameter

As is shown in NURBS expression above, the
NURBS curve is a mixture of the B-spline basis
function and the coordinate of the control points.
Moreover, few control points are needed to
create a smooth curve. By using a CAD file
format such as IGES (Initial Graphics Exchange
Specification), an airfoil shape can be directly
imported into the CAD software without any
lack of information and modification is easy.
The NURBS method can represent an airfoil
with high camber and curvature, which is used
in the civil jet plane and it leads to the rich
design space. Then, we compared three ways of
airfoil definition listed below to evaluate the
accuracy of the NURBS airfoil representation
method.

1) PARSEC
2) PARSEC + least square method
3) NURBS

For the three definitions above, parameter
estimation for minimizing the geometry
difference between the target airfoil and the
estimated airfoil was conducted by the
ARMOGA (Adaptive Range Multi Objective
Genetic Algorithm)[6], which was a kind of the
genetic algorithm as the optimizer. The
objective function was as follows;
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In these problems, the ARMOGA generated 8
individuals at each generation and continued
until the generation reached 400.

PARSEC
The 10 design variables

(xup,zup,zxxup,xlo,zlo,zxxlo,αTE,βTE,rLElo/rLEup,dy)
used in this method is shown in Fig.1. The
resultant airfoil shape is shown in Fig.2.

PARSEC + least square method
The airfoil was divided into two parts

(thickness distribution + camber line). The
former was expressed by the PARSEC-5 with 5
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design variables (xup,zup,zxxup,βTE,dy), and the
latter was expressed by the 5-th order
polynomial function determined by the least
squares method. The resultant shape is shown in
Fig.3.

NURBS
The airfoil was expressed by the 5-th order

NURBS curve. By careful investigation, the
number of the control points and their
distribution were determined. The 26 design
variables (control points) used in this method is
shown in Fig.4. The resultant airfoil is shown in
Fig.5.

Evaluation
The R.M.S. of the geometry difference

between the original airfoil and the estimated
airfoils at three chord regions and total values
are shown in Fig. 6 and Fig. 7, respectively. It is
found that there are large errors at the leading
edge with the PARSEC and the PARSEC +
least square method. The PARSEC method used
the leading edge radius to express the shape
around the leading edge, therefore the flexibility
of the shape at this region was limited and this
caused errors at the region. On the other hand,
the NURBS represented the shape of the
original airfoil at whole region better than the
PARSEC method.

The pressure distributions under transonic
Mach number and constant Cl comparison of
the original airfoil with ones estimated by each
method are shown in Fig. 8. The airfoil
generated by the PARSEC could not capture the
suction peak at the leading edge, while one
generated by the NURBS could express well.
The R.M.S. of the geometry difference of each
method seems not large, however, pressure
distribution in transonic regime was so sensitive
that small geometry deviation caused large
discrepancy. Even the NURBS method needed
more design variables than other methods, we
adopted the NURBS method as the airfoil
representation method in our study, because the
pressure distribution around the leading edge
including the suction peak determined high-
speed performance of the civil jet plane.

2.2 Variable-Fidelity technique
In the engineering application, we can

choose an optimizer depending on the
optimization problem. In our previous work, we
constructed an optimization tool using
ARMOGA, which is one of the genetic
algorithms (GA). The GA has the merit of
finding a global optimum solution in the design
space with discontinuity and multi-modalities.
However, coupling GA with a high-fidelity
aerodynamic evaluation tool such as Navier-
Stokes method (CFD) requires much
computational time and it is not practical in the
aircraft development program.

Two solutions to overcome this problem
are

1. Improving the way of selecting the
population

2. Reduce time expected in the evaluation
of the objective function.

For achieving the solution 1, we changed
the way of selecting the population from one
depending on the genetic information only to
one, which related the objective function values
and the design variables based on an
approximation model.

The most widely used approximation
model is a polynomial-based model [7], [8]
because it is simple and easy to use. However,
this model is not suitable for representing multi-
modalities and non-linearity that often appear in
the aerodynamic problem.

Recently, the Kriging model [9], [10],
developed in the field of spatial and geostatistics,
has gained popularity in this field. This model
predicts the value of the unknown point using
stochastic processes. Sample points are
interpolated with the Gaussian random function
to estimate the trend of the stochastic processes.
It can reduce much time for objective function
evaluation. However, such a prediction model
includes some uncertainty in it. For the robust
exploration of the global optimum solution, both
the objective function value and its uncertainty
should be considered at the same time. This
concept is expressed in the criterion ‘expected
improvement (EI)[11]’. The EI indicates the
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probability of a point being optimum in the
design space. By selecting the maximum EI
point as an additional sample point, the
improvement of the model and the robust
exploration of the global optimum can be
achieved at the same time. The Kriging model is
constructed for each objective and constraint
function. In the Kriging model for the objective
function, the expected improvement is
calculated, and in the Kriging model for the
constraint, the probability of satisfying the
constraint is calculated. Based on these values,
an additional sample point for the balanced local
and global search is selected using MOGA
optimizer.

Though the computation time to construct
the Kriging model is much shorter than that of
the direct evaluations, it is likely to increase the
optimization cycle to get a sufficient flexibility
to represent the nonlinear and multimodal
functions. For achieving the solution 2, the
Variable-Fidelity [12] technique was introduced.

The Variable-Fidelity technique uses
multiple fidelity models as the objective
function evaluation method. The low-fidelity
model such as a full potential method can
evaluate an objective function at a short time,
however the solution is not fully confident. On
the other hand, though the high-fidelity model
such as Navier-Stokes method takes much
computation time, the solution is much
confident than that of the low-fidelity model.
Both models have different merits and demerits.
The Variable-Fidelity technique does not
depend on only a single fidelity model but also
combine these models to make maximum use of
the merits of both methods.

The key point of Variable-Fidelity technique
is the construction of the “Bridge functions”.
The “Bridge functions” aim to correct the result
from a low-fidelity model to one of a high-
fidelity model.

Furthermore, the “Bridge functions” generate
the result of uncalculated components. The
example of the “Bridge functions” is shown
below.

BODYWING
fidelitylow

fidelitylowfidelityhigh

CLCLCL

CLfCL

+=
=

−

−− )(

( )WINGBODY CLfCL ,α=
In this example, CLWING is the result of a

low-fidelity model. Though CLBODY is not
calculated, it is estimated by using the angle of
attack and CLWING. In the early phase of the
optimization, reliability of the “Bridge
functions” is not sufficient and the correlation
between the high-fidelity solution and the
corrected low-fidelity solution is not necessarily
high. In other words, if both solution matches,
the “Bridge functions” are fully matured. In the
optimization process, the “Bridge functions” are
updated every time by using the objective
function values of both low and high fidelity
models.

The flowchart of the optimization process
using a Kriging model with Variable-Fidelity
technique is shown in Fig. 9.

1. Sample points to generate the original
Kriging model are selected within the design
space by using the Latin Hypercubes Sampling
(LHS)[13]. Once LHS selects a point, the point
is checked whether it satisfies the design
constraints or not. If the point satisfies all
constraints, the point is selected as a sample
point and if not, the point is rejected.

2. All objective functions are evaluated by
a low-fidelity model (full potential flow solver).

3. The Kriging models of each objective
function are constructed. Then, by using MOGA,
some points with higher EI value are picked up
on the Kriging model.

4. All sample points, which are picked up
in the previous step, are evaluated by both a
low-fidelity model (full potential flow solver)
and a high-fidelity model (Enler/NS solver).

5. The “Bridge Functions”, connecting low
and high fidelity solutions, are constructed

6. All objective function values of each
sample point are recalculated with the “Bridge
Functions” into high-fidelity values.

7. Go back to the 3rd step and this routine is
iterated until the termination criterion is
satisfied. In our current study, termination
criterion was the maximum number of
additional sample points.
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As an example, Fig 10 shows our wing
optimization result with structural constraints.
The additional sample points are projected on a
two-dimensional plane between the wing box
weight and the cruise drag. As is shown in this
figure, the rank of the drag and weight of each
sample of the low-fidelity evaluations does not
agree with that of the high-fidelity evaluations.
On the other hand, the low-fidelity evaluations
corrected by the "Bridge functions" are in good
agreement with the high-fidelity evaluations.
This result indicates that the “Bridge functions”
are matured and the optimization using the
corrected low-fidelity result is equivalent to one
using the high-fidelity result.

The Variable-Fidelity technique using the
“Bridge functions” can reduce the
computational time of practical aircraft MDO
problem drastically without loosing accuracy.

3 Engine-airframe integration

In the aircraft design, an engine-airframe
integration problem is one of the most important
design issues. Fig. 11(a) shows a shockwave
generated around the inboard of the pylon and
Fig. 11(b) shows the sectional pressure
distribution at the pylon junction. This
shockwave may lead to flow separation and
cause buffet. In addition to this aerodynamic
complexity, cruise drag, weight and flutter
margin have to be taken into account. To
overcome such complex design features, we
extended the MDO tools to the engine-airframe
integration.

In this kind of problem, it tends to take
more time to modify the geometry than
evaluation due to its geometrical complexity.
Therefore, for a practical optimization, the
automatic CFD and FEM mesh generator is the
key points.

In our previous work based on a gradient
method [14], [15], we developed the CFD mesh
modification tool, which morphed the original
geometry to the new geometry based on the
spring analogy method. This tool was powerful
and mandatory for gradient based optimization
to obtain the geometry sensitivity, however, it

was too complicated to avoid surface mesh
distortion issue, and design space tended to be
limited.

Therefore we switched the optimizer to
MOGA which did not necessary require the
geometry sensitivity information. Then we
developed the automatic and robust mesh
generator, which generated a mesh from scratch.
This tool was very robust and assured a rich
design space.

Fig.12 shows the process of the mesh
generation of the wing-body-nacelle geometry.
First, represent the wing, body and nacelle
geometry, respectively. Next, combine the wing,
nacelle and body into a single geometry. Finally,
generate surface and the volume meshes. These
operations are fully automated. The FEM mesh
of the wing-body-nacelle geometry was also
generated automatically as is shown in Fig.13.
Because of its capability of generating the CFD
and FEM mesh of the fully complex geometry,
this tool enabled us to save much time for the
geometry modification and the mesh generation.
The time for CFD mesh generation was reduced
to 1 minute from 1 day, and the time for FEM
mesh generation was reduced to 10 seconds
from 1 day.

To prove its validity and efficiency, the
engine-airframe optimization problem was set
as follows.

Design variables.
30 (26 variables for the airfoil shape of 2

sections and 4 for the wing twist)

Objective functions.
1. Minimize suction peak at the wing-pylon

junction (which leads to minimize the
buffet risk)

2. Minimize block fuel at a specific flight
path (which leads to cruise drag reduction
and wing box weight reduction)

Constraints.
1. Thickness of the wing geometry
2. Height of the front spar
3. Structural strength
4. Flutter speed
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Fig. 14(a) shows the relationship between the
suction peak at the wing-pylon junction and the
cruise drag. Fig. 14(b) shows the relationship
between the wing box weight and the cruise
drag. Four typical geometries on the pareto front
are extracted and the difference from the base
geometry is shown in Table 1.

As is shown in Table 1, the candidate
optimum geometry reduced the block fuel up to
3.4% from the baseline. Moreover the total
optimization time is reduced to 10%.

4 Conclusion

To develop and improve high-fidelity aero-
structural MDO tool to be used in the aircraft
design, two techniques to improve the accuracy
and efficiency were introduced.

1. The flexible wing representation method
using the NURBS function was
introduced. From the airfoil shape
identification problem, it was proved that
the NURBS airfoil representation method
was much more accurate than the others
such as PARSEC and polynomial
function. It realized a rich design space
for the optimization.

2. The Variable-Fidelity method coupling
with the “Bridge Function” was
introduced for the acceleration of the
optimization. The three-dimensional
wing-body optimization problem proved
that our method was capable of reducing
time up to 90% without any lack of
accuracy.

As the next step, the wing-body MDO tool
was extended to the engine-airframe
integration. To overcome the geometrical
complexity of the optimization, an automatic
analysis model (CFD mesh and structural
FEM mesh) generator was developed and
applied. The optimization results proved that
our MDO tool could be used as a practical
design tool.
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Table 1. result of the extracted geometries

Drag(cts) weight(kg) Block Fuel(%)
A -9 60.92 -3.4
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Figure 14. the optimization result of the engine-airframe
integration problem


