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Abstract

The prediction of aeroelastic effects is one of
the key problems during the design process of
an aircraft. One challenging aspect of this goal
is to compute space and time-accurate fluid
and structural interactions. In the partitioned
coupling approach, well-established CFD and
CSD codes are used and integrated in a flexible
software environment.

One main focus of the present work is on
the state and load transfer over nonconform-
ing grids on the coupling interface. To fulfill
conservation in the overall solution process, a
weak formulation of the continuity conditions
on the common interface based on a varia-
tional formulation of the scalar energy func-
tional is used and Lagrange multipliers are in-
troduced. Using Galerkin’s method leads to a
transfer scheme, which minimizes the L2 error
norm. An extended transfer approach, which
minimizes the more general Sobolev norm will
be discussed and applied to aeroelastic prob-
lems and further the use of dual-Lagrange mul-
tipliers will be presented. To solve the coupled
system in a partitioned way, iterative stag-
gered as well as simple staggered time inte-
gration schemes will be introduced.

Numerical results obtained from simula-
tion of an oscillating one-dimensional plate in
transonic flow and a three-dimensional wing
example will be presented to demonstrate the

applicability and performance of the concepts
and to compare the properties of the different
coupling techniques and transfer methods.

1 Introduction

Fluid-structure interaction gains importance
for aerospace engineering applications where
the target is to reach the design limits by care-
ful analyses.

One common method for the simulation of
aeroelastic effects in the time domain is to take
a well-established CFD (Computational Fluid
Dynamics) and CSD (Computational Struc-
tural Dynamics) code and to integrate them
in a flexible software environment. This con-
cept is assisted by increasing performance of
modern computer systems.

In this partitioned solution approach, one
key aspect of the overall solution process is
concerned with stability and accuracy of the
time integration. Another aspect in compu-
tational aeroelasticity is the transfer of loads
and states between in general non-matching
meshes. The use of the standard interpolation
method, which is in general robust, does not
fulfill the conservation law a priori.

In this paper a more general concept for
treating fluid and structural coupling is em-
ployed, which is based on a variational for-
mulation of the scalar energy functional of
the full system utilizing Hamilton’s principle.
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This formulation leads to an interface prob-
lem which fulfills conservation of the load and
state variables.

2 Variational Approach for Fluid and
Structural Interaction

The use of variational principles in structural
mechanics is a favorable approach to describe
such continuum systems. Hamilton’s principle
is a more general law including additionally
the dynamics of a given system, which utilizes
an expression for the scalar energy as a func-
tional, see e.g. [1].

Extensive work has been done to describe a
general fluid domain by an appropriate varia-
tional principle in the past, see e.g [2]-[6]. Dif-
ficulties arise due to the dissipation term in
the Navier-Stokes equation, due to the com-
pressibility of the fluid, and due to the miss-
ing prescription of the system configuration at
the final state. In the present work we for-
bear from deriving a lengthly calculation but
we state that a Hamilton’s formalism exists for
a single fluid domain including viscous effects
and compressibility.

Assuming a given functional principles for
a single fluid and solid, the variational func-
tional of the whole coupled system can be di-
vided into an interior functional and a connec-
tivity potential [7]:

Π =
∑

n(Πn(φ(n)) − Πcn), n = s, f , (1)

where φ contains all state variables of the sys-
tem, Πn is the scalar energy functional of one
subsystem, and Πcn denotes the connectivity
potential to a connectivity frame (three-field
approach) using localized Lagrange multipliers
as in [7], [8]. Forgoing the use of an interme-
diate connectivity frame (two-field approach),
the functional leads to:

Π =
∑

n Πn(φ(n)) − Πfs, n = s, f , (2)

with the connectivity potential being:

Πsf =
∫

Γsf
λ

(sf)
i

(
φ

(s)
i − φ

(f)
i

)
dΓsf . (3)

The state vector φi is set to the displacements
ui and thus the energy of the interface in terms
of Hamilton’s principle could be written as
(neglecting viscous stresses):

Esf =
∫ t2

t1

[∫
Γsf

(
u(f)p(f) − u(s)p(s)

)
dΓsf

]
dt, (4)

where p denotes the pressure. Therefore, it can
be claimed that the energy in a coupled sys-
tem due to a partitioned analysis neither in-
creases nor decreases. Furthermore, the physi-
cal meaning of the Lagrange multipliers should
be clear.

Using elementwise interpolations of the
structural state variables (usually finite ele-
ment methods) and of the fluid unknowns
(e.g. finite volume method) as well as for
the Lagrange multipliers, the variation δΠ =∑

n δΠn(φ(n))− δΠfs = 0 leads to a set of dis-
cretized equations:

M (s)ü(s) + F
(s)
i − F

(s)
e + M

(s)
λuλ(sf) = 0 (5)

M (f)Ẇ (f) + R(f)(W (f)) = 0 (6)

M
(s) T
λu u(s) − M

(f) T
λu u(f) = 0 (7)

Eqn. (5) represents the structural subsystem,
where M (s) denotes the mass matrix of the
structural system and F

(s)
e and F

(s)
i are

the vector of prescribed and internal forces,
respectively. The last term, M

(s)
λuλ(sf), arises

due to the use of Lagrange multipliers and
acts as a physical flux (traction) on the struc-
ture. Eqn. (6) stands for the fluid subsystem

and the conservative flow variables W
(f)
i =

[ρ(f), ρ(f)U
(f)
1 , ρ(f)U

(f)
2 , ρ(f)U

(f)
3 , ρ(f)E(f)]T at

each fluid (grid) point depends on the inter-
face displacements u(f). Therefore, the fluid
subsystem can be treated as a continuous
system, in which a traction field (pressure
and viscous stress) acts on an interface and
thus the interface distorts, see also [8]. Hence,
the vector W (f) contains implicitly the term
M

(f)
λu λ(sf). The vector R(f) stands for the

complete spatial discretization or residual.
The interface problem of the coupled system
is expressed with Eqn. (7) and the coupling
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Figure 1: Time integration scheme for the cou-
pled system

matrices hold:

M
(i)
λu =

∫
Γsf

N
(i)
u NT

λ dΓsf for i = s, f . (8)

This approach is common in fluid and struc-
tural interaction problems, and the unknowns
are reduced to the field variables, the interface
state variables and one discrete Lagrange mul-
tiplier. The whole system of equations con-
sisting of (5), (6) and (7) can be solved by an
iterative process for every time step, see [9].

3 Time Integration and Equilibrium
Iteration

Due to the use of separate analysis codes for
the fluid and structural subsystem, an itera-
tive scheme must be used. The classical ap-
proach achieving equilibrium in the two sub-
systems and in every time-step is the Dirichlet-
Neumann iteration, utilizing a relaxation be-
tween an outdated and an updated state:

u
(s)
k+1 = ωû

(s)
k+1 + (1 − ω)u

(s)
k on Γsf , (9)

where û
(s)
k+1 results from a Dirichlet-Neumann

step and ω denotes the relaxation parame-
ter, which is frequently set to 0.75-0.85. In
the above equation a subscript denoting the
time step is omitted. An automatic evaluation
of ω during each iteration can be performed
through an extension of the gradient method.

With this equilibrium iteration, the time
integration can be done in the following way,
see Fig. 1; step 1 predicts the interface state
of the structure representation and transfers it
to the fluid, followed by the fluid analysis for
t+∆t including a grid deformation mechanism
in step 2, and the load transfer in step 3 be-
fore the structural analysis for t+∆t in step 4.
Appending a k-multiple sequence of step 5 to
8 with relaxation, the equilibrium state of the
interface can be achieved and the overall order
of time accuracy is according to the minimal
one reached in the subsystems. Performing
only step 1 to 4 (k = 0) with ω = 1 results
in the so-called loose coupling or simple stag-
gered approach. Regardless of the time accu-
racy implemented in the analysis codes of the
subsystems, this scheme is usually first order
time accurate, due to the incomplete fulfill-
ment of the continuity conditions. The scheme
can be improved by an appropriate predictor
ũ

(s)
n+1 in step 1 and one natural choice is, [10]:

ũ
(s)
n+1 = u

(s)
n + ∆tu̇

(s)
n + ∆t2

2
ü

(s)
n on Γsf . (10)

4 Transfer of Loads and Displacements

As seen in the section above, a weak formula-
tion of the state transfer, Eqn. (7), arises due
to the variation of the scalar energy functional
of the system. The Lagrange multipliers are
discretized along the interface independent of
the interpolation of the state variables on the
interface surface. One basic limitation of the
discretization of the multipliers lies in choos-
ing the number of degrees of freedom of the
multipliers, which may not exceed the number
of degrees of freedom of any state variable on
the interface, since otherwise the system would
be overestimated [11].

The freedom of choice opens a broad
range of possibilities for the multipliers using
with separate algorithms for each subdomain,
which are discretized in a separate way.
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(a) fluid mesh (b) structural mesh (c) merged mesh with
fluid reference

(d) merged mesh with
structural reference

Figure 2: Construction of a merged mesh

4.1 Load Transfer

The load transfer should be constructed trans-
posed to the transfer of the interface states to
ensure the equilibrium of energy at every time
step. The variation process of the scalar en-
ergy at the interface given in Eqn. (4) yields
after discretization:

δu(s) T f (s) = δu(f) T f (f) on Γsf , (11)

where f (i) denotes the discrete nodal forces at
the interface surface. Given for instance a cou-
pled system with the state transfer according
to eqn. (7), the transposed load transfer yields:

f (s) = M
(s)
λu [M

(f)
λu ]−1f (f). (12)

4.2 State Transfer Schemes

In the following section some popular transfer
schemes are introduced, which are often used
in fluid-structure interaction problems. Most
of the schemes differ only in the choice and on
the location of the Lagrange multipliers.

4.2.1 Conservative Interpolation

Taking Dirac delta function on the fluid inter-
face representation for the Lagrange multipli-
ers, the integral vanishes and the scheme re-
duces to the evaluation of the structural shape
functions at the fluid nodes. This transfer pro-
cedure is similar to that presented in [12] and
is often referred to as conservative interpola-
tion or node projection scheme, since the fluid
nodes on the interface are mapped to the clos-
est structural interface element.

4.2.2 Quadrature-based Integration

Unfortunately, the conservative interpolation
could lead to unphysical effects and an im-
provement is the use of the fluid shape func-
tions for the Lagrange multipliers Nλ = N

(f)
u

(Galerkin’s method). This choice is advanta-

geous, since the matrix M
(f)
λu is positive def-

inite and thus regular. The transposed load
transfer according to eqn. (12) and neglecting
viscous stresses is evaluated by:

f (s) = M̄
(sf)

[M̄
(ff)

]−1f (f) = M̄
(sf)

p(f). (13)

This scheme is equivalent to the scheme pro-
posed in [13] and also minimize the L2-norm of
the jump of the pressure field across the inter-
face. The main difficulties lies in the compu-

tation of the matrix M̄
(sf)

, which can be done
by the aid of quadrature points and there-
fore this scheme is frequently referred to as
quadrature-projection scheme. The numerical
integration can be done on the fluid or on the
structural representation of the interface. Ac-
curacy could be lost due to the violation of
regularity, which is assumed by the quadra-
ture rule and due to fact that some elements
do not receive any quadrature points depend-
ing on the mesh size of the fluid and struc-
tural mesh. This problem can be solved by
introducing more quadrature points or by an
adaptive mesh refinement.

In Fig. 3, a sequence of refinement lev-
els of the integration mesh of a simple three-
dimensional configuration is shown, where the
integration mesh is based on the structural
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(a) Level 2 (b) Level 4 (c) Level 6 (d) Level 8

Figure 3: Adaptive quadtree-based refinement of the integration mesh

mesh depicted in Fig. 2b and the fluid mesh is
shown in Fig. 2a. The adaptive mesh refine-
ment is based on a hierarchical quadtree data
structure of the mesh and is a simple and ro-
bust method to increase the accuracy for ar-
bitrary meshes.

Another possibility to increase the accu-
racy of a transfer scheme is the utilization
of an integration mesh which is appropriately
constructed from the fluid and structural rep-
resentation of the interface, Fig. 2. From
Fig. 2c and 2d it can be seen that two possi-
bilities of such merged mesh exist in a three-
dimensional space. Both have the same combi-
national structure but different geometric re-
alization. Using such an integration mesh,
the regularity assumption of the quadrature
rule remains valid and the main task of the
integration procedure turns to the automatic
build-up of such mesh (which is a non-trivial
problem in 3d) and to the robust projection of
quadrature points to the other representations
of the interface.

While both methods, adaptive mesh refine-
ment and merged mesh, increase the accuracy
considerably, the former one is more general
and can be used for almost every configura-
tion. The definition of a merge mesh depends
noticeably on the used meshes.

4.2.3 Dual-Lagrange Multiplier

In the above scheme the matrix M
(f)
λu from

Eqn. 7) has to be inverted to get u(f). Al-
though the matrix is sparse and positive def-
inite, this inversion process is often the bot-
tle neck of the transfer schemes in systems

with many degree of freedoms. By choos-
ing an appropriate space for the Lagrange
multipliers depending on the shape functions
of the fluid interface representation this ma-
trix can be diagonalized. This is the idea
of the so-called dual-Lagrange multipliers in-
troduced by Wohlmuth in [14, 15]. Consider
for instance an one-dimensional problem with
fluid elementwise shape functions on the in-

terface being Ñ
(f) T

u = [1− ξ, ξ], the appropri-
ate dual-Lagrange multipliers for an element

yields Ñ
T

λ = [−3ξ + 2, 3ξ − 1]. Correspond-
ing dual-Lagrange multipliers can be found for
two-dimensional elements and with higher or-
ders.

4.2.4 Minimizing the Sobolev-norm

The use of Galerkin’s method to construct a
transfer scheme minimizes the L2 norm of the
jump of the displacements across the interface,
which is equivalent to the Sobolev-norm H0.
In [16] a transfer scheme was proposed, which
minimizes the Sobolev-norm H1:

∂

„R
Γsf

P1
n=0|αnDn(u(f)−u(s))|2 dΓsf

« 1
2

∂û
(f)
i

= 0 (14)

where û
(f)
i are the discrete nodal values of the

fluid displacements and Dn operates to a func-
tion to get the nth derivatives in space. Af-
ter the discretization process the minimization
leads to:(

M̄
(ff) T

+ αK̄
(ff) T

)
u(f) =(

M̄
(sf) T

+ αK̄
(sf) T

)
u(s),

(15)
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with K̄
(ij)

being the stiffness matrices evalu-
ated in the same way as above. The trans-
posed scheme (transfer of tractions) is also
conservative and for integration, the methods
described above (adaptive mesh refinement,
merged meshes), may be used here too.

5 Application to Aeroelasticity

In the following, some examples will be given
to illustrate the applicability of the presented
concepts. The first application is the panel
flutter problem; i.e. a simply supported panel
over which a compressible inviscid fluid flows.
The panel is modeled using the nonlinear von
Karman-plate theory with constant plate be-
havior in spanwise direction [17]. Under de-
fined conditions the panel exhibits the flutter
phenomena.

As a three-dimensional application the
well-published AGARD wing 445.6 is pre-
sented. If accurately simulated, this wing
shows a damped oscillation, otherwise flutter
with increasing amplitude can be observed

Furthermore, the fluid flow solver uses a fi-
nite volume scheme and solves the Euler equa-
tion. For a description of the fluid flow solver
see [18]. The time integration within the fluid
solver is done by an implicit dual-time step-
ping approach. A deformation module trans-
fers a surface grid deformation to a fluid flow
domain. The geometric conservation law is
considered within the solver module.

5.1 Panel Flutter Problems

For an one-dimensional Karman-plate (con-
stant plate behavior in spanwise direction) the
structural functional can be written as:

Πs(w) =
∫ t2

t1

[∫ l

0
1
2

(
Dθ2

,x + κGh(w,x − θ)2+

N0+Nx

2
w2

,x

)
dx −

∫ l

0
1
2

(
ρshw2

,t + ρsh3

12
θ2

,t

)
dx

−
∫ l

0
wp̄ dx

]
dt,

(16)

where θ = w,x is the rotation of the plate sec-
tion, D and G are the plate stiffness and shear
module, respectively. The nonlinearities occur
due to Nx, which depends on w,x.

In the present contribution the fluid in-
terface consists of 445 nodes while the struc-
tural discretization may have 10, 20, 50 or
100 elements. The parameters for the fluid
flow were: Ma∞ = 1, p

(f)
∞ = 75867 N/m2,

ρ
(f)
∞ = 1.225 kg/m3, i.e. transonic flutter

case. The structural parameters were set to:
ρ(s) = 2700 kg/m3, Young’s module E = 7.1 ·
1010 N/m2, panel thickness h = 0.004537 m.
The nonlinear structural equations are solved
utilizing a Newton-Raphson iteration and time
integration is performed using a Newmark
scheme. The panel is initially perturbed by an
overpressure on the underneath of the panel.

5.1.1 Influence of Transfer Schemes

Fig. 4a shows the comparison of the mid-
point deflection of the panel over the time
using the quadrature-based transfer scheme,
whereby the integration is performed on the
fine fluid mesh using an overall time step of
∆t = 0.0005 s and an iterative staggered pro-
cedure. As one can observe even for a very
coarse mesh for the structure a flutter behavior
of the panel is obtained. These results fit very
well with results published in [17]. The main
difference using a coarser structural mesh lies
in the obtained flutter frequency which de-
crease with coarser meshes.

Contrary to the quadrature-based trans-
fer, one could observe that the standard in-
terpolation, which is quite often used in fluid-
structure interaction fails already with using
50 structure elements for the panel, Fig. 4b.
The solution obtained with 100 elements is ob-
tained as above, using the quadrature-based
transfer. With 50 structural elements the solu-
tion losts its stability after some cycles and no
flutter could be seen, if 20 structural elements
were used. This is due to the properties that
such schemes do not guarantee a conservative
transfer and that sharp gradients (shocks) are
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(a) quadrature-based transfer (b) standard (noncons.) Interpolation

(c) dual-Lagrange based (d) Sobolev-norm based

Figure 4: Time history of the panel midpoint deflection using different transfer schemes

not captured accurately.
The time history of the midpoint deflec-

tion using dual-Lagrange multipliers shows ex-
actly the same behavior as for the quadrature-
based transfer scheme, Fig. 4c, i.e. both curves
labeled with 100 element show no difference.
The advantage of the dual-Lagrange multipli-
ers lies in the computational costs inverting
the matrix M

(f)
λu . Therefore this technique is

favorable for transfer schemes.
In Fig. 4d the midpoint deflection of the

panel is shown using the Sobolev-norm based
transfer scheme, whereby the integration is
performed on a merged mesh. For 100 struc-
tural elements almost the same time history
as for the transfer using the quadrature points
or dual-Lagrange multiplier could be identi-
fied and for 20 structural elements no flutter
of the panel occurs. For α, a value of α = 0.3
is used. To express more general statements
using Sobolev based transfer more parameter
studies need to be performed.

5.1.2 Influence of the Time-Integration
Scheme

In the following, some detailed comments on
the influence of the overall time-integration
procedure are given. In Fig. 5 the midpoint
deflection of the panel using iterative and sim-
ple (with and without predictor) staggered
schemes is depicted. The present calculations
were run with the dual-Lagrangian based state
and load transfer with the fluid mesh being
the same as described above and a structural
discretization of 100 elements. As mentioned
in the section earlier, the studied panel flut-
ter case is on the stability border as published
in [17]. Therefore, the first chosen time step
was set to ∆t = 0.0001 s, Fig. 5a, and the re-
sults obtained by the simple staggered scheme
without a predictor remain fairly enough. Uti-
lizing the second order predictor of Eqn. (10)
the simple staggered time-integration method
shows no difference to the iterative staggered
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(a) Time Step: ∆t = 0.0001 s (b) Time Step: ∆t = 0.0005 s

(c) Time Step: ∆t = 0.001 s (d) Time Step: ∆t = 0.002 s

Figure 5: Time history of the panel midpoint deflection using different time-integration schemes

scheme.
Changing the time step size to ∆t =

0.0005 s, Fig. 5b, the predicted flutter fre-
quency of the simple staggered approach with-
out predictor differs noticeably from that one
obtained by the iterative method. Using a sec-
ond order predictor, the time history of the
midpoint deflection is closer to the curve of the
iterative staggered schemes but becomes un-
stable after some cycles, contrary to the stag-
gered method without predictor.

Using a time step of ∆t = 0.001 s, Fig. 5c,
the same statements can be given and the loss
of stability utilizing a predictor appears ear-
lier. Increase the time step size further, the
staggered scheme without predictor will not
show the panel flutter phenomenon, Fig. 5d.

5.2 Flutter Analysis of the AGARD
Wing 445.6

To demonstrate the applicability of the pre-
sented schemes to three-dimeinsional prob-
lems, the flutter analysis of the AGARD wing
445.6, see [19], is considered. The wing has a
45 deg quarter-chord sweep angle, a panel as-
pect ratio of 1.65, a taper ratio of 0.66 and
consists of a NACA 65A004 airfoil section.

The analysis of this wing is widely pub-
lished in literature and here the 2.5 ft weak-

Figure 6: Fluid mesh of the AGARD wing
445.6
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Figure 7: Time history of the rear wing tip
deflection using conservative and standard in-
terpolation

end model number 3 is used. A part of the
fluid mesh is shown in Fig. 6 and the structure
is modeled using 20x20 shell elements. The
structural properties were designed to the first
five eigenfrequencies of the wing, see [19] and
the first eigenmode is a bending mode with
9.83 Hz. The fluid mesh consists of 334861
tetrahedrals and 64943 nodes and the fluid in-
terface holds 30666 elements and 15380 nodes.

Like the panel flutter problem, the fluid
flow is computed using a finite volume scheme
solving the Euler equation and advancing for-
ward in time is done by an implicit dual-
time stepping scheme. The structural equa-
tions are solved by a commercial finite element
code using linear shell theory and the New-
mark time integration scheme. The freestream
conditions of the fluid flow are chosen to be:
Ma∞ = 0.901, p

(f)
∞ = 5745, 67 N/m2, and

ρ
(f)
∞ = 0.099477 kg/m3. The structural pa-

rameters are set to: ρ(s) = 421 kg/m3, E1 =
3.5455 · 109 N/m2, E2 = 4.162 · 108 N/m2,
G = 4.119 · 108 N/m2. The thickness of the
shell elements are modeled using the NACA
65A004 airfoil profile. The calculations were
run with an overall time step of ∆t = 0.001 s
and the wing was perturbed initially with the
first bending mode.

In Fig. 7 the time history of the deflection
of the rear wing tip is depicted and both cal-
culations were run with an iterative time in-

Figure 8: Time history of the rear wing
tip deflection using different time integration
schemes

tegration scheme. The transfer scheme of the
first calculation is the conservative interpola-
tion, which is sufficient enough due to the fine
fluid mesh. This behavior of the wing fits very
well with computations published in [20]. The
use of the quadrature based transfer scheme or
the utilization of the dual-Lagrangian’s should
hold principally the same history due to the
fine fluid mesh compared to the structural
mesh. Conservative interpolation was cho-
sen here because of its robustness and effi-
ciency. The second calculation uses the non-
conservative standard interpolation and as one
can observe the difference between both plots
is not negligible. A snapshot of the deflected
wing at the time t = 0.075 s is shown in Fig. 9.

The influence of the time-integration
scheme is depicted in Fig 8 using the con-
servative interpolation for the load and state
transfer. The curve representing the iterative
staggered procedure shows a damped oscilla-
tion of the initially perturbed wing while the
wing simulated with the aid of a simple stag-
gered method shows an increasing amplitude
of the wing flutter when using a time step of
∆t = 0.001 s. Choosing a smaller time step
of ∆t = 0.0002 s leads to a similar behavior
as for the iterative scheme but the computa-
tional costs are almost identical. This results
also fits very well with those published in [20].
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Figure 9: Pressure field and structural deflection of the AGARD wing at t = 0.075 s

6 SUMMARY AND CONCLUSION

In the present paper a variational formulation
based on Hamilton’s principle is adopted for
fluid and structural coupled problems. Us-
ing the two-field approach the interface prob-
lem occurs as a weak formulation of the in-
terface condition. Different transfer schemes
were employed, which share the property of
load conservation across the interface of non-
matching meshes. For the time-integration of
the overall system, iterative and simple stag-
gered procedure were employed. Applied to
the panel flutter problem, different behavior
of the results could be observed depending on
which transfer and time-integration method
was used. The use of dual-Lagrangians is
promissing since the computational costs are
less than for the generic quadrature based
transfer scheme, while the results are identical.
Utilizing the concept of dual-Lagrangians for
three-dimensional applications is still demand-
ing and one has to find appropriate shape
functions. Furthermore, the importance of a

conservative load transfer could be shown for
the panel flutter problem as well as for the
three-dimensional wing example. Simple stag-
gered procedures with a second order predic-
tor tend to be unstable while those schemes
without a predictor compute different panel
flutter frequencies. Thus, it could be shown
here, that for a precise prediction of the panel
flutter problem an accurate transfer as well as
a proper time integration scheme need to be
used.

For the three-dimensional wing structure,
an undamped oscillation is obtained while for
the iterative staggered scheme a flutter with
decreasing amplitude appears.
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