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Abstract  

In a modern Full-Authority Fly-By-Wire Flight 
Control System (FBW/FCS), the air data (static 
pressure, Mach number, and angles of attack 
and sideslip) are critical items for the safety of 
flight operations. As a matter of fact, air data  
are used for gain scheduling in the control laws 
and for the envelope protection. Such data have 
to be obtained by specific computation 
algorithms on the basis of local airflow 
measurements performed by redundant air data 
probes. The algorithms also have to manage the 
redundancy in order to detect possible failures 
and to provide consolidated outputs.  
This paper describes two different approaches 
to the development of air data computation 
algorithms. The first one, widely illustrated in 
[1], uses polynomial calibration functions tuned 
on wind tunnel test data relevant to the new jet 
trainer Aermacchi M-346. The second approach 
is based on neural networks trained in two 
ways: using the same wind tunnel data and 
using preliminary flight test data. 
The paper also illustrates the monitoring and 
voting algorithms developed in order to identify 
possible probe failures and to provide a voted 
value for each air data parameter. 
Finally, the results of the different approaches 
are presented by comparisons with the wind 
tunnel data and preliminary flight test data. 

1 Introduction  
The air data system consists of all the 

elements which allow the static pressure (Psa), 
the Mach number (M∞) and the angles of attack 
(α) and sideslip (β) to be evaluated on the basis 
of local airflow measurements provided by 

external air data probes. Such evaluation is 
performed by dedicated algorithms, 
implemented either in the Flight Control 
Computers (FCCs) or in specific processing 
units. In modern FBW/FCS the need to satisfy 
the safety requirements [2], [3] imposes an 
adequate redundancy of the components, as well 
as the definition of robust logics for the failure 
management. 

The air data system studied in this paper 
refers to the architecture used in the new jet 
trainer Aermacchi M-346, based on a pseudo-
quadruplex redundancy, which employs four 
self-aligning air data probes named Integrated 
Multi Function Probe (IMFP) [4] symmetrically 
installed on the fuselage, two starboard and two 
port (Fig. 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Probe installation on Aermacchi M-346. 

Each probe provides [1] three outputs: the 
local flow angle λi measured by a rotary 
transducer (where subscript i= 1,…,4 refers to 
the probe number); the frontal pressure Pfront i  
provided by a frontal slot aligned with the local 
flow direction and the slot pressure Pslot i. The 
last is obtained as the average of the pressures 
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measured by two slots at 90° from the local flow 
direction. 

The air data algorithms have to solve the 
problem illustrated in Fig. 2. The air data 
parameters must be determined on the basis of 
the twelve signals provided by the four probes 
(four local flow angles and eight local 
pressures), assuring a correct redundancy 
management by identifying possible failures and 
by providing an adequate system 
reconfiguration. In addition, the algorithms have 
to manage situations in which one or more 
probes do not provide reliable measurements 
since they are in the wake of the fuselage. 
Finally, the algorithms have to take into account 
(Fig. 2) both aircraft manoeuvres and 
configuration effects (landing gear extraction, 
position of the flaps, etc). 

In the paper two different approaches to the 
air data computation are presented: one based 
on polynomial calibration functions and another 
one based on neural networks. The latter 
approach is by now limited to the determination 
of static pressure and Mach number. The 
monitoring and voting algorithms, that are the 
same for the two approaches, are also presented. 
Finally, the results of the different approaches 
are presented by comparisons with wind tunnel 
data and preliminary flight test data. 

 
 
 
 
 
 
 

Fig. 2. Inputs and outputs of the air data algorithms. 

2  Air data computation using polynomial 
function 

The air data procedure is characterized by 
two sequential processes: computation of angles 
and computation of pressures [1]. The first 
process (Fig. 3) computes six values of α and 
six values of β by using the four local flow 
angles measured by the IMFP probes. 

With reference to a condition of rectilinear 
motion and to a fixed aircraft configuration, the 
i-th local flow angle is a function of the actual 
values of the α and β angles and of the Mach 
number. Considering two generic probes (i, j), it 
is then possible to define the following 
functions: 

( )∞= Mf ,,ii βαλ  (1) 

( )∞= Mf ,,jj βαλ  (2) 

By using the consolidated Mach number 
( )M  provided by the procedure at the previous 
time step, the system of eq.s (1) and (2) allows 
the calculation of one estimate of the angles of 
attack and sideslip. The six possible couples (λi, 
λj) allow six different couples (αij, βij) to be 
estimated. The six values of angles of attack and 
sideslip are then forwarded to the monitoring 
and voting algorithms which identify possible 
failures and provide a consolidated value (α , β ) 
for both the parameters. 

The second process calculates four couples 
(Psa i, M∞ i) using the local pressures measured 
by the IMFP probes. The pressure 
measurements of the i-th probe depend on the 
actual values of the α and β angles, of the Mach 
number and of the static pressure: 

( ) ( )[ ]∞∞+= MCpMPP frontsafront ,,21 i
2

i βαγ  (3) 

( ) ( )[ ]∞∞+= MCpMPP slotsaslot ,,21 i
2

i βαγ  (4) 

where γ is the ratio of specific heats of air and 
Cpfront i and Cpslot i are the frontal and slot 
pressure coefficient of the i–th probe. If such 
coefficients are determined by using α  and β  
from the first process and M  from the previous 
time step of the procedure, the i-th value Psa and 
the i-th value M∞ are determined by solving the 
system the system of eq.s (3) and (4). 

The fi, Cpfront i and Cpslot i functions that 
appear in eq.s (1), (2), (3) and (4) have been 
determined in the form of look-up-tables by 
means of wind tunnel tests. The storing of such 
look-up-tables in the FCCs memory is a 
challenging problem due to the large amount of 
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data associated to them. To overcome this 
problem, the look-up-tables have been 
approximated by means of third or fourth degree 
polynomial functions whose coefficients have 
been determined by a least squares technique.  

Before the voting and monitoring phase, 
Mach number and static pressure are corrected 
to compensate for surface deflection effects, 
such as leading edge flap (δLE) and trailing edge 
flap (δTE), in order to consider the different 
aircraft configurations. 

Concerning the maneuver effects, Fig. 3 
shows two corrections: the first one directly acts 
on the local flow angles measured by the probes 
(roll rate P effects), the second one evaluates the 
angles of attack and sideslip (α , β )C.G. at the 
aircraft’s centre of gravity (pitch rate Q and yaw 
rate R effects). A detailed discussion about all 
the computation algorithms can be found in [1]. 
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Fig. 3. Flow diagram of the air data procedure. 

3  Air data computation using neural 
networks 

The alternative approach [5] based on 
neural networks herein presented is only 
relevant to the computation of Psa and M∞, while 
the computation of the angles α and β is, at 
present, the same of the previous section. 

The computation of Psa and M∞ is 
performed by two independent neural networks 
for each probe (Fig. 4). The two networks have 
a similar structure. The network relevant to the 
estimation of M∞ has three input signals and 
three layers of neurons: an input layer and a 
hidden layer of 20 neurons each, and an output 
layer of a single neuron, as shown in Fig. 4. 

Such an architecture needs 521 parameters to be 
stored in FCCs, for each probe. The output 
neuron provides the estimate of the Mach 
number, while the three input signals are: the 
angles α and β given by the angles computation, 
and the ratio Pfront i / Pslot i of the i-th probe. This 
pressure ratio provides important information 
because it highly depends on the Mach number 
and less on the angles of attack and sideslip. For 
example, the pressure ratio related to probe 2, is 
plotted in Fig. 5 as a function of both α and β 
for various Mach number values. 

The network relevant to the estimation of 
Psa has the same architecture, except for the 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Mach and static pressure network (i-th probe). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Pressure ratio vs α, β and Mach (probe 2). 

input data that are, in this case: the angles α and 
β given by the angles computation, and the 
pressures Pfront i and Pslot i measured by the i-th 
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probe. The static pressure network needs 541 
parameters to be stored in FCCs for each probe. 

The eight networks (two for each probe) 
need a total of (521+541) x 4 = 4248 parameters 
to be stored in the FCCs. This number of 
parameters is to be compared with the about 
1200 coefficients needed for the computation of 
pressures by using the polynomial functions [1]. 

The neural networks were trained in two 
ways: by using wind tunnel test data relevant to 
the new jet trainer Aermacchi M-346 and by 
using preliminary flight test data. 

The training based on flight test data was 
carried out in order to verify the ability of the 
neural networks to be tuned on actual flight 
data, and to determine the accuracy that can be 
achieved. 

The training based on wind tunnel data was 
carried out in order to compare the performance 
of the neural networks with the performance of 
the method based on polynomial functions 
which, at present, has not yet been tuned on 
flight test data. 

The results of such analyses are reported in 
§ 5. 

4  Air data failure management 
The algorithms for failure management, are 

the same for the both the polynomial functions 
and the neural network approaches presented in 
§ 2 and § 3. 

4.1 Failure detection for angles computation 

As mentioned in § 2, the procedure 
estimates six different couples (αij, βij) on the 
basis of the six possible couples of local flow 
angles (λi, λj) measured by the four probes. 

It is worst noting that a failure in the 
measurement of one local flow angle will affect 
three couples (αij, βij), so it is not possible to 
adopt a standard monitoring algorithm to 
identify such a failure. 

To solve the problem of detecting the first 
failure, the six (αij, βij) estimates are grouped 
into four groups (Tab. 1). The identification 
number ID of the generic group refers to the 
probe whose local flow angle measurement is 

not used in the evaluation of the αij and βij 
included in the group itself. For example, the 
local flow angle λ1 does not appear in “Group 1” 
(see Tab. 1) that contains the estimates of the 
angles of attack and sideslip related to the 
couples (λ2, λ3), (λ2, λ4), and (λ3, λ4). 

Two standard “cross-channel” monitoring 
algorithms are then applied in parallel to each 
group: one acts on the values of the angle of 
attack, while the other one operates on the 
values of the angle of sideslip. 

 
Group 

ID 
angle of attack 

estimates 
angle of sideslip 

estimates 
couples of local 

flow angles 
1 α23, α24, α34 β23, β24, β34 (λ2,λ3)(λ2,λ4)(λ3,λ4) 
2 α13, α14, α34 β13, β14, β34 (λ1,λ3)(λ1,λ4)(λ3,λ4) 

3 α12, α14, α24 β12, β14, β24 (λ1,λ2)(λ1,λ4)(λ2,λ4) 
4 α12, α13, α23

 β12, β13, β23
 (λ1,λ2)(λ1,λ3)(λ2,λ3) 

Tab. 1. Groups and associated local flow angles 

For example, concerning the angle of 
attack (Fig. 6a), the algorithm orders the three 
values αij of each group and it verifies if the 
differences between each extreme value and the 
middle value are below a preset monitoring 
threshold. The crossover of the threshold points 
out the occurrence of an angle failure. Such a 
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Fig. 6. Monitoring algorithms for the identification of the 

first angle failure. 

crossover should occur in all groups, except in 
the one not correlated with the failed probe. Fig. 
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6b shows the case in which a failure occurs in 
the measurement of the local flow angle of 
probe 1. Some non-standard situations could 
occur, in which only one or two groups cross 
the threshold. This should happen during the 
transient after a failure. If such a situation 
continues for a long period of time, due to 
signal noise, to probe dynamics or to the value 
chosen for the threshold, some further tuning of 
the algorithms parameters can be necessary. 

Once the first failure occurred, only three 
(αij, βij) estimates are still available (see Tab. 2). 
In this case, the same standard “cross-channel” 
monitoring algorithms are applied to such 
estimates in order to detect a possible further 
failure. However, in this case it is not possible 
to recognize which probe led to the second 
failure. As a consequence, a consolidated 
solution (α , β ) cannot be determined and the 
process for the computation of angles of attack 
and sideslip is no longer operative. 

 
available 
couples 

probe 1 
failure 

probe 2 
failure 

probe 3 
failure 

probe 4 
failure 

(λ1,λ2)   X X 
(λ1,λ3)  X  X 

(λ1,λ4)  X X  

(λ2,λ3) X
   X 

(λ2,λ4) X  X  
(λ3,λ4) X X   

Tab. 2. Remaining couples when one probe is failing. 

4.2 Failure detection for pressures 
computation  

Concerning the computation of Psa and M∞, 
the measurements of the local pressures of each 
probe allow one couple (Psa i, M∞ i) to be 
estimated. 

The procedure performs two standard 
monitoring algorithms in parallel: one acts on 
the four values of the static pressure, while the 
other one operates on the four values of the 
Mach number. A failure in the measurement of 
a local pressure is latched if the associated Psa i 
and M∞ i values do not pass at least one of the 
two controls.  

The monitoring algorithms calculate a 
reference value for the Mach number (Mach_m) 
and a reference value for the static pressure 

(Psa_m) as the average of the relative two 
middle estimates [6]. The algorithms evaluate 
then the differences between the four estimates 
of Mach (or Psa) and Mach_m (or Psa_m ) in 
order to verify if one of them is greater than an 
opportune threshold value th_Mach (or th_Psa). 

Once the first failure occurred, the 
procedure sets Mach_m  (or Psa_m ) equal to 
the middle of the three remaining values of 
Mach (or Psa). The monitoring is still possible 
after two pressure failures, so the system is two-
fail operative with respect to the pressure 
measurements of the probes. In this case the 
procedure verifies if the difference between the 
two remaining values is smaller than the preset 
threshold, otherwise the third pressure failure is 
declared, although it is not possible to know 
which probe led to such a failure. 

It must be pointed out that this monitoring 
algorithm is based on the assumption that two 
failures can not occur at the same time. For this 
reason, if more than one value crosses the 
threshold at the same time the pressures 
computation process is immediately declared 
not-operative. However, the probability of 
occurring of such an event is considered 
extremely remote. 

It is worth noting that the procedure to 
determine Psa and M∞ needs a previous 
determination of consolidated values of the 
angles of attack and sideslip (α , β ). In the case 
of loss of such information, due to failures on 
the measurement of the local flow angles, it is 
still possible to determine Psa and M∞ if 
alternative procedures, based for example on 
measurements from inertial sensors, are 
implemented in order to estimate α  and β . 

4.3 Voting algorithms 
The aim of the voting algorithms is to 

provide a consolidated value for each air data 
parameter. Such algorithms change depending 
on the number of the estimates that are 
available. If the monitoring identifies a failed 
probe, the voting algorithms do not consider the 
associated parameters. In the full-operative 
condition, the computation procedure calculates 
six values of the angle of attack, six values of 
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the angle of sideslip, four values of the Mach 
number, and four values of the static pressure. 
The generic voted value (Vvoted) is the average of 
the two middle ones. 

( ) 2IVIIIvoted VVV +=  for the six values of α and β; 

( ) 2IIIIIvoted VVV +=  for the four values of Psa and 

M∞;
 

(5) 

(6) 

where sub-scripts II, III and IV indicate the 
position order. The first failure on the angle 
measurements causes the loss of three couples 
(αij, βij) of the six available, while the first 
pressure failure determines the loss of only one 
couple (Psa i, M∞ i) of the four available. 
Once the first failure occurred in the 
measurement of a local pressure or local flow 
angle, the voted value is set to be equal to the 
middle of the three remaining estimates. 

The following figure shows the way of 
functioning of the voting algorithms acting on 
the four values of Mach (or Psa) in the full-
operative condition (t0<t<t1), in the failure 
condition (t>t5), and during the failure transition 
(t1<t<t5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Voting algorithms (full-operative and first failure). 

In the case of a second pressure failure, it 
is still possible to generate consolidated values 
for the Mach number and the static pressure 
because two couples (Psa i, M∞ i) are still 
available. The voted value of the Mach number 

(or Psa) is the average of the remaining 
estimates. 

Concerning the angles computation 
process, as mentioned in § 4.1, when the 
procedure detects a second angle failure, the 
process is no longer operative. 

5  Results 
All the air data algorithms have been 

implemented in the Matlab/Simulink® 
environment and extensively tested in order to 
assess their performance. For this purpose, such 
algorithms have been interfaced with a flight 
simulator which includes a model of IMFP 
probes based on the look-up-tables coming from 
wind-tunnel tests. The algorithms developed 
given good results in the entire flight envelope. 
As an example, Fig. 8 reports the absolute value 
of Mach number and static pressure errors 
provided by the two approaches (polynomial 
functions and neural networks) during a generic 
manoeuvre generated with the flight simulator. 
The errors refer to the voted values calculated, 
in both the approaches, by means of the voting 
algorithms described in § 4.3. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Errors in Mach number and static pressure 

The neural networks have also been trained 
on preliminary flight test data. The methodology 
used for training is that described in [7] and it 
allowed extracting from the original database an 
opportune subset able to represent the entire 
domain of the flight tests examined. Fig. 9 plots 
the absolute value of the static pressure errors of 
the neural networks trained on both flight data 
and the wind tunnel database and the same 
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errors of the polynomial functions whose 
coefficients are also tuned on the wind tunnel 
database. Such errors have been calculated with 
respect to the measurements of a nose boom 
installed on the aircraft during the flight tests, in 
order to calibrate the air data algorithms. The 
nose boom provided the total and static 
pressure, together with the angles of attack and 
sideslip. 

 
 
 
 
 
 
Fig. 9. Static pressure error during a flight test. 

Notice that the neural networks calibrated 
on the flight data reduce the maximum errors to 
200 Pa, instead of 800 Pa provided by the two 
algorithms which refer to the wind tunnel 
database. 

6  Conclusions 

A fault-tolerant air data computation  
procedure has been developed to estimate flight 
parameters. 

As far as the angles of attack and sideslip 
are concerned, each estimate of such parameters 
is based on the measurements of local flow 
angles by two probes. Six estimates are then 
available, corresponding to the six possible 
couples of the four probes. For this reason, 
particular monitoring and voting algorithms 
were developed to manage the failures on the 
measurements of the local flow angles. In this 
case the system is fail-operative / fail-safe. 

On the contrary, standard monitoring and 
voting algorithms have been used to manage the 
failures in the measurements of the local 
pressures. As a matter of fact, an estimate of the 
Mach  number and the static pressure can be 
obtained on the basis of the measurements of 
local pressures by a single probe. In this case 
the system is two-fail-operative / fail-safe. 

Two different algorithms were developed 
for the air data computation: one based on 
polynomial calibration functions and another 

based on neural networks. The first one was 
developed in collaboration with the societies 
Teleavio (now AleniaSIA) and Aermacchi (now 
AleniaAermacchi), within the framework of the 
program for the development of the Flight 
Control System of the new jet trainer Aermacchi 
M346. The second approach, that is by now 
limited to the determination of static pressure 
and Mach number, demonstrated to be an 
interesting alternative. 

The accuracy of the two methods are 
comparable when the neural networks are 
trained on the same data used to tune the 
polynomial calibration functions; the neural 
networks are even a little more accurate. The 
number of coefficients to be stored in the FCCs 
is larger for the neural networks (about four 
times). However, this can be no further true if 
other inputs are added (i.e. flap deflection, 
landing gear position, etc.), or if the flight 
envelope is enlarged with respect to the one 
considered in the present work; this is because 
in this case the number of polynomial 
coefficients can increase very much. In addition, 
the number of coefficients needed by the neural 
networks can be reduced by optimizing the 
architecture, for example by using multiple 
output networks 

On the other hand, the neural networks 
show dramatic advantages in terms of time to be 
spent to tune the system on new data, coming 
either from flight tests or from modifications of 
aircraft configuration. 
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