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Abstract

The analysis of rod crossply bending and
stability of rod systems in the presence of cracks
is the aim of this paper. Using Maxwell’s
theorem about the reciprocity of displacements
and the linear fracture mechanics methods for
research of mechanical properties of rod
systems in the presence of cracks there were
obtained the main equation of the rod cross-ply
bending, its common solution, the expression of
relation between the rod deflection and the
disturbing crossforce and transcendental
equation for determination of inferior boundary
of critical force of rod with a crack.

1 General Introduction

In earlier papers, dadic beam sysems with
cracks in some bars were considered [1-6].
Some problems of the dress drain sate and
drength were solved. In particular, an attempt to
andyze of FEue’'s problen for axidly-
compressng bar with a crack in some cross
sction [6251]. The low limit of Euler's
critical force was found. In dl this research the
concept of an dadgtic multicomponent hinge is
used to smulate the influence of a crack on a
bar compliance. On the bass of this concept,
there is the principle of the reciprocity works
(Maxwell's theorem). It dlows defining a
compliance of an equivaent dadic hinge which
influence on integad deformation of a bar
coincides accurately with influence of a crack.
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where d; is the compliance increment (additional
generdized displacement) caused by crack
influence a an action of the generdized force
Gj =1; K, Ky, Ky ae stressintensity factors

caused by an action of the generdized force Q ;
E is Jung's module and ? is Poisson's ratio; S is
area of crack surface.

If a bar sysem is linear, the superpostion
principle is gpplicable. Therefore, an influence
of severa force factors (the axia force, torsion,
and bending moments) to the bar deformations
may be conddered independently from each
other in the mgority of practicd cases of a
complex loading. In this dtuaion, the
compliance of an equivdent dadic hinge in a
direction of the appropriate generdized force is
constant and does not depend on other force
factors at the given area of a crack. However, in
some loading cases interference of force factors
for the dress drain dtate of bar is possble and
ggnificant. Cases of a buckling and buckling-
bending are such. The andogue of the Euler's
problem for the compressed bar with a crack
was ealier conddered. Assuming that influence
of axid force for a diress state near a crack front
can be neglected, the edimation of criticd
buckling force was received. It is obvious, tha
this esimation is the lower border of critical
buckling force. Loss of gability a this vaue of
axid force is posshle a raher big laerd
digurbing. In other words, this criticd buckling
force we characterize dability possble a the
“big digturbing”.



In the present paper the problem of a buckling
and buckling-bending of the compressed bar
with a crack is conddered in view of influence
of axial force on astress state near a crack front.

2 The cross-ply bending problemfor a
compressed bar with a crack

The flexible dastic bar of congtant cross-section
in length L and by hinged fastening a the ends
IS conddered (Fig.1). The axid force F is
compressng the bar. In common case there is
adso bending load P(2). If the bar doesn't have
the crack in its some cross-section, it has the
critical buckling force F; that can be determined
under the known Euler’ sformula

If in cross-section with coordinate Li there is a
plane crack with the characterisgic sze |, the
locd compliance of the bar incresses in this
zone. A bar with an dadic hinge tha has
equivdent compliance d can smulate the totd
influence of a crack. It is supposed that
influence of this hinge on the change of a cross:
sction turn agle ??= dM(L,) for the bar
(excluding, perhgps, a smdl zone near the
damaged cross-section) is as such as for the bar
with crack.

27= dM(Ly)
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ZoneA (near cross-section with crack)
?2?7=dM(L1)

Fa. 1. The scheme of dagtic rod with a

The cross-ply bending differentid equetion is

d2v(zz)+ K2y(Z) = M(z)

dz El @)
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where v(2) is the bar deflection, k> =% is a

task parameter, M(z) is bending moment, | is
the principd moment of inertia of the bar cross:
section.

The common solution of the equation (2) looks
like

n(2) _jC,coskz+C, sinkz+V (z),
1C, coskz+C, sin kz+V (2),
©)

where Vv (z)is the paticular solution of
equation (2); C, are the condants of integration
i =1, 2, 3, 4 which are determined from
boundary conditions
n(0)=0,

if zEL,
if z3 L,

n(L,)=0, (4)
and the conditions in cross-section with a crack

n(L, )=n(Ly, ), a(L, )=q(L,)+dM(L,), ()

Here the particular case of bending load is
considered. It is supposed that the concentrated
force P acts in the cross-section with a crack. In
this case, a bending moment is expressed by
formula

i P(L-L)z
A D T

M(z)=:[ L s ©)
i PLalt-2) g ey
1 L

It is easy to check that the particular solution of
equation (2) in this case has the following view:
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The expressons of the integration condants
ater some trandormaions have the following
views
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where vo=v(L1) is the bar deflection in cross
section with crack

In a result the common solution of an equation
(2) looks like in this case of bending load

isinkzé  P(L-L)Lu P(L-L)z
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The expressons of the cross-section turn angles
are
i coskz é K+ P(L- Ll)ng_ P(L-L,)

L Snk; §° KLEI 0 KLEI . (9)

§ e if 0£z£L
a(2)=1 :

i cosk(L-2z)é P(L- Ll)Llf’j+ PL,

j:j snk(L-L,)§&° KLEI  H K2LEI'’
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The bar deflection in cross-section with crack vo
is not known. Using (9) and (5), it is possible to
express this deflection vp as a function of axid
compressing force F, normd disurbing force P,
and the compliance d.

¢ __t u
e
m,=PLC,(1- )8 k(- L)L, - 13,
& 1_ + 1 — - dkL u
&tg(kLL,) tg(kL(1- L3)) t
(10)
where  m, =n,/L, P=P/F, d=d/d, ad
d, =L/EI is the bending compliance of bar

when thereis not acrack.

3 The éastic compliance of the equivalent
hinge

It is obvious that criticd force F* a the fixed
parameters of a problem is determined by the
gze of a crack and the compliance of an
equivaent hinge appropriate to it.

In a conddered problem of dress intendty
factor (S”:) K=K p-Kt, where Ky is SIF a a
bending, and K;; is SIF a a compression. Let
crack area be a function one parameter |. As a
rule then

Ko =gVl (118),

= E A (178)

whee A and W is the aea and the axid
moment of resstance of a bar cross-section, B is
its chaacteridic dze (for example, heght) |,
f (1/B) and ?(I/B) ae correction functions on
influence of the Szes and form of cross-section.

It is supposed that there is not the shear dtrain at
the crack front. This means that K;=K,;=0.
Then the compliance d of an equivdent dadic

hingeis

(11)

i (1_ . 2)[ |h‘ ) (12

where t is cross-section second characteristic
gze (for example, width); M is an appropriate
bending moment in  cross-section with an
equivdent hinge tha depends as from axid
force as from bending moment

M =Fv, + M,, (13)

Here M is bending moment in the same cross-
section at absence of axid force.

Let the bar has rectangular cross-section with
the width t and the height B. Let too the crack
front is draight line that is pardld to horizontd
axis of symmetry of cross-section. Then
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where B =B/ L, T,=L,/L, P=PIF.
The top limit of integration in the formula (14)

r :IE is defined by some size I". This sze is

or the crack actuad sze |, or a root lp of the
equation Kjp - Kt = 0 if O<lgp<l. A crack opens
completdly in the fird case and patly in the
second case. It is obvious that 1'=0 if the crack
IS not opened at loading.

4 Condition of closed state of crack.

In the common case, the crack isin closed state
when maxima norma stressin cross-section is
not pogitive. It means
Fv,+M, A
F W
Using (10) and (15) and acceptingd =0, one
can define the limit vaue R of force P. If P=Pg ,
then the crack isn’t opened at loading.

£1, (15)

- P = 1 1 9, (16)
P, =2 =2{"Bp/F¢& — + B
F Stg(pVFL) ta(pVF (- L5

where - F | j =\/% is the rod cross-section
F

redius of inertia, r:é.

It is seen that P, is a function of Fand L;.

This limit force depends dso on the form and
the relative d9zes of a cross-section ( multiplier

C
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In Fg. 2, the rexult of cdculdion of P, for a
rod with rectangular cross-section is shown.
Obvioudy that if acted axid force is less than
Euler's critical force, then the rod is in a date of
equilibrium and the crack is closed. It means the
crack doesn't influence to the critical force
vdue & smdl didurbing actions This influence
will be a the finite actions tha not less than
some limited vdue Po. At that deflected form of
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the rod equilibrium may be dable, but a the
same time the crack opens. The stable dtate of
equilibrium remains a the didurbing force
acting, if it is smdler than some limited vaue.

01 T4 Rectar gl cross-section, B/L=0.]|
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Fg. 2. Thelimit value of bending force as
afunction of axid force and coordinate of

5 Algorithm of the solution of a task

The dgorithm of the solution of the cross-ply
bending problem and definition of critica force
isfalowing:

1) To check the condition P=Pg
formula (16) or (15) in common case.
2) Usng the formula (10) to define a deflection
Vo of arod at absence of a crack and a the given
loading.

3) Under the formula (13) to define bending
moment and to check up a condition (15).

4) If this condition (15) is executed, the received
Llution is find and it is the solution of a
classica problem of across-ply bending.

5) If a condition (15) is not met, the sze |” has
be determined.

6) The compliance of the equivdent hinge is
cdculated as the firg agpproximation. If it is
equa or exceeds limiting vaue under the
formula (14), this means that a the given load,
rod equilibrium is ungable. In this dtuation, a
caculation repeats from point 1 at reduced load
P. Othewise the following point of the
agorithm is executed.

7) In the second approximation, the deflection is
determined by formula (10) and compared to the

usng the

4
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firdg  agoproximation. If the difference s
inggnificant, caculaiion comes to a end, but
otherwise it repeats from point 2.

On Hg. 3 it is shown an example of result of
cdculagion the function “laerd  force
deflection of bar” for a bar of rectangular cross-
section with crack in middle cross-section.
Cdculation was caried out a some vadue of
relation between axid compressed force and
critica force of bar. If this rdation is nearer to
1, it is necessay smdler laterd force and bar
deflection for criticd dae (maximum of noted
function).
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Fig.3. Lateral force as the function of deflection

The cdculation process will converge, if the
configuration is

seady. In this case, the solutions give the
relationship between the

deflection and the total dress intengty factor K.
If the rod materid is britle then the limiting
condition of equiliorium on the front of the
crack is

K| = K|c, (17)

where K| is the characterigtics of the materid
(the criticd stress intengity factor).

The example of check of the limiting condition
of equilibrium on the front of crack and the
drength edimation a the cross-ply bending of
thinwdled tubeisgivenin [2].

6 The inferior boundary of the critical force
of acompressed rod

From formula (10) it is obvious tha even a an
infinitesmal  bending force, the condition of
unlimited increase of a deflection vo comes at
ome limiting rdaive compliance d of an
eadic hinge

. lae 1 1 0
ad == + T, (18
kLému¢En tg(kL(1- L, ))g }
where KL=p |, (19)

F

Thus, force F* in the formula (19) represents
the critical vadue of axid force for a rod with a
crack.

Ealier [3] it the inferior boundary of the criticd
force was found usng the buckling equation.
Here we can define it usng (17) and (14), if

Vo? 8. As a reault the inferior boundary of the
criticd forceis

1
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Fig. 4. The coefficient of crack
influence to the critical force
£ =k = kP_E! 20
- c L2 ’ ( )

where k is the coefficient considering the crack
influence.
In Fg. 4 the result of this coefficient caculation

for rod with rectangle cross-section( the
cdculaion scheme



7 Conclusion

Use of the power concept of the equivadent
dagic hinge for resach of mechanicd
properties of rod systems at presence of cracks
Is an effective means of the andlyss of different
aspects of arframe drength a presence of the
damages. In the present paper this concept has
alowed to recaive the equation and the common
decison of the problem of cross-ply bending
and dability of the compressed rod containing a
crack in some cross-sections of arod.

It is shown even for the cdculaied scheme of a
rod with hinges on its ends this problem is
rather compodite. The relation between the rod
deflection and the disurbing cross-force is
obtained.

It is shown there is some minima vaue of the
disturbing force before reaching which the crack
remains closed. It means in classcd introducing
the crack does not influence to the vaue of
citical force. Infinitesma perturbations do not
cdl the deployment of a crack and the change of
the rod compatibility. However, if the disturbing
force is finite vaue and more than the
mentioned minimum, this effect canot be
neglected. Opening of the crack cdls the
decrease of diffness of a rod and downgrade its
resstance to the laterad bending. Because of
gradud increase of the square of the uncovered
part of a crack surface at increase of a disturbing
force the compliance of the equivdent dastic
hinge increese. Other factor promoting this
increese is the gradud increase of the bending
effect. The compodte relation between the
disurbing force, the deflection and the
equivdent lowering of the locd rigidity of the
rod in a zone of crack demands implementation
of specid composte dgorithm of successve
goproximations for its andyss. However for
deiving limiting inferior bounday of criticd
force some raher dmple transcendenta
equation is obtained. In paticular, usng this
equation in  the assumption of find
perturbations, it is possble to protect the
compressed rods with cracks from the failure
and loss of gahility.
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