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Abstract  

From the view of mode parameter 
identification, Laplace wavelet and correlation 
filter are introduced in this these. An improved 
method called Multi-dimension Laplace wavelet 
is presented. The construction and implement of 
the wavelet are studied. Numerical simulation 
and true flight flutter test data are used to 
analyse the features of the method. The result 
show that the new wavelet technique are 
reasonable and feasible with the great 
application potential in the data processing after 
flight flutter test. 

1  Introduction   
For the flutter flight test, there are a lot of 

characteristics, for example, the excitation force 
being not enough , the test point being limited, 
the modes being too dense, nonlinearity, the 
effective data sample being short, singnal noise 
ratio(SNR) and mode stability level being low, 
which bring too much difficulties to the mode 
parameter identification ， meanwhile, flutter 
flight test is a high risk ,long term and high cost 
program, which require the data reduction should 
be quick(realtime or quasi-realtime) and 
accurate，only in this way, we can shorten the 
test cycle , improving the test fidelity and 
efficiency and providing an accurate and 
conservative test result [1~3]. 

Wavelet analysis is an important branch in 
modern signal processing field, whose progress 
has close relation with the fourier analysis and 
has better advantage in some degree [4~6]. What 
is more, wavelet analysis can choose time-
frequency segment flexibly according to 

different requirements of the data analysis. In 
fact, the signal is composed of the slow-changing 
steady signal and the quick-changing signal, the 
wavelet transform happen to satisfy this 
requirement, and meanwhile, high resolution and 
signal reconstruction methodology of the 
wavelet transform can solve the dense mode 
problem in some degree and ameliorate the SNR 
of the measured signal. 
      However, the general wavelet analysis also 
has the shortcomings as follows: 

• Much data decomposing is needed, 
therefore, the amount of the computation 
is too big and the analysis process is 
complicated. 

• The mode parameters needed cannot be 
obtained directly from the wavelet 
transform, after the signal is processed by 
use of wavelet transform, other parameter 
identification methods are still needed to 
make the mode estimation. 

• The transient time-changing 
characteristics of the identified system 
can not be followed up dynamically. 

This paper mainly study the multi-
dimension Laplace wavelet, which make the 
related filtering of the pulse response signal data 
to decompose the signal , gaining the mode 
parameters directly and following up the 
dynamic features of the system [7~9]. In this 
paper, numerical features and engineering 
application of the method studied are validated 
and discussed by means of plentiful simulation 
data and flight test data [10]. 

2  Laplace Wavelet  
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Laplace wavelet Ψ is a complex and 
analytical exponential function ， which is 
defined as follows：  
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T is the tense supporting of the wavelet, having a 
limited length being not zero. Coefficient vector 
γ={ω,ζ,τ}, it determine the characteristics of the 
wavelet. These coefficient is also related to the  
dynamic features of the mode。Where:ω∈R+, 
damping ratio ζ∈[0,1]⊂ R+, time parameter τ∈R, 
coefficient A is a random normalization factor. 

Fig.1 is a schematics of Laplace wavelet. The 
real plane and imaginary plane are respectively 
(a) and (b) of Fig.2. 
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Fig.1  Laplace wavelet 
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Fig.2  The real and imaginary projection of the 

Laplace wavelet 

3  Multi-dimension Laplace Wavelet and 
Related  Flitering  

3.1 Multi-dimension Laplace Wavelet 
Definition 

Multi-dimension Laplace wavelet is an 
extension of the Laplace wavelet, which is also a 
complex and analytical damped exponential 
function. Multi-dimension Laplace wavelet is 
defined as follows: 
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where, n is the number of wavelet in the multi-
dimension Laplace wavelet, T is the supporting 
length of the wavelet. 

3.2 Related Filtering of Multi-dimension 
Laplace Wavelet  

In order to describe an array of wavelet 
which can be used to make the signal 
decomposing, the concept of clan is introduced, 
clan is wave style database of the wavelet, here it 
refers to the wave style database of the multi-
dimension wavelet. An array of certain wavelet 
parameters can determine a wavelet clan. Each 
parameter is a discrete vector. 

{ } +⊂=Ω Ripiii ωωω ,,, 21 "                         (3)                  

{ } [ ] +⊂∈= RZ iqiii 1,0,,, 21 ζζζ "                 (4) 
   { } RTT m ⊂= τττ ,,, 21 "                               (5)                 
Where, i=1,2,…,n，  n is dimension of multi-
dimension Laplace wavelet, Ωi  and Ζi is the 
frequency and damping parameter of the Laplace 
wavelet, TT  is the displacement parameter of the 
Laplace wavelet in the time domain.Ψ is the 
wavelet clan，it’s parameters are included in the 
following parameter collection: 

{ }1 1 2 2, , , , , , ,n nγ ω ζ ω ζ ω ζ τ= ∈Γ"  
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                                      (6) 

Define the correlation coefficient kr R∈   
between the multi-dimension Laplace wavelet 
and signal f(t), it can be used to quantify the 
correlation degree between wavelet and signal. 
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By means of equation (7), it is possible to  
calculate the correlation value at every time 
point between signal f(t) and multi-dimension 
Laplace wavelet which is determined by the 
frequency and damping combination parameter 
vector { }1 1 2 2, , , , , ,n nω ζ ω ζ ω ζ" , meanwhile, the 
mode analysis can also be made. All of the 
elements kr form a matrix K, whose dimension is 
determined by parameter vector 
{ }1 1 2 2, , , , , , ,n nω ζ ω ζ ω ζ τ" , that is 2n+1. The 
peak value of K is denoted as kmax  , meanwhile, 
vecto { }1 1 2 2, , , , , , ,n nω ζ ω ζ ω ζ τ"  is defined as 

the parameter value of the Laplace wavelet when 
the kγ  equals kmax. For a given 0 TTτ ∈ ，it is 
also possible to determine the peak value 

( )0k τ of kγ  in the order of falling dimension. 
)max(max Kk =  

{ }1 1 2 2, , , , , , ,n n
k

ω ζ ω ζ ω ζ τ
=

"
 

( )(max k )τ=                           (8) 
In the definition of kγ , the normalization factor 

is set to be 2  in order that can be 1. maxk

4  Numerical Simulation 

4.1 Simulation Mechanism 
According to the mechanism of structure 

flutter, i.e. the coupling of multi-order structural 
mode, the following mathematical model 
generally can be used to simulate the dynamic 
response signal under pulse excitation: 
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Where: jω  and jζ  are the frequency and 
damping of structure mode, B is the noise 
magnitude coefficient, n(t) is the GAUSS white 
noise, M is the number of mode order. 

4.2 The Application Characteristics Analysis 
of Multi-dimension Laplace Wavelet  

4.2.1 Three Mode Simulation 
Dynamic response signal of structure flutter 

test under pulse excitation is produced by 
numerical simulation, meanwhile, the application 
characteristics of multi-dimension Laplace 
wavelet is also studied. 

At first, make the three mode simulation 
signal according to equation (9) which M is 3. f(t) 
is a real exponential damped sinusoidal signal 
which corresponds to three mode impact 
response signal. The mode parameters of the 
system are as follows:ω1=8Hz 、 ζ1=0.04 、

ω2=14Hz、ζ2=0.06、ω3=10Hz、ζ3=0.04. The 
noise magnitude coefficient B=0.01, signal 
sampling rate fs=200Hz. According to the 
definition of multi-dimension Laplace wavelet, it 
could obtain a three dimension Laplace wavelet 
group. When n equals to 3 which can be used to 
analyse the above signal. Defining a group of 
parameter according equation (6) where n is 3, 
the interval of each parameter vector needn’t be 
unanimous, which can be defined according to 
resolution requirement. Here, the vectors are 
defined as follows according equations (3)、(4) 
and (5): 
Ω1={5:0.5:18}         Ζ1={0.005:0.005:0.1} 
Ω2={5:0.5:18}         Ζ2={0.005:0.005:0.1} 
Ω3={5:0.5:18}         Ζ3={0.005:0.005:0.1} 
TT={-2:0.1:2} 

Through correlation filtering computation, a 
correlation coefficient matrix K can be obtained 
whose dimension is determined by the dimension 
of Ω1、Ζ1、Ω2、Ζ2、Ω3、Ζ3、and TT. Here, 
dim(Ω1)=dim(Ω2)=dim(Ω3)=28, 
dim(Ζ1)=dim(Ζ2)=dim(Ζ3)=20,dim(TT)=21.Mean
while, the wavelet supporting length T used to 
make the correlation filtering computation equals 
to 3 seconds. K is a seven-dimension matrix. 
Computing the time point of the maximum value 
kmax of coefficient matrix K, On this time point, 
the three corresponding wavelet parameter are 
{ }1 1,ω ζ , { }2 2,ω ζ and { }3 3,ω ζ . Meanwhile, the 

initial time of mode response in signal f(t) can be 
determined, i.e. t=τ . 

Analyse and processing above simulation 
signal by use of three-dimension Laplace 
wavelet group, the sample length is T×fs=600. 

3  



 SUN YONGJUN, WANG DONGSEN, SHA CHANG’AN 

Fig.3 shows the correlation filtering result of the 
Laplace wavelet and simulation signal. Fig.3 (a) 
is the simulation signal f(t). Fig.3 (b) is the 
maximum value k(τ) of correlation coefficient. 
Fig.3 (c) and (d) are frequency and damping 
ratio’s relation with τ of first order wavelet 
which corresponds to the max value of 
correlation coefficient. Fig.3 (e) and (f) are 
frequency and damping ratio’s relation with τ of 
second order wavelet which corresponds to the 
maximum value of correlation coefficient. And 
Fig.3 (g) and (h) are frequency and damping 
ratio’s relation with τ of third order wavelet 
which corresponds to the max value of 
correlation coefficient. 
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Fig.3  Three dimension Laplace wavelet group 

and the result curve of the correlation filtering to 
the three mode simulation signal 

 
It could be known from Fig. 3 (b) that, with 

the simulation signal f(t) being increasingly 
covered by the multi-dimension Laplace wavelet, 
the maximum value kmax of correlation 
coefficient is gradually reaching 1. That is to say, 
when the supporting length of the wavelet more 
and more cover the response portion of the signal,  
the function of inner product in correlation 
filtering appears more and more clear .When the 
starting point of wavelet response and pulse 
response coincide with each other, k(τ) reaches 
the max value kmax for the first time. It shows 
from that time on, the simulation signal which 
length is 600 matches the dynamic characteristic 

of some wavelets in the wavelet group very 
much. That is to say, three-dimension Laplace 
wavelet parameter { }332211 ,,,,, ζωζωζω which 
corresponds to kmax matches the three mode 
parameters { }1 1,ω ζ , { }2 2,ω ζ and { }3 3,ω ζ of 
simulation signal f(t) very much. The wavelet 
parameter { }1 1 2 2 3 3, , , , ,ω ζ ω ζ ω ζ is the three mode 

parameters of simulation signal. At the time τ 
corresponding to kmax, the information of mode 
parameters brought out by correlation filtering 
can be obtained from Fig.3. Table 1 shows the 
comparison between theory mode parameters 
and the identified mode parameters. 
 

Table1 Three mode simulation result 

 
Theory 

value 

Estimated 

value 
Error 

sign )(Hz
ω

 
ζ  )(Hz

ω

 
ζ  )(Hz

ω∆

 
ζ∆

mode1 8 0.05 8 0.05 0 0 

mode2 10 0.04 10 0.04 0 0 

mode3 12 0.06 12 0.06 0 0 

 
After correlation filtering has been 

completed to the pulse response of the system by 
useing of three-dimension Laplace wavelet, the 
whole process of system dynamic response can 
be obtained by following up the changes of 
k(τ).The wavelet parameters which corresponds 
to kmax give the mode parameters of the system. 
Therefore, the correlation filtering using Multi-
dimension Laplace wavelet can be considered as 
mode filtering. 

4.2.2 The effect of wavelet supporting length 
During correlation filtering computation by 

use of Laplace wavelet, the wavelet supporting 
length is an important parameter, whose change 
will directly result in the change of Laplace 
wavelet length and affect the matrix K further. 

The wavelet supporting length is defined as 
T=3s 、 2s 、 1s 、 0.5s respectively, use  2-
dimension Laplace wavelet to make correlation 
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filtering for the dual-mode simulation signal in 
equation (9) where M is 2. Table 2 shows the 
results. 

We can see from Table 2 that the change of 
the wavelet supporting length T basically do not 
affect the mode identification result. 
Theoretically, as long as T contains at least one 

period of the minimum mode frequency, the 
mode frequency can be identified. But the mode 
damping is reflected in many periods of the 
signal, so the wavelet supporting length can not 
be too short, otherwise the mode damping ζ 
identified will have errors to some extent.

 
Table 2  The simulation results of the changeable supporting length 

Theory value Estimated value Error Comparing 
item Mode )(Hzω ζ  )(Hzω  ζ  )(Hzω∆  ζ∆

mode1 10 0.04 10 0.04 0 0 T=3s mode 2 12 0.06 12 0.06 0 0 
mode 1 10 0.04 10 0.04 0 0 T=2s mode 2 12 0.06 12 0.06 0 0 
mode 1 10 0.04 10 0.04 0 0 T=1s mode 2 12 0.06 12 0.06 0 0 
mode 1 10 0.04 10 0.035 0 0.005T=0.5s mode 2 12 0.06 12 0.055 0 0.005

 

4.2.3 Dense mode analysis 
In the actual program, the case in which 

two or more mode frequency are very close can 
be often met, this is the dense mode problem. 
Here, we set the second-order mode as example, 
and analyse two-dimension Laplace wavelet’s 
resolution capacity to the dense mode. 

The wavelet supporting length T=3s is 
chosen for calculating. A set of parameters 
according equation (6) where n is 2 need to be  
defined. For the Ⅰ、Ⅱ、Ⅲ simulation signal 
computation, the given parameter vectors are 

defined as follows according equations  (3)、(4) 
and (5): 
Ω1={6.25:0.25:14},     Ζ1={0.005:0.005:0.1} 
Ω2={6.25:0.25:14},     Ζ2={0.005:0.005:0.1} 
TT={-2:0.1:2} 
For the Ⅳ simulation signal computation, the 
parameter vectors are defined as follows: 
Ω1={6:0.1:10},             Ζ1={0.002:0.002:0.1} 
Ω2={6:0.1:10},             Ζ2={0.002:0.002:0.1} 
TT={-2:0.1:2} 
Use the above Laplace wavelet parameter to 
make the correlation filtering computaion, the 
result obtained is shown in Table 3.  

 
Table 3  Simulation results for the effect of dense modes 

Theory value Estimated value Error Comparing 
item Sign ( )Hzω  ζ  ( )Hzω ζ  ( )Hzω∆  ζ∆  

mode 1 10 0.04 10 0.04 0 0 
setⅠ mode 2 14 0.06 14 0.06 0 0 

mode 1 10 0.04 10 0.04 0 0 
setⅡ mode 2 12 0.06 12 0.06 0 0 

mode 1 8 0.04 8 0.04 0 0 
setⅢ mode 2 9 0.06 9 0.06 0 0 

mode 1 8 0.04 7.9 0.046 0.1 0.006 
setⅣ mode 2 8.5 0.06 8.3 0.054 0.2 0.006 

 
It can be seen from Table 3 that, for the 

dense mode, the two-dimension Laplace 
wavelet correlation filtering algorithm can 
obtain satisfactory result. 
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4.2.4 The effect of noise for mode identification 
The signal noise ratio (SNR) is defined as 

follows： 
            SNR=10×log(Ey/Ex)                        (10) 
Where, Ey is the energy of the signal and Ex is 
the energy of the noise. 

Fig.4 shows the calculating result curves 
when the simulation signal is added 50% noise. 
It is a double mode problem using two-
dimension Laplace wavelet group to make the 
signal analysis and processing. Fig.4 (a) is the 
simulation signal f(t), Fig.4 (b) is the maximum 
of the correlation coefficient k(τ), Fig4 (c) and 
(d) is frequency and damping ratio’s relation 
with  τ of first order wavelet which corresponds 
to the maximum value of the correlation 
coefficient, Fig. 4 (e) and (f) is frequency and 
damping ratio’s relation with τ of second order 

wavelet which corresponds to the maximum 
value of the correlation coefficient. The 
identified and theoretical mode parameters are 
compared in Table 4. 
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Fig.4 The calculating results of the simulation 

signal added 50% noise.

 
Table 4  The simulation results of the noise effect 

Noise 
coefficients SNR Theory value Estimated value Error 

B SNR 
Mode 

( )Hzω  ζ  ( )Hzω ζ  ( )Hzω∆  ζ∆  

mode1 10 0.04 10 0.04 0 0 0.05 18.71 mode 2 12 0.06 12 0.06 0 0 
mode 1 10 0.04 10 0.04 0 0 0.1 12.83 mode 2 12 0.06 12 0.055 0 0005 
mode 1 10 0.04 10 0.04 0 0 0.2 6.41 mode 2 12 0.06 12 0.055 0 0.005 
mode 1 10 0.04 10 0.035 0 0.005 0.3 3.34 mode 2 12 0.06 12 0.055 0 0.005 
mode 1 10 0.04 10 0.04 0 0 0.4 0.63 mode 2 12 0.06 12 0.06 0 0 
mode 1 10 0.04 10 0.03 0 0.01 0.5 -1.36 mode 2 12 0.06 12 0.045 0 0.015 

 
It can be seen from above result, the change 

of SNR will not greatly affect mode frequency 
estimation during using two-dimension Laplace 
wavelet. With the SNR decreasing, kmax and the 
confidence are also decreasing, However, the 
mode frequency identified is  accurate and the 
damping estimated is basically to be steady. 

 5 Data Analysis for Flight Flutter Test  
In this section, the two-dimension Laplace 

wavelet is used to make the flutter flight test 
data analysis and processing for some aircraft. 

The configuration of the tested aircraft is as 
follows: two heavy bombs on the middle and 
outboard carrying point respectively. The test 
use bonkers for excitation, which are arranged 
on the middle and outboard bombs, the 
vibration sensors on the bombs are used to 
measure the structural response. 

Fig.5(a) shows the structural response 
measured by vertical sensor when the bonker on 
the outboard bombs is excited, the flight altitude 
is 5km and the Mach number is 0.749. Figure 
5(c) 、 (d)、  (e) and(f) shows the identified 
structure mode result after using  two-dimension 
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Laplace wavelet correlation filtering. According 
to the correlation coefficient kmax in Fig 5(b), we 
can confirm that the mode frequency is 10.25 
Hz and the damping is 0.07. 
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Fig.5 The signal results on the outboard bomb 
when the flight altitude is 5km and the mach 

number is 0.749 
 

Fig.6 (a) shows the structural response 
measured by vertical sensor when the bonker on 
the outboard bombs is excited, the flight altitude 
is 5km and the mach number is 0.914. Fig.6 
(c) 、 (d)、  (e) and (f) shows the identified 
structure mode result using two-dimension 
Laplace wavelet correlation filtering. According 
to the correlation coefficient kmax in Fig. 6(b), 
we can confirm that the mode frequency is 
10.25 Hz and the mode damping is 0.08. 
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Fig.6 The signal results on the outboard bomb 
when the flight altitude is 5km and the mach 

number is 0.914 
 

Fig.7 shows the classical result curves of the 
relation between the symmetrical pitching 
structure mode frequency and damping and 
mach number, the flight altitude is 5km.The 

damping is higher than 0.03, the damping 
changing tendency indicates that the aircraft 
have enough flutter margin. 
 

 
Fig.7 The relation of the identified symmetrical 

pitching structure mode frequency and    
damping with mach number for a certain aircraft 

at 5km 

6 Conclusion 
In order to improve and ameliorate modern 

flutter flight test data reduction technology , 
This paper study the method by which wavelet 
can be introduced to the flutter flight test data 
reduction according to the basic characteristics 
and reduction requirement of the flutter flight 
test data. Research shows : the multi-dimension 
Laplace wavelet correlation filtering algorithm 
brought out in this paper is applied to the 
analysis of the pulse response signal and 
retraction of mode parameters, which has great 
prospect for the future flutter flight test. 
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