
 1

ANALYTICAL SOLUTION OF THE EULER EQUATIONS FOR AIRFOIL FLOW 
AT SUBSONIC AND TRANSONIC CONDITIONS 

 
A. Verhoff 

Consultant, Fluid Dynamics 
Saint Louis, Missouri, US

 
 

Abstract 
 

A compact formulation for obtaining analyti-
cal solutions of the 2D steady-state Euler equa-
tions is presented.  The equations are formulated 
in the physical plane with flow angle and loga-
rithm of isentropic momentum magnitude as de-
pendent variables.  Higher-order effects (e.g., 
compressibility and entropy) appear as non-
homogeneous forcing terms.  The solution proce-
dure does not require a Green’s function for the 
forcing terms and has general applicability to 
many other disciplines (e.g., heat transfer) besides 
fluid dynamics.  The zero-order approximation is 
obtained from solution of the linear, homogeneous 
system (a boundary-value problem on a simple 
domain), and is remarkably accurate into the tran-
sonic range.  Higher-order corrections are gener-
ated by iterating on the non-homogeneous terms.  
Application of the solution approach combined 
with specialized shock mappings allows analytical 
transonic flow solutions with a shock wave.  The 
Rankine-Hugoniot shock relations are enforced 
across the discontinuity along with the correct en-
tropy change.  Generation of the analytical solu-
tions is facilitated by the Mathematica symbolic 
manipulation software.  Results are presented that 
demonstrate the potential accuracy and simplicity 
of the new procedure. 

 
1  Introduction 

 
Many well-known classical analytical tech-

niques have been developed over the past several 
centuries that can form the framework for very 
powerful and elegant methods of solution of 
boundary value problems.  Application of these 

methods after inception, however, was limited to 
very simple problems (i.e., simple boundary 
shapes) because quantitative numerical results 
could only be achieved by tedious hand-
calculation.  Since the arrival of digital computers 
at the middle of the last century, research has fo-
cused primarily on discrete methods for the solu-
tion of complex boundary value problems.  Little 
attention has been paid to integrating the classical 
methods into analysis tools to take advantage of 
the efficiency and physical modeling accuracy 
they can provide.  Over the past 15 years a limited 
research program has focused on demonstrating 
and evaluating the coupling of analytical and nu-
merical methods ([1], [2] ,[3], and [4]).  The cur-
rent state of one phase of this effort is described in 
this paper. 

 
An approach was introduced in [2] for obtain-

ing analytical asymptotic solutions of the two-
dimensional (2D) steady-state Euler equations in 
streamline coordinates.  The equations were writ-
ten such that higher-order compressibility and ro-
tational effects appeared as right-hand-side (RHS) 
forcing terms.  A complex-variable mapping was 
then applied to this non-homogeneous Cauchy-
Riemann system which contracts the Euler equa-
tions into a single first-order partial differential 
equation (PDE) in the complex plane.  This single 
PDE was solved by asymptotic iterative correc-
tion whereby the RHS terms were evaluated using 
lower-order, previous-iteration approximations.  
The basis for this iterative approach was the bi-
nomial expansion of the density and mass flux re-
lations, which are convergent for all Mach num-
bers and rapidly convergent well into the super-
sonic range. 
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The procedure was applied to transonic (shock 
free) flow past a circular cylinder in [2].  The as-
ymptotic solution was generated (derived) to sev-
enth order using a Mathematica solver algorithm.  
Solution accuracy was validated by the gas-
dynamic mass flux condition at sonic points and 
critical Mach number prediction. The solution 
method was subsequently applied [3] to com-
pressible flow past a ramp (or wedge-type) ge-
ometry to clarify inviscid flow behavior near ge-
ometric singularities.  This solution was shown 
likewise to extend into the transonic (shock free) 
range.  Its accuracy was validated by comparison 
with experimental results.  Excellent corrobora-
tion with the von Karman similarity rule was also 
demonstrated.  More recently, the procedure was 
applied to compressible airfoil flow [4], where 
very efficient analytical generation of design sen-
sitivity derivatives was demonstrated.  However, 
the Euler equations were solved in streamline co-
ordinates, which had a number of drawbacks in 
terms of the required mappings. 

 
The improved procedure described herein uses 

physical coordinates, eliminating the mapping to 
the streamline plane.  The formulation is compact 
in that the RHS terms are minimal and their func-
tional form similar for each equation.  The de-
pendent variables are flow angle and logarithm of 
isentropic momentum magnitude (relative to free 
stream value), a consequence of the compact form 
and the use of physical coordinates.  Use of flow 
angle simplifies imposition of surface and far-
field boundary conditions.   The variable depend-
ent on momentum contains a substantial portion 
of the (nonlinear) flowfield compressibility effects 
and yields much improved accuracy at compara-
ble solution order.  This new form of the Euler 
equations is again expressed as a non-
homogeneous Cauchy-Riemann system and the 
solution procedure of [2] is applicable.  Using 
only the surface geometry definition (i.e., no 
computational grid), the solution provides the full 
flowfield description. 

 
The choice of flow angle as a dependent vari-

able leads to a stronger set of boundary conditions 
for a given problem.  At a solid surface the usual 
inviscid condition of tangential flow (i.e., zero 

normal velocity) does not fix the velocity direc-
tion, leading to the necessity of a Kutta condition 
to remove the ambiguity.  Tangential flow with a 
prescribed direction can be imposed when flow 
angle is used.  

 
The complex-variable mapping used previ-

ously is applied to the present non-homogeneous 
Cauchy-Riemann system resulting in a single 
first-order PDE in the complex plane.  This solu-
tion procedure allows closed-form analytical solu-
tions of this PDE, provided the RHS terms are 
analytically defined.  In this case the solution pro-
cedure is reduced to evaluation of  indefinite inte-
grals.  The generated sequence of corrections is 
not asymptotic in the traditional sense; neglecting 
higher-order corrections only reduces accuracy 
and does not compromise physics.  Introduction 
of a local shock mapping allows discontinuities 
(Rankine-Hugoniot) occurring at a shock wave to 
be incorporated as standard Dirichlet boundary 
conditions and shock position determined. 

 
The PDE solution procedure is general and 

applicable to the Poisson equation and its various 
subsets, such as the non-homogeneous Cauchy-
Riemann system arising in the present analysis, 
and also the non-homogeneous bi-harmonic equa-
tion.  It therefore has applicability to many other 
disciplines, such as heat transfer, structures, etc. 

 
Subsonic and transonic results are presented 

that demonstrate the potential accuracy and effi-
ciency of the new formulation.  These include 
Karman-Trefftz airfoil solutions and a bi-convex 
airfoil solution with and without a shock wave. 

2  Analytical Formulation 
  

For 2D steady flow the Euler equations can be 
written in physical (x,y) coordinates as 
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The flow angle is θ  (with 0=∞θ ), Q is the loga-
rithm of velocity magnitude q, the local Mach 
number is M, and the speed of sound is a. Veloci-
ties are non-dimensionalized by stagnation speed 
of sound, and pressure and density by their respec-
tive stagnation values.  Note the energy equation is 
algebraic for steady flow.  Entropy S is convected 
along streamlines and is defined in terms of pres-
sure p and density  ρ as 

 )(ln
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Density can be expressed as a function of velocity 
magnitude and entropy according to 
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For constant far-field pressure ∞p , reference 

quantities can be defined as 
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These constant quantities can be associated with 
the upstream isentropic conditions.  Then 
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From the second of Eqs.(5) 
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Note that ∞q  depends only on y for non-isentropic 
conditions, since 0=∞θ .  Using these results 
Eqs.(1) become (after some manipulation) 

 

x
S

My
S

x
S

My
R

x
R

x
J

y

y
S

My
S

y
S

Mx
R

y
R

y
J

x

∂
∂

+
∂
∂

−

∂
∂

−
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

∂
∂

−
∂
∂

+

∂
∂

+
∂
∂

−
∂
∂

=
∂
∂

−
∂
∂

∞

∞

∞

∞

∞

∞

2

2

2
2

2

1cossin

12sin2cos

1sin

12sin2cos

θθ

θθθ

θ

θθθ

 (7) 

The functions J and R in this compact form are 
defined as 
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The variable J represents the logarithm of isen-
tropic momentum magnitude relative to free 
stream value, and includes a substantial portion of 
the flowfield compressibility effects.  Eqs.(5) pro-
vide for far-field entropy variation.  For non-
isentropic conditions, ∞q  depends on ∞S  (e.g., in 
the far-field wake of a shock wave).  In the far 
field ∞θ  and ∞J  both vanish. 

 
The relative magnitude of R as a function of 

local Mach number is shown in Fig. 1, with free 
stream Mach number as a parameter.  The ratio is 
relatively small up to moderate free stream Mach 
numbers, so that solution of the homogeneous 
portion of Eqs.(7) can yield a good approxima-
tion.  For higher Mach numbers the non-
homogeneous equations should be solved.  Typi-
cally, flow angle is small throughout most of a 
flowfield, so that some of the RHS terms can be 
ignored if total accuracy is not required. 

Fig. 1  Relative  Magnitude  of  R  as a  Function of  Local         
Mach Number  ( 5/7=γ ) 

 
The system (7) can be viewed as linear, con-

stant-coefficient, non-homogeneous partial differ-
ential equations, assuming that the RHS terms are 
known quantities. The system can be solved by 
iteration and these terms, if reasonably small and 
well-behaved, can be approximated using previ-
ous iteration results.  (Previous asymptotic analy-
ses support this assumption.)  Solution of the ho-
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mogeneous left-hand-side (LHS) portion provides 
an initial starting approximation. 

 
3  Solution Procedure 

 
The solution process introduced in [2] for the 

non-homogeneous equations is outlined below.  It 
can utilize conformal mappings (for accurate im-
position of boundary conditions), integral trans-
forms, asymptotic methods, etc., depending on the 
problem being addressed.  Provided the RHS 
terms are analytically defined, closed-form ana-
lytical solutions can be obtained readily even 
when the RHS terms are functionally complicated.  
A Green’s function is not required. 

 
Introduction of the new complex dependent 

variable 
 θiJF −≡  (10) 
and the complex-variable mapping 
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contracts the Euler system (7) into the single first-
order PDE 
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The explicit entropy terms are represented by the 
quantity Ψ , defined as 
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Integration of Eq.(12) gives 
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where the homogeneous solution H(z) provides 
the means for imposing both surface and far-field 
boundary conditions. 

 
If a conformal mapping represented by 

 ηξζζ iGz +≡= )(  (15) 
is introduced, Eq.(12) becomes 
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Formal integration yields 
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Such a mapping can be used to transform to a 
suitable computational plane.  A first approxima-
tion (zero-order) to the solution of Eqs.(14) or 
(17) is obtained by setting R and Ψ  to zero, so 
that any analytic function of z (or ζ ) that satisfies 
the boundary conditions can be selected.  This 
zero-order approximation, which contains some 
compressibility effects, can then be used to ap-
proximate R and Ψ .  Subsequent solution of 
Eqs.(14) or (17) generates an improved approxi-
mation.  Iteration can be continued to achieve de-
sired accuracy. 

 
If a non-conformal mapping represented by 

 ηξζζζ iGz −≡= ),(   (18) 
is introduced rather than the mapping (15), the 
Euler system (7) becomes 
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This expression is slightly more complicated than 
Eq.(16) for the case of a conformal mapping.  
This type of specialized mapping was used in the 
analysis of [3].  For a non-conformal mapping of 
coordinate-straining type, the function G can be 
represented by the expansion 

 L+++= ),(),( 2
2

1 ζζεζζεζ GGz  (20) 
where ε  is a small mapping parameter.  This jus-
tifies including the −ζ derivative of F with the 
higher-order terms. 
 

The process outlined above is systematic and 
can be programmed for symbolic manipulation 
software such as Mathematica.  For example [2], 
the seventh-order analytical solution for flow past 
a circular cylinder was computer derived.  Solu-
tion results into the low transonic (shock free) 
range could then be generated from functional 
evaluations. 
 

Each order of correction generated by 
Eqs.(14) or (17) is done so by using only lower-
order results, and does not alter the lower-order 
results.  The expansion thus generated is not as-
ymptotic in the traditional sense.  Typically, an 
asymptotic expansion represents the departure 
from some baseline solution, the extent depending 
on the magnitude of a small expansion parameter.  
The baseline solution is independent of the expan-
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sion parameter.  When the expansion parameter 
vanishes or the higher-order terms are neglected, 
the baseline solution remains.  For example, in the 
case of the Janzen-Rayleigh formulation (see [5]), 
the incompressible solution is recovered when ei-
ther ∞M  approaches zero or the higher-order 
terms are neglected.  In the present formulation, 
the incompressible solution is obtained as ∞M  
approaches zero.  However, neglecting the higher-
order terms leaves a zero-order solution that is 
strongly influenced by ∞M .  This will be evident 
in the results presented below. 

 
4  Circular Cylinder Application 

 
The solution procedure outlined above will be 

demonstrated for the simple problem of com-
pressible shock-free flow past a circular cylinder.  
Results are compared at sub-critical Mach number 
with the asymptotic solution results of [2].  Criti-
cal Mach number is also predicted. 

 
The zero-order (homogeneous) solution can be 

obtained by mapping the physical plane exterior 
to the cylinder to a semi-infinite strip in the 
−ζ plane )0;( ≥≤ ηπξ .  This is accomplished by 

the mapping 
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This mapping is illustrated in Fig. 2 for a unit cir-
cle.  The solution is periodic in the −ζ plane.  In 
terms of polar coordinates 

 )sin(cos22 ωωω iyxerz i ++==  (22) 
Comparison of this expression with Eq.(21) im-
plies 
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Fig. 2  Mapping to Semi-Infinite Strip 

The boundary distribution of surface flow an-
gle bθ  is transferred to the base of the  strip as  
shown  in Fig. 3.   The analytic function with this  

Fig. 3  Surface Boundary Conditions 

 
base distribution is obtained from the Fourier rep-
resentation 
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it follows that 
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Comparison with Eq.(24) at η =0 provides the 
zero-order solution 
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Note that z and ζ  are related by the mapping (21).  
The real and imaginary parts of 0F  are 
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On the cylinder surface (η =0) 
 ]sin2[ln ξ=bJ  (30) 
and 
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 ][cottan 1 ξθ −=b  (31) 

For incompressible flow (i.e., 0→∞M ) these 
component solutions are equivalent to the classi-
cal circular cylinder solution, since the RHS forc-
ing terms vanish (see Fig. 1). 
 

Knowing the spatial functions 0J  or bJ  from 
Eqs.(28) or (30), then for a given free stream 
Mach number velocity magnitude q is obtained 
from Eq.(8), after which all other fluid dynamic 
variables can be determined.  Note that these rela-
tions provide a description of the entire flowfield. 

 
The surface Mach number variation (with arc 

length σ ) obtained from the zero-order solution 
(30) is compared in Fig. 4 with the analytical, 
fourth-order asymptotic solution results of [2].  
The free stream Mach number is 0.25.  The as-
ymptotic solution has a slightly lower peak Mach 
number and is very accurate at this condition.  
The zero-order solution agrees well with the 
fourth-order solution which is indicative of the in-
herent accuracy of the present formulation. 

Fig. 4  Surface Mach Number Solution Comparison 
 

The zero-order-solution Mach number distri-
bution for which sonic conditions are reached at 
the top of the cylinder is shown in Fig. 5.  The 
value of ∞M  is 0.382 (i.e., predicted critical Mach 
number); critical Mach number for a cylinder is 
0.40.  The accuracy of this result (within 5 per-
cent) is remarkable, having been obtained from 
the solution of a Cauchy-Riemann (linear, homo-
geneous) system. 

 
Surface Mach number distribution (as a func-

tion of arc length) predicted by the first-order so-
lution for a free stream Mach number of 0.25 is 

shown in Fig. 6.  Also shown is the fourth-order 
asymptotic solution appearing in Fig. 4.  The two 
solutions agree very closely; the asymptotic solu-
tion has a slightly lower peak Mach number.  The 
critical Mach number predicted by the first-order 
solution is 0.392 (2 percent error). 

Fig. 5  Critical Mach Number Prediction 

Fig. 6  Surface Mach Number Solution Comparison 
 
5  Airfoil Application 
 

Analytical formulation accuracy can be further 
validated by comparing results with classical in-
compressible Karman-Trefftz airfoil solutions and 
to some extent with CFD solutions for arbitrary 
airfoil shapes.  A typical Karman-Trefftz airfoil is 
shown in Fig. 7.  The included trailing edge angle 
is 10 degrees and the thickness is 10 percent. 

 
Fig. 7  Karman-Trefftz Airfoil 
 

At incompressible conditions (i.e., 0→∞M ) 
results from the present formulation differ from 
classical (exact) Karman-Trefftz solutions by less 
than 10-4 for arbitrary angle of attack.  Note that 
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RHS forcing terms are non-zero only for com-
pressible flow.  Critical Mach number for the air-
foil of Fig. 7 at 2 degrees incidence predicted by 
the zero-order solution is 0.65, as shown in Fig. 8. 

 
Fig. 8  Surface Mach Number Distribution 
 

A comparison of zero-order results with a 
CFD Euler solution for a NACA 0012 airfoil at 
zero incidence is shown in Fig. 9.  The free stream 
Mach number is 0.70.  Agreement is good consid-
ering the CFD results were generated with a 
coarse unstructured grid having 30 nodes on the 
airfoil surface.  Analytically predicted critical 
Mach number is 0.73, which is within 2 percent of 
that predicted by a fine-grid CFD solution. 

 
Fig. 9  Comparison of Surface Mach Number Predictions 
 
6  Shock Wave Description 

 
The zero-order Euler solution (solution of the 

homogeneous equation) is given in terms of ana-
lytic functions, while the higher-order correction 
terms involve non-analytic functions.  Analytic 
functions are adequate for predicting gross (zero-
order) flowfield features, such as flow behavior at 
a stagnation point or sharp trailing edge.  A shock 
wave is normally a zero-order effect.  Within the 
analytic-function framework, a discontinuity in 

surface flow angle bθ  produces a surface singular-
ity in bJ  (typically logarithmic), such as at a stag-
nation point.  Conversely, a surface discontinuity 
in bJ  (as at a shock wave) produces a singularity 
in bθ , which is physically inconsistent. 

 
For a transonic flow with an embedded shock 

wave, the shock is normal at the surface if the sur-
face is smooth, and bθ  is constant across the 
shock, even though bJ  is discontinuous.  The 
body surface can be mapped conformally by a 
number of procedures onto a portion of the real 
axis of some intermediate −φ plane, where 

 µλφ i+≡  (32) 
Surface flow-angle boundary conditions are trans-
ferred to the real axis.  The surface location at the 
foot of the shock is denoted by ∗z  in the physical 
plane and ∗λ  denotes its image in the −φ plane.  A 
strategy for describing a transonic flowfield with a 
shock wave is to include the shock as part of the 
computational-plane boundary on which boundary 
conditions are prescribed.  On this portion condi-
tions are provided by the Rankine-Hugoniot shock 
relations.  A very local conformal mapping which 
emulates a shock-like structure is 

 ηξζδλφλζ i+≡+−±= ∗∗
22)(  (33) 

The mapping parameter δ  is equal to the shock 
height.  This mapping is illustrated in Fig. 10.  
The shock is represented by the segment abc.   
Points a and c lie at ∗= λλ  on the real axis in the 
−φ plane.  In the −ζ plane, point b lies at ∗= ξξ  

and points a and c at δξξ m∗= , respectively. 

 
Fig. 10  Shock Wave Mapping 

 
The inverse of this spike mapping is 

 22)( δξζξφ −−±= ∗∗  (34) 
Note that ∗∗ = λξ . The image of constant −µ lines 
in the −ζ plane is shown in Fig. 11 for small val-
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ues of µ .  The variation of λ  along the real axis 
( 0=η ) is shown in Fig. 12. 

Fig. 11  Variation of η  Near Boundary 
 

Fig. 12  Variation of λ  Along Real Axis 
 

A local non-conformal mapping, as discussed 
in connection with Eq.(19), can be introduced in 
the vicinity of the shock wave to account for 
shock curvature.  This process introduces RHS 
forcing terms. 

 
The parameter δ  can be chosen so that the 

jump conditions across the shock at the surface 
agree with the normal shock relations.  The sur-
face entropy change across the shock can be ap-
proximated [6] for moderate shock strength by  

 32
12
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2
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+
= MS

γ
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where  1M  is the upstream shock Mach number. 
Since entropy is convected unchanged along the 
wetting streamline to infinity, SS ∆=∞  and the 
Mach number at infinity on this streamline can be 
approximated by 

 ∞∞∞∞
−

+−= SMMM )( 222
2

112 γ  (36) 

The quantity ∞M  is the upstream isentropic (ref-
erence) Mach number, as defined by Eqs.(4).  

Similar treatment is applied to off-body stream-
lines passing through the shock wave. 

 
7  Bi-Convex Airfoil Application 

 
The shock wave formation mechanism out-

lined above is illustrated for the case of flow past 
a thin bi-convex airfoil at zero incidence.  The 
analysis is carried out at the zero-order level. 

 
A bi-convex airfoil of thickness t can be ap-

proximated by 
 1;)1( ≤−= xxty 2  (37) 
The leading and trailing edges are at 1m=x , re-
spectively, as shown in Fig. 13 for the case 
t=0.10.  The surface flow angle is 

 xt
dx
dy

b 2tan ][1 −≈= −θ  (38) 

For t=0.15 the approximation error is less than 0.3 
percent. 

Fig. 13  Bi-Convex Airfoil Geometry 
 

Using the approximation (38) combined with 
the “slender-body” approximation (i.e., boundary 
conditions applied on the real axis instead of the 
body surface), the zero-order solution for zero an-
gle of attack can be obtained from the Poisson In-
tegral Formula, namely, 

 
ππ
t

z
zztF 4

1
1log2 ][0 +

+
−

=  (39) 

The constant term has been added to satisfy the 
condition that F vanish at infinity.  The real and 
imaginary parts of 0F  on the boundary (y=0) are 

 
ππ
t

x
xxtJb

4
1
1ln ])[( 2 +

+
−

=  (40) 

and 

 )]()([
1

tan
1

tanlim2 11
0 −

−
+

= −−

→ x
y

x
yxt

y
b π

θ  (41) 

The error introduced by the slender-body ap-
proximation is small (for small t) and can be com-
pensated for by a shearing transformation in the 
physical plane.  Such a transformation is non-
conformal and gives rise to RHS terms, as dis-
cussed in connection with Eq.(19). 
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Zero-order Mach number distributions for 
t=0.15 are shown in Fig. 14 for 20.0=∞M  and 
the case where sonic conditions are reached at the 
maximum thickness point (x=0).  The predicted 
critical Mach number is 0.71.  Numerical solution 
results are also shown.  Both solutions (CFD and 
simplified analytical) predict almost the same 
critical Mach number and generally agree well, 
which is indicative of the lesser importance of the 
RHS forcing terms.  The relatively coarse H-grid 
(90x30) used for the CFD solutions had 30 points 
on the surface.  Note the change in distribution 
shape due to compressibility as the free stream 
Mach number increases. 

 
Fig. 14  Comparison of Surface Mach Number Predictions 
 

For the transonic flow case, the inverse map-
ping (34) provides the variation (see Fig. 12) of x 
along the real axis of the computational −ζ plane, 
namely, 

 })({][ 22 δξξ −−−+= ∗∗∗ xRealxSignxx  (42) 
The image of the leading and trailing edge points 
are 

 22)1( δξ ++−= ∗∗ xxle  (43) 

 22)1( δξ +−+= ∗∗ xxte  (44) 
Using the approximation noted in Eq.(38), the 
flow angle boundary conditions upstream and 
downstream of the shock may be written 

 
δξξδξθ

δξξδξθ

+≥≥−−+−=

−≤≤−−−−=

∗∗∗

∗∗∗

xxxt

xxxt

teb

leb

;)(2

;)(2

][

][
22

22
 (45) 

Various levels of approximation can be applied 
over the shock portion of the boundary.  Using a 
quadratic-type distribution, application of the 
Poisson Integral Formula gives the solution in the 
form 

 

}

{

22

22

0

)(

)(

))((

))((2

∫
∫
∫

∫∫

+
∗

−

∗

+
∗∗

−

∗∗
∗

∗

∗

∗

∗

∗

∗

−
−−

+
−

−−

−
−

−−−

+
−

+−−
+

−
=

te

le

te

le

x

x

x

x

x

x

dx

dx

d
xx

d
xxdxtF

ξ

δ

δ

ξ

δ

δ

ξ

ξ

ζσ
σδσ

ζσ
σδσ

σ
ζσ

δσσ
ε

σ
ζσ

δσσ
ε

ζσ
σ

π

 (46) 

Evaluation of these integrals is straightforward. 
 

The zero-order solution (46) is dependent on 
the three parameters δ,∗x  and ε .  The conditions 
that the surface Mach numbers on either side of 
the shock satisfy the Rankine-Hugoniot normal 
shock relations and that 1=M  at the top of the 
shock (point b in Fig. 10) are sufficient for their 
determination.  As a first approximation, the sur-
face entropy change across the shock given by 
Eq.(35) can be incorporated by imposing a de-
creasing linear variation of S∆  over the segment 
bc in Fig. 10.  This segment corresponds to the 
downstream side of the shock. 

 
The zero-order surface Mach number distribu-

tion for t=0.15 is shown in Fig. 15 for transonic 
conditions that include a shock wave.  The ana-
lytically predicted shock location lies downstream 
of that predicted by the coarse-grid CFD solution, 
although the numerical shock is smeared over a 
number of surface nodes.  Mach number contours 
are shown in Fig. 16 for t=0.10 and 85.0=∞M .  
The value of δ  (i.e., the shock height) is 0.35.  
Note that the vertical scale in Fig. 16 is magnified.  
The basic flowfield structure has been accurately 
modeled by the solution of a linear homogeneous 
system of equations. 

 
Fig. 15  Comparison of Surface Mach Number Predictions 
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Fig. 16  Transonic Mach Number Contours 
 
8  Summary 

 
A new compact formulation for the 2D steady 

Euler equations in the physical plane is presented 
along with an efficient solution procedure.  The 
Euler equations are reduced to a linear, constant-
coefficient, non-homogeneous Cauchy-Riemann 
system.  A complex-variable transformation fur-
ther contracts the Euler system into a single first-
order equation in the complex plane.  This non-
homogeneous PDE can be analytically solved at 
each order of approximation by iterative correc-
tion using lower-order-solution results. 

 
The dependent variables are flow angle and 

logarithm of isentropic momentum magnitude 
relative to free stream value. The latter variable 
incorporates a substantial portion of the (nonlin-
ear) flowfield compressibility effects.  Surpris-
ingly accurate compressible flow-field solutions 
can therefore be obtained from the (zero-order) 
solution of the homogeneous portion of the equa-
tions (typically a linear boundary-value problem 
on a simple domain).  This choice of dependent 
variables offers distinct advantages over more 

conventional variable choices in terms of bound-
ary condition imposition and solution accuracy. 
 

Results are presented for the simple case of 
compressible flow past a circular cylinder to dem-
onstrate the solution procedure and its accuracy.  
They agree well with sub-critical analytical results 
from an earlier asymptotic analysis.  The solution 
template for the circular cylinder is extended to air-
foil geometries.  Analytical airfoil results compare 
favorably with CFD predictions.  A remarkably ac-
curate prediction of critical Mach number is ob-
tained from the zero-order solutions.  

 
A very local shock-like mapping is introduced 

that provides a mechanism for describing tran-
sonic flow with an embedded shock wave.  The 
Rankine-Hugoniot shock relations are approxi-
mately enforced (at zero order) across the shock 
to demonstrate the procedure.  Results are pre-
sented for a thin bi-convex airfoil at transonic 
conditions and comparison with CFD predictions 
validates the shock formation procedure. 

 
 
The author would like to thank Dr. J. Shim for 

providing the CFD results shown herein. 
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