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Abstract  

The paper investigates the small-signal stability 
of a 270V DC power system for a more electric 
aircraft, which employs switched reluctance 
generator technology and multiple distributed 
power electronic converters for flight control 
surface actuation, environmental control, and 
numerous DC and AC loads. Non-linear state 
space models for the complete system have been 
established and the eigenvalue method is 
applied to access the small-signal stability. 
Time-domain simulations are used to validate 
the simplified mathematical models and the 
findings of the proposed analysis technique. 

1 Introduction  
Currently, aircraft loads are supplied from a 
combination of individually optimized 
hydraulic, electrical, pneumatic, and mechanical 
power sources. However, the use of electrical 
power alone will enable global optimization and 
significant system level performance 
improvements [1]. This is the more-electric 
aircraft (MEA) concept, and although preferred 
architectures for MEA power systems have yet 
to be established, they will feature multiple 
distributed power electronic converters for flight 
control surface actuation, environmental 
control, and numerous DC and AC loads [2]. 
Further, a MEA power system would include 
variable speed embedded power generation, 
which is likely to favor switched reluctance 
(SR) machine technology because of its high 
power density, its ability to operate in harsh 
environments and the fact that it offers a degree 
of fault-tolerance [3]. However, the 

performance of such a power system is 
problematic due to the fact that power electronic 
converters generally exhibit constant power 
characteristics by virtue of their nearly ideal 
regulation capability, and are, therefore, behave 
as negative impedance loads. The interaction of 
these negative impedance loads with the SR 
generator and its control system may cause 
instability problems [4][5]. 
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This paper assesses the small-signal stability of 
a simple, yet representative, 270V DC power 
system, which employs a switched reluctance 
generator, as shown in Fig. 1.  All electric drive 
sub-systems for flight control surface actuation, 
such as electro-mechanical actuators (EMA) and 
electro-hydraulic actuators (EHA) which 
operate frequently in transient modes, are 
classified as dynamic loads. The DC/DC and 
DC/AC converters, which supply various 28V 
DC loads or 115V/400Hz AC loads for 
avionics, and other instruments and electronic 
equipment, are considered as static loads. Both 
static and dynamic loads are controlled by 
power electronic converters and therefore
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exhibit constant power characteristics. The 
system also includes passive loads, referred to 
as constant voltage loads, for cabin service 
equipment and electrical lighting systems etc.  

2 Modeling of the Power System Architecture  

2.1 Drive Sub-system  
Without loss of generality, a dynamic load for 
flight control surface actuation is represented by 
a three-phase inverter-fed drive sub-system, as 
shown in Fig. 2. The drive controller usually 
consists of an inner current/torque control loop 
and an outer speed/position control loop, as 
shown in Fig.3 (a). The function f(u) represents 
the mapping between the torque demand and the 
motor current demand and is dependent on a 
particular drive technology being employed. 
The current control loop regulates the motor 
current via pulse width modulation (PWM) and 
provides appropriate electronic commutation 
signals for the inverter operation. Since the 
mechanical time constant is usually much 
greater than the electrical time constant. The 
inner loop may be simplified to a first-order 
delay with the desired current loop time 
constant Tm, as shown in Fig.3 (b). 
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Fig. 2. Schematic of an inverter fed drive sub-system  
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Fig. 3 Drive sub-system model 

The state-space equations for the drive sub-
system operating in the linear control region are 
given by: 
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where ωM, and TeM are the motor output speed 
and torque,  TL is the load torque, F and J is the 
viscous friction coefficient and moment of 
inertia of the drive system, and KpM, and KiM is 
the proportional and integral control gains of the 
speed loop. xM represents the internal state of 
the PI speed controller. 

However, this tightly regulated drive sub-
system indeed behaves as a constant power load 
to the DC supply network, which can be 
illustrated as follows. In steady state, the output 
power of the inverter is given by:  

ϕcos3 mmout IVP =  (2)
 
where Vm, Im and cosφ are the rms motor  
voltage, current, and power factor at a specific 
operating point. If the inverter loss is negligible, 
the inverter input power should be equal to its 
output power, i.e. 
 

ϕcos3 mmdcdc IVIU =  or  

ϕϕ cos3cos3 mm
dc

m
dc mII

U
V

I ==  (3)

 
where Idc is the average inverter DC link current 
over a switching period and Udc is the DC 

supply voltage. 
dc

m

U
V

m =  is defined as a 

generalised modulation index. In a state-of-the-
art digitally controlled drive, the amplitude 

mV2  of the motor input voltage (demand) is the 
output of the current control loop and is 
realizedby inverter PWM operation via 
adjusting the modulation index m against 
measured DC link voltage Udc in each sampling
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period. If the supply voltage Udc varies from 
Udc1 to Udc2 due to a disturbance in the network, 
the current controller output voltage mV2  has 
to be maintained constant in order to achieve the 
same output speed and torque (or the same 
output power). Consequently the modulation 
index will be adjusted by the digital PWM 
modulator to vary from 11 / dcm UVm =  to 

22 / dcm UVm = . It follows from (3) that over one 
switching cycle, Idc will varies from 

1
1

cos3

dc

mm
dc U

IV
i

ϕ
=  to 

2
2

cos3

dc

mm
dc U

IV
i

ϕ
= , i.e. from 

11 / dcoutdc UPI =  to 22 / dcoutdc UPI = . Thus Idc 
increases as Udc decreased in one switching 
cycle or vice versa, and the drive subsystem 
behaves like a negative impedance load to the 
power system. 

2.2 SR Generator Sub-system  
Fig. 4 shows the schematic of the switched 
reluctance generator (SRG) sub-system. The SR 
generator is usually connected to the DC bus via 
asymmetric H-bridges. Torque in the SR 
machine is produced by the natural tendency of 
the stator poles to attract the nearest rotor poles. 
If the phase is excited as the rotor poles rotate 
through the aligned position when the phase 
inductance decreases with the rotor position θ, 
(dL/dθ < 0) as illustrated in Fig. 5 (a), the rotor 
experiences torque opposing to its direction of 
rotation and hence the machine operates as a 
generator. The generator speed varies with the 
engine speed over a speed range of 1 to 2 times 
the base speed. Below the base speed, the output 
power can be controlled by regulating the phase 
current with fixed turn-on and turn-off angles, 
Fig. 5 (b) [6]. When operating above the base 
speed, the SR generator enters the single pulse 
operation mode and the output power is 
controlled by variation of the turn-on and turn-
off angles, Fig. 5 (c) [7]. 
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Fig. 4 SR generator sub-system 
 

 
Fig. 5 Idealized SR machine inductance variation (a) and 
SR generator control modes: current control mode (b) and 
single pulse control mode (c) 

The output power of the SR generator is usually 
regulated by a voltage controller, which is 
typically a proportional-integral (PI) controller, 
so that the bus voltage is maintained close to its 
nominal value of V*

dc = 270V. An inner 
current/torque control loop is also employed, as 
shown in Fig. 6 (a), to improve the power 
control response and to reduce the effect of 
back-emfs on the voltage control loop. Torque 
control is achieved by regulating the current via 
pulse-width modulation (PWM) when operating 
below the base speed, or by varying the turn-on 
and turn-off angles above the base speed. 

Since the torque/current control loop response is 
much faster than that of the voltage loop, the 
relationship between the power/torque output 
and demand may be represented by a first-order 
delay with a time constant Tg when the 
torque/current PI controller operates in its linear 
region. Therefore, the generation sub-system 
model can be simplified to that shown in Fig. 
6(b).
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Fig. 6 SR Generator sub-system model 

The voltage controller gains, KpG and KIG, may 
be determined by assuming an ideal current loop 
response with no delay. The DC bus voltage, 
Vdc, is related to the nominal demand voltage, 
V*

dc, and the load power PL by the following 
equation: 
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Thus, if the desired voltage control loop 
bandwidth (or natural frequency) and damping 
ratio are given by ωnG and ξG, respectively, the 
gains, KpG and KIG can be obtained from: 
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The state-space equation for the generator sub-
system when operating at a constant speed is, 
therefore, given by: 
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(6)

where PG is the generator output power, C1 is the 
DC bus filter capacitor, IL is the output current 
of the SR generator sub-system and xG is the 
internal state of the voltage PI controller. 

2.3 Simplified DC Power System Model 
The SR generator sub-system and the drive sub-
system are connected to the DC power system 
via an R-L-C network which represents the 
effects of the transmission line (R, L) and the 
load filter (C2), as shown in Fig. 7. The drive 
sub-system is represented by a dynamic load 
DL. A static constant-power load SL (such as a 
DC-AC converter supplying avionics systems) 
and a constant-voltage load RL (such as cabin 
services electrical loads) are also represented in 
the model. Both the static and dynamic loads are 
controlled by power electronic converters which 
draw constant power at their inputs. 
Consequently, they behave like negative 
impedance loads to the power system. 
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Fig. 7 Simplified 270V DC power system model with SR 
generator 
 

2.4 State-space equations 
When the SR generator and drive subsystems 
operates in the linear control region, and 
assuming that the power drawn from the DC 
supply by the drive-subsystem can be 
approximated by its output power (TeMωM), the 
state-space equations which govern the dynamic 
behavior of the system in Fig. 7 can be derived 
by combining the drive-subsystem state-space 
equations (1) and the generator sub-system state 
space equations (6) with the circuit equations 
governing the RLC network, and are given in 
equations (7), where Udc is the load side DC bus 
voltage and Ps is the total power drawn by static 
constant power loads. R and L are the cable 
resistance and inductance, respectively. 
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3 Small-signal Stability Studies 
The small-signal stability of the system 
represented by equations (7) has been studied by 
evaluating the eigenvalues of its Jacobian 
matrices, which are given in equations (8). As 
will be seen, the Jacobian matrix is dependent 
on the drive control parameters (KpM, KiM and 
Tm), the filter parameters (C1 and C2), the cable 
resistance R and inductance L, the operational 
conditions (ωM0, TeM0, Vdc0, Ps and RL), and the 
generator subsystem control parameters (KpG, 
KiG and Tg).  
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Further, the sensitivity of the ith eigenvalue λi to 
the element akj of the Jacobean matrix can be 
evaluated by the product of the jth element, φji, 
of the ith right eigenvector and the kth element, 
ψki, of the ith left eigenvector [8]:  

ikji
kj

i
a

ψφ
λ

=
∂
∂  (9)

The sensitivity of the ith eigenvalue λi to the kth 
diagonal element akk of the Jacobean matrix, 
given by equation (10), is known as the 

participation factor and is indicative of relative 
strength of the interaction between the ith system 
mode, and the kth state state variable. 

ikki
kk

i
ki a

p ψφ
λ

=
∂
∂

=  (10)

Table 2 shows the participation factor of the 
power system at a given operating point. As will 
be seen, the three drive sub-system state 
variables and their associated eigenvalues (λ1, 
λ2, λ3) are decoupled from the rest of the system 
in small signal sense. Further by analyzing the 
sensitivity of these three eigenvalues, it can be 
shown that they are only dependent on the 
operating condition (ωM0, TeM0) and control 
parameters (KpM, KiM, and Tm) of the drive sub-
system. Conversely, the other five eigenvalues 
are independent of the drive sub-system control 
parameters but are influenced by the total power 
of the drive sub-system, the control parameters 
(KpG, KiG and Tg ) of the generator sub-system, 
the filter capacitances, the cable parameters as 
well as operating conditions (Vdc0, Ps and RL). 
Fig. 8 shows the eigenvalue sensitivity to these 
parameters and operating conditions. 

ωM,TeM,KpM,KiM 

PeG,KpG,KiG,  
Vdc,IL,Udc 

ωM0*TeM0,Ps,RL

 
Fig. 8 Eigenvalue sensitivity map 
Since the drive sub-system is effectively 
decoupled from the complete system in small 
signal sense, the study of the small signal 
stability of the DC power network can be 
performed by replacing the drive sub-system as 
a constant power load. Consequently, state-
space equation can be further simplified in (11) 
where PCPL denotes the total power of all 
constant power loads connected to the system.
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Fig. 9(a) shows the influence of the filter 
capacitors C1 and C2 on the loci of the five 
eigenvalues when the SR generator supplies an 
output power of 60kW to purely constant-power 
loads via a 15m cable whose parameters are 
given in Table 1. The DC bus voltage is 270V 
and the voltage control bandwidth is set to 51 
Hz (320 rad/s). As will be seen, since the real 
eigenvalue in the left-half s-plane is far away 
from the imaginary axis, the system stability is 
essentially dominated by the two conjugate 
pairs, one of which has a much higher natural 
frequency. Fig. 9 (b) shows the zoomed view of 
the loci of the pair of eigenvalues with low 
natural frequency. It is evident that C2 has a 
significant influence on the eigenvalues of the 
high frequency pair, and less influence on the 
low frequency pair, especially when C1 is large. 
Further, a small value of C2 results in less 
damping on the eigenvalues of the high 
frequency pair and, hence, more oscillatory 
response, and may even lead to instability when 
C1 is large.  Thus, in order to avoid the 
eigenvalues of the high frequency pair being 
dominant, C2 must be sufficiently large. Fig. 
9(c) shows the influence of the two capacitances 
on the damping ratios of the eigenvalues of the 
low frequency pair. From these figures, 
appropriate values for C1 and C2 can be chosen. 

Resistance (ohms/m) Inductance (uH/m) 
0.00016 0.108 

Table 1 Cable parameters of transmission line 

Fig. 10 shows the variation of the dominant-pair 
eigenvalues with the voltage controller 
bandwidth and the delay time of the inner 
torque/current (power) control loop. It can be 
seen that when the delay time, Tg, is relatively 
large, an increase in the voltage control 

bandwidth will result in the dominant-pair 
eigenvalues moving to the right-half s-plane, 
and the system becomes unstable. Hence, an 
appropriate voltage control bandwidth should be 
chosen based on a realistically achievable 
current (power) loop response time in order to 
maximize the system stability margin. 
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(b) Loci of low frequency pair eigenvalues 
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Fig. 9 Influence of DC bus and load filter capacitances on 
eigenvalues
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Fig. 10 Influence of voltage and current control 
bandwidth on eigenvalues 

4 Time-domain simulations 
Time-domain simulations using detailed power 
system models to represent the behavior of the 
SR generator, the drive sub-system for dynamic 
loads, the static constant power load, the passive 
components, the power electronic converters 
/inverters, and various control functions 
established in the Matlab/Simulink environment 
in conjunction with the SimPowerSystemTM 
Toolbox, have been undertaken to support the 
findings of the state space model established in 
section 2 and analyzed in section 3.  

Fig. 11 shows the transient responses of the load 
side DC bus voltage, the average current and 
power over one PWM cycle drawn by the drive 
sub-system inverter when a constant voltage 
load (RL = 5ohm) is switched on at t = 0.02 (s). 
The permanent magnet motor drive sub-system 
operates at 1500rpm with 200Nm load torque, 
and is controlled by an inner current loop and an 
outer speed loop. The space vector modulation 
technique is used to generate the switching 
signals for the inverter, and the modulation 
index is adjusted according to the output voltage 
demand of the current control loop and the 
measured DC bus voltage. As will be seen, a 
step demand of the passive load results in a DC 
bus voltage dip. However, due to rapid 
adjustment of the modulation index, the motor 
operation is not affected in that the total power 
drawn by the inverter sub-system is maintained 

constant, and the inverter input current increase 
as the bus voltage decreases. 

 
Fig. 11 Transient responses with a drive subsystem 

 
Fig. 12 Transient responses with constant power load 
when C1=1mF and C2=0.5mF 

Fig. 12 shows the transient responses of the DC 
bus voltage and current, and the load voltage 
when an initial 65 kW resistive load is suddenly 
switched to a 60kW constant power load. The 
values of C1 and C2 are 1mF and 0.5 mF, 
respectively, and the other parameters and 
conditions being the same as those which were 
assumed in deriving Fig. 9. As can be seen, the 
transient responses are stable but exhibit 
overshoot due to the relatively low damping 
ratio, as is evident in Fig. 9. However, if C1 is 
increased to 100mF, the transient responses 
become unstable as shown in Fig. 13. This 
instability is also predicted in Fig. 9. Thus both 
time-domain simulation results are consistent
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 with those obtained by the eigenvalue analysis based on the simplified system model.

 
Fig. 13 Transient responses with constant power load 
when C1=100mF and C2=0.5mF 

5 Conclusions 

Non-linear state-space models representing the 
dynamic behavior of a representative 270V DC 
MEA power system have been established, the 
small-signal stability of the system has been 
assessed by analyzing the eigenvalues and 
participation factor of the Jacobian matrices. It 
has been shown that control parameters of the 
motor drive sub-system have no influence on 
the small signal stability of the power system. 
However, the voltage controller gains of the 
generator sub-system, and the DC bus and load 
filter capacitances have profound influences on 
the system stability. Time-domain simulations, 
using detailed system models established in the 

Matlab/Simulink environment, have further 
supported the results of the eigenvalue analysis. 
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 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 
ωM 0.48637 0.75535 0.75535 0 0 0 0 0 
TeM 0.40231 0.55994 0.55994 0 0 0 0 0 
xM 1.08410 0.34111 0.34111 0 0 0 0 0 
PG 0 0 0 1.11650 0.00146 0.00146 0.06263 0.06263 
xG 0 0 0 0.00975 0.00002 0.00002 0.67406 0.67406 

Vdc 0 0 0 0.08160 0.19024 0.19024 0.44507 0.44507 
IL 0 0 0 0.00323 0.50031 0.50031 0.00025 0.00025 

Udc 0 0 0 0.04789 0.31153 0.31153 0.26978 0.26978 

Table 2 Participation factor of the DC power system under the given operational condition (ωM0 =1500 
rpm, TeM0 = 200Nm, Vdc0= 270 V, Ps = 0 and RL = 0) 

 


