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Abstract 
A methodology employing neural networks for 
predicting aerodynamic coefficients of generic 
aircraft was developed. Basic aerodynamic 
coefficients modeled as functions of angle of 
attack, Mach number, and Reynolds number 
provide data to be inputed into a neural network. 
In this latter case, the coefficients are also 
dependent on the wing geometry of the 
configuration. The neural network is initially 
trained on a relatively rich set of data from 
numerical simulations to learn an overall non-
linear model dependent on a large number of 
variables. A new set of data, which can be 
relatively sparse, is then supplied to the network 
to produce a new model consistent with the 
previous model and the new data. The new model 
interpolates with high accuracy in the sparse test 
data points and the obtaining of a result for a 
generic configuration is relatively an easy quick 
task. Because this, the methodology is highly 
suited to be fitted into a multi-disciplinary design 
and optimization framework, which make 
extensively use of aerodynamic parameters to 
calculate performance and loads, besides other 
core tasks. A Multilayer Perceptrons (MLP) 
network was employed for predicting 
NACA23012 polar curves considering Reynolds 
number varying from 1x106 to 5x106. This two-
dimensional test case was also run using a 
Functional-Link network in order to compare 
performance and accuracy from both 
architectures. Similarly, a two-layer network was 
utilized to calculate the drag coefficient of a 
regional twinjet of fixed geometry. For this 
application, the network was trained with 99 
points, which represented Mach number in the 

0.20 - 0.82 range. The lift coefficient in this case 
varied from 0 up to a determined upper limit, 
which decreases when the Mach number is 
increased. Another neural network was designed 
to predict the drag coefficient of a wing-fuselage 
combination, where the wing planform was 
allowed to vary. Finally, an application 
contemplating wing with twist was carried out. 
Further work will also consider drag prediction 
for twisted wings composed of generic airfoils. 

Symbology and Abbreviations 
 

BL =  Abbreviation for boundary layer 
Cd  =  Two-dimensional drag coefficient 
CD  =  Three-dimensional drag coefficient 
Cl  =  Two-dimensional lift coefficient 
CL  =  Three-dimensional lift coefficient 
M  =  Mach number  
Re  =  Reynolds number 
α  =  Angle of attack 
AR = Wing aspect ratio 
 λ = Wing taper ratio 
φLE = Wing leading-edge sweepback angle  
YK = Wing break position referred to wingspan 
CFD =  Computational fluid dynamics 
MDO = Multi-disciplinary design and optimization 
FLN = Functional link network 
LMS = Least-mean square algorithm 
LHS =  Latin hypercube sampling 
RBF = Radial basis function 
MLP = Multi-layer perceptron 
Fig =  Figure 

1. Introduction 
The present work discusses the application of neural 
networks for accurately predicting aerodynamic coefficients 
of airfoil and wing-body configurations. Meta-models 
based on neural-network are able to handle non-linear 
problems with a large amount of variables. Some test cases 
were carried out in order to validate the entire procedure for 
aerodynamic coefficient prediction. The results indicate that 
it is possible to improve aircraft conceptual studies6,7, 
which make extensive use of aerodynamic calculations. The 
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methodology is also suited for implementation into a multi-
disciplinary aircraft design and optimization (MDO) 
framework. In this context, huge computer time savings 
without losing the required accuracy for the definition of 
the aircraft configuration were recorded. 

For centuries, the scientific approach for the understanding 
of physical laws was based on the construction of 
mathematical models. Usually solving a non-linear system 
of equations, the behavior of physical phenomena could 
then be known. Mathematical models can be used to 
describe the behavior of the non-linear systems, considering 
initial conditions and boundary conditions are furnished. 
However, new simulation tools, among them neural 
networks, appeared and are providing new ways to predict 
system behavior. They represent a new computing 
paradigm based on the parallel architecture of the brain. 
Actually, neural network refers to a multifaceted 
representation of neural activity constituted by the essence 
of neurobiology, the framework of cognitive science, the art 
of computation, the physics of statistical mechanics, and the 
concepts of cybernetics. Inputs from these diverse 
disciplines have widened the scope of neural network 
modeling with the emergence of artificial neural networks 
and their engineering applications to pattern recognition 
and adaptive systems, which mimic the biological neural 
complex in being trained to learn from examples.  

Neural networks are universal function estimators that 
contain artificial neurons. The neurons are linked by 
adaptive interconnections, arranged in a large parallel 
architecture. This arrangement produces a weighted sum of 
the inputs and can be trained to produce an accurate output 
for a given input. This training consists of adjusting the 
weights applied by the network as it sums the inputs. The 
power of neural networks lies in their ability to represent 
general relationships, and in their ability to learn these 
relationships directly from the data being modeled. There 
are essentially four broad categories of problems to which 
neural networks have applications: classification of 
patterns; function approximation; behavior prediction; and 
data mining. 

Aircraft design is a highly complex and time-consuming 
task involving several strongly coupled disciplines. 
Considering the current highly competitive aircraft market, 
it has become mandatory for new designs that they must be 
submitted to multi-disciplinary optimization process. 
Aeronautical industry design objectives usually are 
considered in the following order: obtaining a feasible and 
viable configuration; to perform a robust design task; 
achieving an improved configuration; an optimal aircraft. 
Due to all those reasons, genetic algorithms has become 
commonplace within MDO frameworks as well as acquired 
widespread use in many other applications. A usual 
approach for MDO is concerned with the use of genetic 
algorithms, which require a large amount – population – of 
individuals, and the application of random mutations and 
crossing over of those individuals, for each generation of 
this population4. This approach may lead to a huge amount 

of different designs, which should be individually evaluated 
in order to segregate Pareto-optimum solutions and discard 
unfeasible or non-efficient results. The performance of each 
aircraft is evaluated based on the calculation provided by 
different dedicated modules for every aspect being 
analyzed. The analysis modules adopted in airplane MDO 
problems usually comprise: aerodynamics; performance; 
stability and control; weight and structures and, ideally, 
acquisition and operating costs. Aerodynamic 
characteristics of the population could be obtained by using 
analytical or semi-empirical methodologies provided by 
different authors6,7. This approach, however, presents a 
serious drawback: although usually qualitative results are 
correct, numerical results provided by such methods are 
highly unreliable, due to the inherent difficulty in modeling 
highly non-linear aerodynamic phenomena, as well as the 
frequent necessity of interpolating and even extrapolating 
relations provided by analysis of wind-tunnel experiments. 
Design based on these methods will never provide the level 
of accuracy required for MDO applied for aircraft design. 
In addition, in the usual approach, aerodynamics analysis of 
each individual in the population is done with complex and 
time-consuming CFD software, which can be responsible 
for a large amount of the total time spent in the MDO 
process. For these reasons, a neural-network based meta-
model seems to be more suited for aircraft conceptual 
studies. Implementing an aerodynamics module based on 
neural networks has further potential advantages over the 
usual CFD approach: 

• The calculation of the aerodynamics coefficients by 
CFD analysis can be only accomplished for the 
training set of individuals, thus dramatically reducing 
the amount of computational effort required for the 
overall design process. In this case, the coefficient 
values for the rest of the population are obtained much 
faster, by interpolating the results of the training set by 
means of a properly trained and validated neural 
network; 

• The reduction in computation time provided by a neural 
net aerodynamic data bank could also allow increasing 
the size of the population under consideration and the 
number of generations, thus leading a broader range of 
available quasi-optimum solutions for the proposed 
problem; 

• No necessity to retrain the network from scratch every 
time a new project begins. Neural networks can be 
trained accumulatively, by using the so-called 
adaptative learning algorithms. Thus, knowledge 
accumulated in past can always be recycled and 
expanded. This principle is granted by the minimum 
disturbance principle implemented in the LMS 
algorithm5; 

• For the cumulative training of the network, data from 
multiple sources, such as CFD analysis, wind tunnel 
and flight tests can be simultaneously used as input. In 
this case, special attention must be taken in order to 
hierarchically classify data based on its origin and 
reliability. 
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The most usual networks employed for function 
approximation are the multi-layer perceptrons (MLP), the 
functional-link Networks (FLN), and the radial basis 
functions networks (RBF). All these architectures are very 
efficient in performing data regression, and can be trained 
in order to output data with a desired precision1.  

Multi-layer perceptrons are formed of at least two layers of 
neurons. In order to the network to be able of 
approximating non-linear functions, it is important to have 
at least one hidden layer of neurons with non-linear transfer 
functions. The output layer of the MLP network is usually 
composed of neurons with linear transfer functions, in order 
to allow a broad range of output values. MLPs, as well as 
other classes of neural networks, can be fully or partially 
connected, and can be optimized in order to eliminate 
useless links, thus reducing the number of parameters in the 
net and allowing faster calculations. 

In the functional link network, the hidden layer performs a 
functional expansion on the inputs, which gives the 
possibility to attach a physical meaning to the network 
parameters3. The approximation capability of an FLN 
depends on the chosen set of model basis that forms the 
hidden layer. Provided that the set of model bases is 
sufficiently rich (contains sufficient higher-order terms), it 
can be said that any continuous function can be uniformly 
approximated to certain accuracy. The FLNs are also linear 
in the parameters, which means that these parameters can 
always be learned in the least-square sense2. 

RBF neural networks are other major class of neural 
network model - in which the distance between the input 
vector and a prototype vector determines the activation of a 
hidden unit. RBF networks are excellent regressors, and are 
usually single-layered structures, which can be trained 
faster to the desired accuracy. 

2. Network architecture 
For the test cases that studied, multi-layer non-linear 
perceptrons networks were employed. The networks were 
developed using Matlab®, which contains a large number of 
sophisticated algorithms for training and optimization of 
this type of network, allowing greater flexibility in design 
and performance, as well as ease of implementation, 
compared to FLNs and RBFs set up in the same language.  

As stated before, the networks studied in this paper were set 
up as MLPs. However, the architectures implemented for 
both cases are different in terms of layers arrangement, 
number of neurons and transfer functions. 

It is not possible to set up deterministically the architecture 
of a non-linear network. In this case, the output layer is 
defined by the outputs of the problem being studied. The 
characteristics of the hidden layers must be defined as a 
compromise between the network size, the accuracy, and 
precision of the generated output and the training time, as 
well as overtraining and oscillatory behavior avoidance. 

A trial and error procedure was employed for the test cases 
under consideration for the definition of the network 
architecture. The procedure algorithm compares different 
possibilities and chooses that with best balance between the 
resulting performance goal (mean square error of the 
outputs) and normality of distribution of the resulting 
errors. 

2.1.1 NACA23012 airfoil 
 Inputs: Re; α; outputs: Cl; Cd 

In a first approach, a two-layered network was employed. 
However, this layout was unable to resolve the acute bend 
present in the drag polar of the airfoil due to the free 
transition of the boundary layer at angle of attack close to 
zero lift. For this reason, a more complex design 
methodology was adopted. In order to approximate the 
existing relationship between the provided inputs and 
outputs, a three-layered network was adopted with the 
following layout: 

 

2.2 Transport twinjet 
Inputs: Re, M, and CL; output: CD 
 

The drag polar of an airplane is normally a smooth, well-
behaved curve. For that reason, a simple two-layered 
network was able to produce excellent interpolation results 
in this case, and the following layout was adopted: 

 

2.3 Wing-body configuration with generic 
wing geometry 
For this case, inputs can be divided in two groups: 

• Wing geometry: AR, λ, φLE,, and YK. 
• Flow condition: M, Re, and CL. 

The output is the drag coefficient CD. 

After many different attempts, the network architecture was 
defined according to Table 3, and presented a good 
compromise between accuracy of the modeled phenomenon 
for the training set and small oscillatory behavior for the 
validation data set (without overtraining). 

Layer 1 2 
Number of neurons 10 1 
Transfer function Log-sigmoid Pure 

linear 
Table 2 - Network structure for the NACA 23012 

Airfoil. 

Layer 1 2 3 
Number of 

neurons 5 5 2 

Transfer 
function 

Tangent-
sigmoid Log-sigmoid Pure 

linear 
Table 1 - Network structure for the NACA 23012 

Airfoil. 
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3. Training 
Training of a neural network is the process of adjusting the 
network’s gains and biases in order to obtain outputs as 
close as possible to the known target results for the training 
set of inputs. This array of inputs and corresponding 
expected outputs in known as the training set. The quality 
of the resulting outputs is evaluated by measuring the 
squared mean error of the network results compared to the 
targets, and the training algorithm is an optimization 
process, which tries to minimize this objective function, 
thus, the training procedure is also known as Least mean 
square. Moreover, the resulting errors are used as 
correction factors for the recalculation of the weights of the 
internal connections of the network, and those errors are 
propagated through the network from the output to the input 
layer, in a process so called back propagation. Neural 
networks can be trained simultaneously with a large 
training set (batch training), or accumulatively, by 
improving the network adding one point each time 
(adaptative training). In the cases when the training set is 
known before start of the process, batch training is 
preferable, due to its computational efficiency compared to 
adaptative methods. The optimization process of the LMS 
algorithm can be solved by several methods. For this paper, 
the chosen methodology was the Levenberg-Marquardt 
algorithm, which is an implementation of a quasi-Newton 
method, with variable learning rate. This algorithm ensures 
convergence, as in the steepest descent method, and has 
good performance, as does the Gauss-Newton algorithm. 

 

3.1 NACA 23012 airfoil 
The training set of inputs and outputs for the airfoil was 
generated using the software XFOIL9 with the free laminar-
turbulent boundary layer transition. The array consists of 
125 points, generated according to the following schedule: 

Parameter Minimum value Maximum Value 
Re (x106) 1.00 6.00 

α -3o 18o 

Table 4 - Training set for the NACA 23012 airfoil. 

3.2 Transport twinjet 
Training data for the network that models the drag polar of 
the regional jet (Table 5) was obtained by applying Class-II 
drag breakdown methodology, which consists in calculating 
drag coefficients for each isolated component of the 
airplane (e. g., wing, fuselage, etc.) and combining those 

components, plus interference and dynamic pressure 
correction factors, to obtain the total drag coefficient of the 
aircraft. This training set consists of 99 points of inputs and 
its corresponding expected outputs, arranged according to 
the following schedule:  

Mach 0.2 0.3 0.4 0.5 0.6 0.7 0.78 0.82 
Min Re 
(x 107) 1.21 1.26 1.68 1.48 1.27 1.12 1.25 1.32 

Max Re 
(x 107) 1.25 1.88 2.50 3.13 3.76 4.39 4.89 5.14 

Min 
CL 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Max 
CL 

1.50 1.10 0.70 0.70 0.70 0.65 0.55 0.50 

Table 5 - Training set for regional jet. 

3.3 Wing-body configuration with generic 
wing geometry 
Data for training the network that models the drag 
coefficient of a wing-body configuration was generated 
using the multi-bock conservative full-potential code 
FPWB, which employs an approximate factorization 
algorithm for the marching in the pseudo-time. A total of 
1300 different wing geometries and flow conditions were 
simulated, covering a broad range of inputs, with special 
attention to transonic flow conditions. This data set was 
generated according to a DOE technique named Latin 
Hypercube Sampling, or simply LHS algorithm8, which 
tries to ensure proper spatial distribution of the data, thus 
maximizing coverage of the parameters’ envelope (Table 
6) with minimum correlation between samples. 

 AR λ φLE YK M Re 
(x106) CL 

Min.  5 0.15 0º 0.25 0.20 0.5 0.30 
Max. 12 0.75 45º 0.60 0.82 4 0.70 

Table 6 - Training set – wing-fuselage configuration. 

4 Validation 
In order to validate the modeling capacities of the networks, 
auxiliary sets of points were generated.  

4.1 NACA 23012 airfoil 
The validation data for this problem consists of 500 cases 
(125 from training + 375 additional points), which were 
generated by the panel code XFOIL using the same 
schedule from Section 3.1 From the analysis of this data 
set, results the following statistical data. Table 7 shows the 
resulting error (known target minus network answer) 
associated with each output. As can be seen, the results for 
both output parameters show very small errors, with 
average close to zero and very small standard deviation. 

4.1.1 Drag coefficient 
Figure 1 shows a linear fit between expected target outputs 
and the results provided by the neural network. This figure 

Layer 1 2 3 
Number of 

neurons 
20 10 1 

Transfer 
function 

Tangent-
sigmoid 

Tangent-
sigmoid 

Pure 
linear 

Table 3 - Network structure for the wing-
fuselage configuration. 
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Associated Parameter Cd 
Average 0.00005 
Standard Deviation 0.00016 
Maximum 0.0016 

Table 7 - Validation Results – Cd. 

shows that there is an excellent correspondence between 
expected and resulting outputs for the neural network.   

 
Fig. 1 - Validation fit – Cd. Comparison between 

expected and predicted outputs for the drag 
coefficient. 

 
 
 
 
 
  
Figure 2 is the histogram of the errors. It shows that, as 
expected from the result in Table 5, the average of the 
errors is very close to zero, and has small standard 
deviation. Figure 3 shows the normal probability 
distribution of the errors for the outputs compared to the 
expected values. As can be seen, the resulting errors for the 
drag coefficient of the airfoil show an almost normal 
distribution. Moreover, the network does not show signal of 
excess of parameters or oscillatory behavior of results. The 
maximum observed value of 29 drag counts occurs close to 
stall regions, where the total drag generally amounts 260 
counts or more. 

 
Figure 2 - Histogram of residuals – Cd. Histogram of 
residuals for the drag coefficient of NACA23012 airfoil. 

 

 
Fig. 3 - NPP of residuals – Normal probability graph of 

residuals for the drag coefficient. 

 

Fig. 4 displays the comparison between expected outputs 
and the ones predicted by the neural network. As can be 
seen there is an excellent agreement between both results.  

 
Fig. 4 - Validation fit – Cd. Comparison between 
expected outputs and prediction by the network. 

 4.2.2 Lift coefficient 
For the lift coefficient, a similar statistical analysis is 
presented: 

Associated Parameter Cl 
Average 0.0002 
Standard Deviation 0.0052 
Maximum 0.029 

Table 8 - Validation Results – Cl. 

For the lift coefficient, the histogram of the errors (Figure 
5) shows heavy concentration of points around the average, 
which is also very close to zero. However, the normal 
probability plot of residuals (Figure 6) indicates that these 
errors do not appear to follow a Gaussian distribution. In 
this case, it is important to notice that statistical 
assumptions based on normal probability distributions 
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cannot be stated. This fact does not invalidate the results, as 
can be seen in Figure 4, since there is still an excellent 
correlation between expected results and the neural 
network’s answers for the corresponding inputs. As in the 
case of the drag coefficient, there is no indication of 
oscillatory behavior of the results. 

 
Fig. 5 - Histogram of residuals for the Cl – Histogram 

of residuals for the lift coefficient of NACA23012 
airfoil. 

 
Fig. 6 - NPP of residuals – Cl. Normal probability plot of 

residuals for the lift coefficient of NACA23012 airfoil. 

4.2 Transport twinjet 
Validation data for the aircraft was also generated using a 
class-II drag polar generation approach. It consists of 396 
points (99 from learning + 297). Table 9 shows statistical 
data associated with the error relating the expected outputs 
of the net to the corresponding answers. In this case, the 
only output provided by the network is the drag coefficient 
of the complete aircraft. Figure 7 shows excellent fit 
relating the expected outputs and the answers produced by 
the network. 

 
Fig. 7 – Cd Validation fit –- Comparison between 

expected outputs and the predicted values by the neural 
network. 

 

Associated Parameter CD 
Average -0.0000007 
Standard Deviation 0.00006 
Maximum 0.0007 

Table 9 - Validation Results – CD. 

 

 
Fig. 8 - Histogram of residuals – Cd. Histogram of 

residuals for the drag coefficient of NACA23012 airfoil. 
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Fig. 9 - NPP of residuals - Residuals Normal 

probability graph of the drag coefficient. 

Figure 8 shows the histogram of errors for the results 
produced by this network compared to the expected 
outputs. As in the case of the airfoil, the average of errors is 
very close to zero and the standard deviation of these errors 
is very small, actually less than 1 drag count. In addition, 
Figure 9 shows that these errors closely follow a Gaussian 
distribution, so it is proper to say that more than 99% of the 
results outputed by the network for the validation data set 
have associated errors smaller than 2 drag counts (three 
standard deviations). 

4.3 Wing-body configuration with variable 
wing geometry 
Information used in the validation of the network that 
models the drag coefficient of the wing-body configuration 
was generated using the same method of the training set. 
This data set consists of 1550 cases, covering the same 
parameters schedule of the training set (Table 6). 

Associated Parameter CD 
Average 4.02e-06 
Standard Deviation 0.00016 
Maximum 0.00177 

Table 10 - Validation Results – CD. 

Statistical data associated to the residuals resulting of 
comparison between the CD generated by CFD analysis 
with FPWB code and its corresponding values as modeled 
by the proposed neural network can be found in Table 10. 
It shows that the mean of the residuals is close to zero, and 
that the maximum error found for the validation data set 
was of nearly 18 drag counts. 

 
Fig. 10 - Histogram of residuals – Cd. Histogram of 
residuals of the drag coefficient for the wing-body 
configuration. 

 
Figure 10 shows the histogram plot of the errors associated 
with the CD of the wing-body configuration with generic 
wing geometry, loading and flow condition. Figure 11 
shows the fit between the target values of the drag 
coefficient (validation set only – generated with CFD) and 
the corresponding outputs of the neural network. As can be 
seen in this graph, there is an excellent correlation. Figure 
12 is the normal probability plot of the residuals. It shows 
that the resulting distribution of errors cannot be considered 
normal. However, due to the good results of the fitting in 
Figure 11 and the overall low value of errors shown in 
Figure 13, which indicates that more than 97% of the 
points have associated errors smaller than 5 drag counts, the 
resulting meta-model can be considered to be very good, 
specially for aircraft conceptual studies. 

 
Figure 11 - Validation fit – CD. Comparison between 
expected outputs and network answers for the drag 

coefficient of the wing-body configuration. 
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Figure 12 - NPP of residuals – CD. Normal 

probability plot of residuals for the drag coefficient of 
the wing-body configuration. 

5. Simulation examples 
In order to verify the modeling capacities of the networks, 
some drag polar and drag coefficient curves were 
generated, with input data that was not used for the learning 
processes. For the NACA 23012 airfoil, Cl vs α curves were 
also generated, and compared to the corresponding data 
produced by the XFOIL code. For the wing-body 
configuration, testing points were also generating with 
FPWB28. 

5.1 NACA 23012 airfoil 
Drag polars for the NACA 230122 airfoil were calculated 
for Reynolds numbers of 1.5 x 106, 2.5 x 106, and 4.5 x 106. 
Alternatively, for Re=2.5 x 106, the results are compared to 
that obtained by a properly trained functional-link network 
stated in terms of 34 functions connected by 7th order 
polynomials (Figs 14. to 17). Figures 16 and 17 compare 
the results of the MLP and FL networks, and also a direct 
comparison between them and the simulation outputs 
produced by XFOIL. 

 
Figure 13 - Cumulative probability of errors – CD. 

Percentage of points with error smaller or equal than a 
threshold for the wing-body configuration. 

From Figure 16 can be inferred that both neural networks 
can resolve the lift curve of the airfoil with excellent 
accuracy, even for the prediction of the maximum Cl, a 
highly non-linear characteristic of this airfoil. From Figure 
17, however, it is clear that the MLP net has better capacity 
of capture the free BL transition jump in the drag polar 
when compared to the FLN.  

5.1.1 Results for Re=1.5x106 and Mach 0.20 

 
Figure 14 - Cl vs. α for NACA 23012. 

Re=1.5 x 106 and  Mach number of 0.20. 
 

 
Fig. 15 - Cd vs. Cl  for NACA 23012. Re = 1.5 x 106, 

Mach = 0.20, natural BL transition. 
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5.1.2 Results for Re=2.5 x 106 

 
Figure 16.  Cl  vs. α  for NACA 23012.  

Re = 2.5x106 and Mach = 0.20.  

For a large of simulations involving different Reynolds 
number, the MLP network was able to predict the 
maximum lift coefficient for the NACA 23012 with error 
lower than 0.3 %.  It would be very interesting to 
investigate how efficient the MLP network is able to 
capture the post-stall behavior.  

 
Fig. 17 – Cd  vs. Cl  for NACA23012. Re = 2.5 x 106, 

Mach = 0.20, and natural BL transition.  

5.1.3 Results for Re=4.5 x106 

 
Fig. 18 - Cl vs α  for NACA 23012.  

Re = 4.5 x 106 M = 0.20. 

 
Fig. 19 - Cd  vs. Cl  for NACA 23012 . Re=4.5 x 106, 

Mach = 0.20, natural BL  transition. 
 

5.2 Twinjet airliner 
In order to demonstrate the interpolation capabilities of the 
neural network drag polars of a twinjet airliner were 
estimated. The polars presented in this section were 
obtained with combinations of Reynolds and Mach number 
values that were not used in the network training process. A 
comparison to a Class-II methodology estimation for the 
same input can be seen in Fig. 20, The largest difference to 
the Class-II methodology was of 3 drag counts (Figure 22, 
@ CL=0). 

 
Fig. 20 - Drag polar for the regional jet test case. 

Mach of 0.35 and Re = 1.75 x 107. 
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Fig. 21 - Drag polar for the regional jet test case. 

Mach = 0.55 and Re = 2.00 x 107. 

 
Fig. 22 - Drag polar for the regional jet test case. 

Mach = 0.75 and Re=2.5 x 107. 

5.3 Wing-body configuration with generic 
wing geometry 

 
The following figures show results for the simulation of the 
effect of changing the geometry of the wing and the flow 
over it, with a constant geometry fuselage. In each figure, 
the parameter indicated in the x-axis changes, and all the 
other remained six input variables are kept constant, with 
their corresponding values indicated in the title of the chart.  

Figures 23 to 29 show the effects of the wing geometry and 
flow condition variation on the drag coefficient. The wing 
planform for these cases are more related to a typical 
transonic twinjet configuration. Figures 30 to 36 show the 
effects of geometry and flow variation on the drag 
coefficient for a configuration that is resembles typical 
regional turboprop airplane geometries. Figure 37 shows 
the parameters adopted in the description of the wing 
geometry. 

 
 

6. Twisted wing 
Simulations for a configuration with a twisted wing were 
also carried out in the present work. However, the twist 
angle that was employed is that of a trapezoidal reference 
wing (Fig. 37). Again, the network was trained with 
aerodynamic parameters calculated by the full-potential 
code FPWB. Figs. 38-43 display some drag coefficient 
predictions performed by the MLP neural network. The 
values outputted by the network are compared with that 
ones obtained with the code FPWB. Fig. 38 reveals that the 
MLP network was able to accurately calculate the CD for 
wings of any aspect ratio with 4 degrees twist. The drag-
divergence behavior was well captured by the MLP netwok 
for a high aspect-ratio wing with 4 degrees of twist angle 
(Fig. 40). However, the MLP output for a wing with AR=9 
presenting different sweepback angles must be improved 
(Fig. 43). 

7. Concluding remarks 
From the results presented in the previous sections, it is 
possible to conclude that the implemented networks have 
excellent capacities for modeling the studied aerodynamic 
characteristics of the NACA 23012 airfoil, the complete 
airplane with fixed geometry and the wing-body 
configuration with generic wing geometry. The simulations 
showed that the relatively simple network structures 
implemented were able to resolve the highly non-linear 
behavior of the phenomena under consideration, even for 
the high degree of precision required for applications in 
multi-disciplinary optimization design problems. This 
reveals that are room for a growth in the number of 
variable, necessary to handle realistic aircraft 
configurations. 
The comparison of the drag polars of the NACA 23012 
airfoil generated with the 7th order polynomial FLN and the 
MLP networks showed that the later are better suited for the 
solution of problems with pronounced non-linear 
characteristics. Thus, the results presented in this paper 
indicate that the MLP network architecture is probably 
adequate for the work of predicting the drag coefficient of 
an aircraft based on its geometry and flight condition, 
conclusion that is supported by the excellent results 
obtained for the wing-body configuration where the wing 
geometry was allowed o vary. 

The MLP network uses the lift coefficient as input for 
the calculation of the drag coefficient. However, the flow 
around the configuration with twisted wing is strongly 
dependent on the local angle of attack, which in turn is 
dependent in first instance on the angle of attack of the 
flow. Thus, further work will set up the training employing 
the angle of attack as input variable. The concept of the 
reference wing is an attempt to simplify calculation of more 
complex wings. It is also utilized to obtain coefficients 
from measured or calculated values of aerodynamics 
parameters. However, a neural network is able to easily 
handle complex systems with a large number of variables. FP
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Fig. 23 - CD variation on AR.  Fig. 24 - CD variation on λ. 

 

 
Fig. 25 - CD variation on φ. 

 
Fig. 26 - CD variation on YK. 

 

For this reason, the reference wing will not take part in 
future simulations with the MLP neural network. 

Work under development will also consider wings with 
generic airfoils, i.e., the network will be able to predict drag 

for wing composed of any airfoil and with planform of any 
shape. 

 

FP
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Fig. 27 - Drag polar for a typical wing-body 

configuration.  
 

Fig. 28 - CD variation on Re. 

 
Fig. 29 - CD variation on Mach. Drag divergence. 

 
Fig. 30 - CD variation on AR. 
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Fig. 31 - CD variation on λ. Fig. 32 - CD variation on φLE. 

 
Fig. 33 - CD variation on YK. 

 
Fig. 34 - CD variation on Mach number. 

Drag divergence. 
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Figure 35. CD variation on Re. 

 
Fig. 36 - CD variation on Mach number. 

Drag divergence. 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 

Figure 37 - Top right, the chosen parameters for the definition of the wing 
planform. Solid lines: actual wing; Dashed lines: reference wing (used for 
calculation of the taper ratio as input variable only). 
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Fig. 38 – CD prediction for wings of different aspect 
ratios. The twist angle for all wings is 4o. Comparison is 

made with results of a full-potential code. 

Fig. 39 – Predicted drag polar for a high-aspect ratio 
twisted wing. Comparison is made with results of a full-

potential code. 

 

  

Fig. 40 – Drag divergence for a high aspect ratio twisted 
wing predicted by the MLP network. The twist angle for 

all wings is 4 degree.  

Fig. 41 – Predicted drag polar for a high-aspect ratio 
twisted wing.  

 
 

Fig. 42 -  CD variation with wing twist.  
AR = 7, Mach = 0.70, Re = 2x107. 

Fig. 43 -  CD variation with leading-edge sweepback 
angle. AR = 9, Mach = 0.70, Re = 2x107. 
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