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Abstract  

Modern smart materials technologies have led 
to the idea of aircraft that may actively change 
their shape to maneuver or to control 
aeroelastic response. In this context, it is 
reasonable to consider that nonlinear 
aeroelastic behavior represents an important 
issue. If an aircraft structure presents mildly or 
severe non-linear behavior, the active 
aeroelastic control by means of changing 
aircraft shape can represent a great challenge. 
This work presents an investigation on active 
control of aeroelastic response using variable 
camber airfoils. Fuzzy aeroelastic control law 
modeling, where non-linear structural behavior 
is considered, has been aimed. Distributed 
lumped vortex method has been used to 
determine unsteady aerodynamic responses and 
typical structural non-linearities have been also 
adopted for the aeroelastic simulation. Active 
camber variation is achieved by means of time-
varying polynomial description of the airfoil 
camber line. The results show a robust and 
acceptable methodology to threat aeroelastic 
response control of variable shape aerodynamic 
structures. 

1  Introduction 
Generally aircrafts are optimised for specific 
flight conditions. When an aircraft operates 
away from these optimal design points, the 
performance can decline. Nowadays the interest 
in air vehicles that can operate in several 

conditions, such as efficiency in subsonic and 
supersonic cruise or high manoeuvrability is 
increasing. The use of adaptive technologies can 
be a solution to improve the performance at 
conflicting conditions and increase the optimum 
flight envelope [1]. Lifting surfaces with 
variable geometry can be one of these 
technologies. The recent development of smart 
materials has been pointed out as an important 
factor to the development of this kind of 
structure [2]. 

Traditionally the geometry of a lifting 
surface has been modified in many different 
ways. Maybe, the most usual one is the use of 
hinged surfaces, such as flaps and trim tabs, to 
modify the camber. Some other usual form of 
geometry modification can be wing warping, 
wing sweep, wing twist [3]. These traditional 
forms of modifications are limited by the 
aerodynamic and structural requirements of an 
aircraft and are efficient in a specific range of 
velocities, for example. The development of 
lifting surfaces that can change their geometry 
actively and smoothly through the camber 
variation, twist angle and sweep angle variation 
can eliminate the need for the conventional 
forms of geometry modification [4][5][6]. This 
new technology can increase the aerodynamic 
and aeroelastic performance of lifting surfaces 
in a wide range of conditions through the active 
flow control and active control of aeroelastic 
responses. These benefits will imply in a more 
efficient structural design. 

The smooth variation of camber has been 
studied by many authors and is the main interest 
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of this work. In the 1970s the Mission Adaptive 
Wing program demonstrated on the F-111 a 
smooth camber variation in chordwise direction 
[7]. The Active Aeroelastic Wing utilizes 
multiple leading-edge and trailing-edge control 
surfaces to use possible benefits of wing twist 
[8]. The development of a flexible flap to be 
used in a civil transport aircraft that allows 
smooth camber variations is described in [9] and 
[10]. The aerodynamic, aeroelastic and 
structural benefits are clearly shown by these 
authors. 

Some other authors have studied the 
application of smart materials to achieve the 
smooth and active geometry modification. An 
analytical study of a wing with variable 
geometry using piezoelectric patches as 
actuators was developed by [11]. Several 
improvements in aerodynamic performance and 
control of static aeroelastic characteristics are 
observed. A wind tunnel wing model that uses 
shape memory alloy torque tubes to twist the 
wing and shape memory alloy wires to smoothly 
deform trailing-edge control surfaces was 
developed by [1]. Comparisons between a 
conventional hinged control surface and the 
shape memory alloy actuated wing show the 
aerodynamic and aeroelastic benefits of the new 
technology. Previously to the experimental tests 
the aerodynamic and aeroelastic performance 
were investigated using a computational code 
that associates a vortex lattice method and finite 
element modeling. In the same line, a method to 
study the structural behaviour and static 
aeroelastic response of a general wing has 
developed by [12]. The structural model is 
based on the assumption that the wing behaves 
like a plate and can be modeled by the first 
order shear deformation theory and a 
compressible vortex lattice code is used for 
aerodynamic model. The manoeuvre, 
aerodynamic and aeroelastic improvements 
were demonstrated for a wing that can modify 
camber and twist angle. 

The new structures obtained with these 
new technologies will certainly have inherent 
non-linearities, as is already verified in real 
aircraft structures. Different types of structural 
and aerodynamic non-linearities are commonly 

encountered in aeronautical engineering. A 
comprehensive study of some different types of 
non-linearities present on aeroelastic systems 
can be found in [13]. Non-linear aerodynamic 
effects are more difficult to analyse since the 
fluid motion is governed by equations where 
analytical solutions are practically non-existent. 
Structural non-linearities arise from worn hinges 
of control surfaces, loose control linkages, 
material behaviour and various other sources. 
Aging aircraft and combat aircraft that carry 
heavy external stores are more likely to be 
influenced by effects associated with non-linear 
structures. This type of non-linearity can be 
treated as a concentrated non-linearity, and 
usually can be approximated by one of the 
classical structural non-linearities, namely, 
cubic, free-play and hysteresis. 

The consequences of the non-linear 
aeroelastic responses and their control have 
been widely studied. Fighter aircrafts have 
experienced limit cycle oscillations for some 
attached wing store configurations. The 
mechanism that leads to these LCOs is not well 
understood, but explanations have included 
aerodynamic and/or structural non-linearities 
[14]. Stiffness tests show evidences of a spring-
hardening non-linearity in the wing torsional 
mode. This type of non-linearity will lead to 
LCO behavior similar to the described in one of 
the non-linearities verified in this work. Several 
authors have developed control strategies for 
non-linear aeroelastic phenomena suppression 
[14][15][16][17]. 

This paper presents the study of non-linear 
aeroelastic behaviour of an airfoil. The non-
linear aeroelastic response is then suppressed by 
means of variable geometry lifting surface, 
more specifically variation of camber in 
chordwise direction. The non-linear structural 
behaviour is obtained assuming non-linear 
stiffening in pitching, represented by a cubic 
polynomial and a free-play. An aeroelastic 
model is accomplished using unsteady lumped 
vortex method. A fuzzy logic controller 
emulated with a neural network is used as a 
preliminary tool in order to test the control 
actuation concept. 

 



 

 3

ACTIVE AEROELASTIC CONTROL OF VARIABLE 
CAMBER AIRFOIL IN THE PRESENCE OF STRUCTURAL 

2  Aeroelastic Model 
A two-dimensional airfoil having two degree of 
freedom, as depicted in Fig. 1, is investigated. 
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Fig. 1. Structural representation of the aeroelastic model. 

 
The bending and torsional variables are 

denoted as w and α, respectively, and the 
equations of motion for this typical section are 
obtained as in [18], 
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In Eq. (1), m the mass of the system; Iα is 
the mass moment of inertia about the elastic 
axis; xα is the non-dimensionalized distance 
between the centre of mass and elastic axis; L 
and M are the aerodynamic lift and moment; b is 
the semichord of the wing and the two structural 
spring forces are represented by kw and kα for 
bending and torsion, respectively. 

Non-linear effects due to aerodynamics, 
damping or structural dynamics can be 
incorporated to this model. In this work, the 
structural damping effects are neglected and the 
source of non-linearities is assumed to be the 
non-linear torsion spring, which will result in 
the non-linear moment. The polynomial form of 
Eq. (2) can be an approximation of this kind of 
non-linearity [17]. This is shown in Fig. 2 (a), 
where f(α)=kαα is the non-linear structural 
moment. 
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Another form of non-linearity that can be 
assumed for the pitching stiffness is the free-
play one [19]. This kind of non-linearity is 
represented mathematically by Eq. (3) and the 
non-linear structural moment is shown in Fig. 2 
(b). 
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Fig. 2. Non-linear pitch stiffness: (a) Polynomial non-

linearity; (b) Free-play non-linearity. 
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An aerodynamic model has to be assumed 
to represent the terms on the right side of Eq. 
(1). The solution of an aeroelastic problem is 
strictly connected to the quality of the 
aerodynamic model. The unsteady air load over 
the airfoil for the incompressible potential flow 
is solved with the lumped vortex method [20]. 
The applied numerical method was modified to 
make possible the time variation in airfoil 
camber. The method seems to be appropriate for 
the calculation of the air load on the airfoil with 
variable geometry, but it is computationally 
more demanding if compared with that for the 
rigid airfoil case. Within every time step a new 
position of point vortices and collocation points 
must be evaluated. 

The airfoil is described by a set of discrete 
vortices on the camberline, Γj, as observed in 
Fig. 3. When the airfoil’s circulation changes, 
the vortex wake elements, ΓW, are shed at the 
trailing edge and the wake is modeled using the 
same vortex element. Two boundary conditions 
are defined: the zero normal velocity across de 
body’s solid boundaries and the flow 
disturbance, due to body motion through the 
fluid, should diminish far away from the body. 
Also, Kelvin condition and Kutta theorem have 
to be respected. 
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Fig. 3. Discrete vortex model for the unsteady air load on the airfoil calculation [20]. 

 
 
The induced velocities, u and w, at an 

arbitrary point (x, z) due to a vortex element Γj 
located at (xj, zj) is given by Eq. (4), where rj
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(x - xj)2 + (z - zj)2. 
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(4) 

Considering that the airfoil camberline is 
divided into N panels, the vortex points (xj, zj) 
are placed at the quarter chord of each planar 
panel and the zero normal flow boundary 

condition can be fulfilled on the camberline at 
the three quarter point (collocation point) of 
each panel. The normal vector ni at each of 
these collocation points is found in the body’s 
frame from the surface shape η(x) is, 
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As the airfoil’s geometry changes with 
time in the case considered by this paper, vortex 
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and collocation points calculations have to be 
done at each time step loop. 

The influence coefficient aij is defined as 
the velocity component induced by the airfoil’s 
unit strength Γj element, normal to the surface at 
the collocation point i. The set of algebraic 
equations shown in Eq. (6) are obtained for each 
collocation point. In Eq. (6), the right-hand side 
(RHS) terms are known at each time steps and 
are composed by the kinematic velocities due to 
the motion of the airfoil plus the velocity 
components induced by wake vortices, except 
the latest one. As the airfoil’s geometry changes 
with time, the influence coefficient calculation 
has to be done at each time step loop. 

( )

























∆−Γ

=



























Γ
Γ

Γ
Γ























tt
RHS

RHS
RHS

aaaa

aaaa
aaaa

N

W

NNWNNNN

WN

WN

t

MM

L

L

MMOMM

L

L

2

1

2

1

21

222221

111211

1111

  (6) 

The Kutta condition is not stated explicitly 
for the lumped vortex method and the Kelvin 
condition is represented by Eq. (7). 

0)()( =Γ+∆−Γ−Γ Wttt      (7) 

Subsequently, the pressures and loads are 
computed by using the unsteady Bernoulli 
equation. The total lift and moment are obtained 
by integrating the pressure difference between 
the camberline upper and lower surfaces along 
the chordline. At this point, all the terms 
necessary to the solution of Eq. (1) are known 
and it can be solved with the Runge-Kutta 
method, for example. 

3  Deformable camber and control law 

Airfoils with variations in geometry can be 
applied in two main categories. The first one 
can be described as small and slow alterations 
of airfoil’s geometry that makes possible the 
optimisation of shape according to the flight 
conditions. In the second one, faster and major 
changes will damp vibrations and aeroelastic 
phenomena, for example [11][10]. In this work, 
an airfoil with camber variation is used to damp 

non-linear aeroelastic responses. The actuators 
necessary to change the airfoil’s camber are 
considered ideal. 

The original, or non-deformed airfoil, is a 
symmetric one and its straight camber line is 
represented in Fig. 4. The variation in airfoil’s 
camber is approximated by a third-order 
polynomial shown in Eq. (8), where G(t) is a 
gain that modifies the amplitude of the camber 
at each time step. An example of camber 
variation approximated by a third-order 
polynomial is shown in Fig. 4. 
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Fig. 4. Representation of the original mean camber line 

and the deformed camber line represented by a 
third-order polynomial. 
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In order to suppress aeroelastic responses, 
linear or non-linear, a controller has to be 
designed. A fuzzy logic controller based on the 
Mamdani-type fuzzy model is applied. 
Membership functions and a set of rules are 
defined based on the previous experience 
obtained from simulations performed with the 
non-linear aeroelastic model and a decision 
surface is obtained. The decision surface 
represents, therefore, the control law on a 
unitary discourse universe. The control law 
models the consequent control action like a PD-
type controller. 

When PD fuzzy controllers are considered 
the controller inputs are defined as an error and 
the variation of this error. The error is the 
difference between the feedback variable and a 
reference value. The torsional and bending 
displacements, α and w of Eq. (1), are used to 
calculate the controller input signals. The error 
defined in this work is a composed one, as is 
observed in Eq. (9). It is the summation of the 
bending error and the torsional error. The 
torsional error is the difference between the 
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torsional angle and the zero value and the 
bending error is the difference between the 
bending displacement and the zero value. The 
importance of the bending error and the 
torsional error to the value of the composed 
error is quantified by the values of the weights 
Wα and Ww. The gain that modify the camber 
amplitude G(t) is the output of the controller 
and will change the airfoil’s shape. 

 

( ) ( )( ) ( )( )twrefWtrefWtError w −+−= αα  (9) 

The input and output signals are 
normalized by individual gains. These gains are 
obtained manually and they guarantee stable 
and efficient response control. The fuzzy 
membership functions are also obtained and 
tuned manually. Table 1 shows the rule basis 
and Fig. 5 the respective decision surface, where 
Z is zero, +S is negative small, - M is negative 
medium, -L is negative large, +S is positive 
small, +M is positive medium, +L is positive 
large. 

 
Table 1. Rule basis of the fuzzy controller. 

 
 
 

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

-0.5

0
0.5

C
on

tro
l a

ct
io

n

Error
Variation of error

 
Fig. 5. Decision surface of the fuzzy controller. 

4  Aeroelastic response control and LCO 
avoidance 

4.1 Linear analysis 
This subsection presents a study on 

aeroelastic linear problem of the two-
dimensional airfoil section. The set of 
dimensionless parameters are taken as those in 
[18] and shown in Tab. 2. 

 
Table 2. System parameters obtained from [18], pp. 219. 
 

b = 0.127 m ωα =  64.1 rad/s 
a = - 0.15 ωw = 55.9 rad/s 

µ = 76 xα = 0.25 
2

αr  = 0.388 ρ = 1.225 kg/m3 

 
In Tab. 1 the dimensionless parameters are 

defined as 
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where ωw and ωα are the bending and torsional 
frequencies; rα is the radius of gyration; µ is the 
mass ratio; Sα is the static moment; a is non-
dimensionalized distance from the midchord to 
the elastic axis. 

Critical flutter speed of 27.5 m/s and flutter 
frequency of 9.5 Hz are determined solving the 
flutter determinant with Theodorsen’s function 
been considered for unsteady aerodynamics 
[18]. This critical speed is calculated neglecting 
the effects of structural damping. The 
aeroelastic model shown in Eq. (1) also neglects 
the effect of structural damping. 

The critical flutter speed obtained with the 
aeroelastic model described in Section 1 
(considering 20 panels) is 26.0 m/s and the 
flutter frequency is 8.4 Hz, what is close to 
Fung’s results. The open-loop linear aeroelastic 
responses for bending and torsional 
displacements at critical flutter speed are shown 
in Fig. 6 and 7, respectively. The results 
obtained in Fig. 6 could validate the aeroelastic 
model developed in this work. 
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Fig. 6. Open-loop linear aeroelastic response for bending 

displacement. 
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Fig. 7. Open-loop linear aeroelastic response for torsional 

displacement. 

4.2 Non-linear analysis and control 

This subsection presents the analysis of 
non-linear aeroelastic response of the two-
dimensional airfoil section. The source of non-
linearities is assumed to be the non-linear 
torsion spring. The non-linear structural 
behaviour is obtained assuming the non-linear 
moment f(α) represented by a cubic polynomial 
and free-play.  

 The cubic polynomial used to represent 
the non-linear moment during the simulations is 
shown in Eq. (10). This equation was obtained 
from a curve fitting performed with some points 
chosen near linear moment curve with respect to 
the angle of attack. 
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To verify the non-linear aeroelastic 
behavior and the performance of the Fuzzy 
controller the numerical simulations are 
performed with a freestream velocity of 31.5 
m/s, that exceeds the linear critical flutter 
velocity (Ucr ≅ 26 m/s). The parameters shown 
in Tab. 1 are retained. The open-loop non-linear 
responses with the initial conditions w = 0.015 
m and α = 0.3 degrees are shown in Fig. 8 and 
9. Figure 10 and 11 show the phase trajectories 
for open-loop bending and torsional responses. 
The limit cycle oscillations behaviour is 
observed in these responses. 
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Fig. 8. Non-linear open-loop bending response (U = 31.5 

m/s). 
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Fig. 9. Non-linear open-loop torsional response (U = 31.5 

m/s). 
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Fig. 10. Phase trajectory of bending response. 
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Fig. 11. Phase trajectory of torsional response. 

 
 
The parameters of the third-order 

polynomial, Eq. (8), that approximate the 
airfoil’s camber variation are set to A0 = 0, A1 = 
0.875, A2 = 1.875 and A3 = 1. The controller 
gains used to normalize the input and output 
signals of the fuzzy controller are set to Gainerror 
= 10-3, GainVerror = 10-4 and Gainco = 0.35. 
Figure 8 shows the closed-loop bending and 
torsional responses. The loop is closed at time 
3.0 seconds. 

The closed loop bending and torsional 
responses in Fig. 12 and 13 converge to zero. 
The settling time for stabilization of non-linear 
bending and torsional responses is of the order 
of 1.2 seconds. 
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Fig. 12. Closed-loop bending response. 
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Fig. 13. Closed-loop torsional response. 

 
Figure 14 shows the airfoil’s camber 

variations during the suppression of the LCO 
behaviour. Figure 14(a) shows the camber 
variation during the entire LCO control 
simulation. Figure 14(b) shows a detailed view 
of the region where the largest camber 
amplitudes (± 2% of the chord) were necessary 
for control action, between 3.0 to 4.2 seconds. 
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Fig. 14. Variation of camber line during the closed-loop 
simulations. 

 
The free-play is the second source of non-

linearity verified during the simulations. The 
free-play magnitude αf is taken to be 0.5°, as 
can be observed in Eq. (11). 
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To verify the non-linear aeroelastic 

behavior and the performance of the Fuzzy 
controller the numerical simulations are 
performed with a freestream velocity of 31.5 
m/s, that exceeds the linear critical flutter 
velocity (Ucr ≅ 26 m/s). The parameters shown 
in Tab. 1 are retained. The open-loop non-linear 
responses with the initial conditions w = 0.0 m 
and α = 0.5 degrees are shown in Fig. 15 and 
16. Figure 17 and 18 show the phase trajectories 
for open-loop bending and torsional responses. 
As can be verified, the non-linear aeroelastic 
system has two equilibrium points. 
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Fig. 15. Non-linear open-loop bending response (U = 31.5 

m/s). 
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Fig. 16. Non-linear open-loop torsional response (U = 

31.5 m/s). 
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Fig. 17. Phase trajectory of bending response. 
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Fig. 18. Phase trajectory of torsional response. 

 
The controller gains used to normalize the 

input and output signals of the fuzzy controller 
are set to Gainerror = 10-3, GainVerror = 10-4 and 
Gainco = 0.35. Figures 19 and 20 show the 
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closed-loop bending and torsional responses. 
The loop is closed at time 3.0 seconds. 

The closed loop bending and torsional 
responses in Fig. 19 and 20 converge to zero. 
The settling time for stabilization of non-linear 
bending and torsional responses for the free-
play case is very low. 
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Fig. 19. Closed-loop bending response. 
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Fig. 20. Closed-loop torsional response. 

 
 
Figure 21 shows the airfoil’s camber 

variations during the suppression of the non-
linear response. Figure 21(a) shows the camber 
variation during the entire control simulation. 
Figure 21(b) shows a detailed view of the region 
where the largest camber amplitudes (± 2% of 
the chord) were necessary for control action, 
between 3.0 to 3.5 seconds. 
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Fig. 21. Variation of camber line during the closed-loop 

simulations. 

5  Conclusions 
An aeroelastic model was used to study the 

non-linear aeroelastic responses and their 
control by means of active variable camber. The 
unsteady aerodynamics was modeled with a 
lumped vortex method. For the linear analysis a 
good agreement with results presented in 
technical literature [18] was shown. Linear 
behaviour was investigated to provide a 
reference to the inclusion of non-linear effects. 
Polynomial and free-play non-linearities  were 
used to describe concentrated torsional moment 
for the aeroelastic modeling. 

The use of a lifting surface (2D) with 
variable camber can be considered an important 
alternative for future developments of adaptive 
aircrafts. This kind of actuation associated with 
the designed fuzzy controller has shown to be a 
good combination in the suppression of non-
linear aeroelastic responses, in particular to limit 
cycle oscillations avoidance. The time-varying 
polynomial description of the airfoil camber line 
has a great influence in the performance of the 
controller. During the simulations some 
different polynomials were tested. It is clear that 
an optimised one exists and a more detailed 
investigation is necessary. 
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ACTIVE AEROELASTIC CONTROL OF VARIABLE 
CAMBER AIRFOIL IN THE PRESENCE OF STRUCTURAL 

Ideal actuators were considered in this 
initial investigation. Figures 14 and 21 show 
that small amplitudes in camber were enough to 
control the non-linear responses. The results 
achieved in the control of non-linear aeroelastic 
responses through the camber variation show 
that future investigations considering the 
actuation with of smart materials are pertinent. 
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