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Abstract  

The use of Evolutionary Algorithms is a 

promising approach to solve complex 

optimisation problems such as the minimum 

weight design of composite aircraft structures. 

The main drawback of these probabilistic 

algorithms is the large number of design 

configurations that have to be analysed. Two 

methods are presented that enhance the 

efficiency of Evolutionary Algorithms: an 

adaptive adjustment of optimisation parameters 

as well as an approximate evaluation of design 

alternatives using a support vector machine 

classification. It is shown that both have the 

capability to reduce the computational effort 

considerably.  

1 Introduction  

One of the most important issues in the development 

of commercial transport aircraft is the reduction of 

the structural weight. To achieve this aim, both the 

structural design configuration as well as the 

selection of materials have to be considered in the 

structural optimisation process in addition to 

geometrical data. This problem becomes even more 

complex with composite structures, where laminate 

stacking sequences have to be taken into account. 

Thus, the design problem involves a combination of 

continuous and discrete variables. Typical examples 

of discrete variables are the ply thickness and ply 

orientations. Practical constraints mean that the ply 

angles usually have to be selected from a discrete set 

such as 0, 90 and ±45 degrees. Other discrete 

variables are different design configurations as well 

as the number and type of stiffeners, whereas 

geometrical dimensions usually are continuous 

design parameters. To handle this kind of problems 

for composite fuselage design, an optimisation code 

named GEOpS/F (Genetic and Evolutionary 

Optimisation of Structures / Fuselage) has been 

developed at the Institute of Aerospace Engineering 

of TU Dresden in collaboration with Airbus. In this 

code both closed form solutions as well as finite 

element analyses are employed to evaluate the 

strength and buckling behaviour of fuselage panels.  

 

Considering different design configurations as well 

as the material selection in the optimisation requires 

the handling of discrete variables, resulting in a 

discrete design space. Therefore, the calculation of 

derivatives is not possible. Additionally, a highly 

non-linear and non-convex problem with a global 

and several local optima has to be solved. The result 

of this optimisation is often not simply a single point 

in the design space but more a complete set of 

different design alternatives. Also, from a practical 

view quite often, not only the optimal solutions but 

also near optimal ones are of interest. All these 

aspects have to be considered when selecting the 

appropriate optimisation algorithms. To solve such 

problems the class of population based evolutionary 

algorithms (EA) has been shown to be well suited. 

 

Several investigations described in the literature 

which consider EA deal with the discrete 

optimisation of laminate stacking sequences, e.g. 

[1][2][4][5][6][7][8][9][11]. Furthermore in the 

majority of the above given papers ([1][2][4][5] 

[6][8][9][11]) the discrete stacking sequence is 

optimised in combination with continuous 

geometrical design variables. In the optimisation 

code GEOpS/F different types of EA (genetic 

algorithms, evolution strategies and differential 

evolution) are combined and used in parallel in a 

single optimisation analysis [6]. Because of this 

combined application, the number of parameters 
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which are required to control the algorithms 

increases considerably. In addition, it has to be 

considered that the appropriateness of the parameter 

settings changes during the optimisation process. At 

the beginning of the optimisation run, completely 

different parameter values are required for an 

extensive search in the design space than in the final 

precise, adjustment stage. However, the suggested 

parameter adaptation approach benefits from the 

advantages of the different algorithm types during 

the several stages of the whole optimisation process 

and avoids their drawbacks. 

 

The main drawback of EA is the large number of 

design alternatives which have to be evaluated, 

particularly if the finite element method is 

employed. Therefore, in addition to parallel 

computing on multiprocessor computers and 

workstation clusters, other approaches are required 

to reduce the computational effort. In [1] [2] [7] 

binary trees are used to avoid a replicated evaluation 

of the same design alternatives. But this approach is 

only applicable to discrete design variables, because 

continuous design spaces contain an unlimited 

number of different alternatives. If there are, 

alongside the discrete design variables, only a few 

continuous ones, it is advantageous to use a 

combination of a binary tree and a spline 

approximation [1] or a response surface approach 

[2]. However, these methods are also restricted, 

because, for every set of the discrete variables, a 

sufficient number of design points for each 

continuous variable is required. 

 

In this paper an approximation method is presented 

which involves discrete and continuous variables in 

parallel. Using this approach, finite element analyses 

are completely avoided during intermediate 

calculations. The approach is based on a data 

classification between feasible and infeasible design 

regions. Afterwards, in both regions, a separate 

approximation of the objective function is used. 

Appropriate classification methods are neuronal 

networks [12] or support vector machines (SVM) 

[8]. An SVM approach with the special capability to 

classify also laminated composite design alternatives 

is implemented in the GEOpS toolbox [6]. The basic 

investigations in [5] are extended in GEOpS/F to 

find the optimal design of composite fuselage panels 

involving a complete design configuration, geometry 

and laminate stacking sequence optimisation. 

 

 

2 Structural optimisation  

2.1 Fundamentals 

Structural optimisation involves the task of finding 

the best design or design alternatives, taking into 

account given restrictions. In order to achieve this 

aim, the design has to be changed. The design vector 

x=(x1,x2,…,xn) contains the design variables xi such 

as geometrical and material data. Depending on the 

type of problem, design parameters are expressed 

either as continuous or discrete variables. Discrete 

variables are often merely an identification number, 

describing the design configuration or the used 

material. The n design variables constitute the 

design space Ω : 
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To evaluate the different design alternatives, the 

objective function f:Ω →R is introduced, which has 

to be minimised: 

)(min xf   and  .Ω∈x  (1) 

In case of the fuselage panels considered here the 

aim is to find a design with a minimal structural 

weight w(x). Furthermore, the design space Ω is 

restricted by inequality and equality constraints:  
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In the structural optimisation such constraints are 

stress and strain allowables, deformation limits and 

buckling loads. Thus, we have to formulate the 

constraint optimisation problem: 

)(min xw  and Ω∈x , .)(,)( 0xh0xg =≥
 (2) 

Regarding the constraints, the whole design space Ω 

is divided into two disjoint sets, a feasible region Ωf 

and an infeasible one Ωinf: 
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For the problem considered here the constraints are 

not available in a closed form. Therefore, a penalty 

approach [3] is applied. A positive penalty term 

P(g(x),h(x)) is added to the structural weight w(x) to 

get the objective function f(x), if constraints are 

violated: 
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2.2 Evolutionary algorithms 

Evolutionary algorithms mimic the principles of the 

biological evolution process. The optimisation starts 

from a population of different design solutions. 

Based on the design information from the parent 

individuals, an offspring population is created by 

using several evolutionary operators. The selection 

of the better individuals leads to a progress in the 

optimisation run. The selection is based only on the 

computed values of the objective function. 

Therefore, no derivative information is required. 

This makes it possible to find optimal solutions in 

discontinuous design spaces with combined discrete 

and continuous design variables.  

 

Nevertheless, the basic principle is the same for all 

types of evolutionary algorithms, they differ 

considerably in the coding of the design variables 

and the way operators are working. Genetic 

algorithms (GA) are based on binary coded design 

variables, which are combined in a so-called 

chromosome. These strings are modified by using 

special operators in order to find better solutions. 

Applying crossover, the main operator of the GA, 

string parts of different individuals are changed 

between each other. The swapping of single binary 

bits is done by the bit mutation operator. The newly 

generated design alternatives are considered in the 

following selection process in which the new parent 

population is formed. The creation of new 

individuals and the selection process alternate until a 

stop criterion terminates the optimisation run. 

Because of the binary coding of the design variables, 

the GA are well suited to discrete and combinatorial 

problems. 

 

To search in design spaces with combined 

continuous and discrete design variables, the 

application of evolution strategies (ES) is more 

preferable. These methods are based on a real valued 

coding. The mutation operator uses a Gaussian 

distribution centred at the point of the original 

design alternative. The step size is then evaluated to 

create a new individual. Small step sizes are very 

common. Large ones are rare, but possible. The so-

called recombination operator exchanges design 

information between several individuals. Single 

design values from specific individuals are taken 

over or mean values are computed. Afterwards, a 

selection operation follows works in the same way 

as with genetic algorithms. 

 

Another type of evolutionary algorithms is the 

differential evolution (DE) which is closely related 

to the ES. The operators of the DE are also based on 

real coded design variables. The determination of 

the step size in the mutation process involves the 

computation of differential vectors between the 

design points of the parent individuals. An 

increasing homogeneity in the population causes a 

reduction of the step size and finally enforces a 

precise adjustment of the optimised individuals in 

the final phase of the optimisation. So the DE 

represents an intermediate state between the 

stochastic evolutionary algorithm types such as GA 

and ES and purely deterministic mathematical 

algorithms. The DE is well suited for non-convex 

continuous problems and offers advantages for local 

search. 

 

With the aim to combine the advantages of the 

different evolutionary algorithm types, the three 

above mentioned algorithms (GA, ES and DE) are 

used in parallel in the developed optimisation code 

GEOpS/F.  

3 Adjustment of the algorithm parameters 

The parallel use of different types of evolutionary 

algorithms results in the problem that a large 

number of parameters is required to control the 

algorithms. These parameters have a considerable 

influence on the course of the optimisation. Hence, 

the parameter selection affects strongly the number 

of generations required to achieve good results. 

Typical examples for control parameters are the 

number of parent and offspring individuals or the 

number of offspring individuals that are created by 

each type of operator. In case of the crossover and 

recombination operators it has to be determined, 

how many offspring alternatives are created using a 

specified number of parent individuals. In the ES 

mutation process the standard deviation of each 

design variable controls the step size. For the bit 

mutation in the GA a probability has to be given, 

with which the bits are switched. In case of the DE 

the number of differential vectors and diverse factors 

and constants have to be defined. Not only the 

operators that change design information of the 

individuals need quite a number of parameter 

settings. Also the selection operators are controlled 

by parameters. For example, it has to be chosen 

between an objective function based and a ranking 

based selection. Additionally, tournament selection 

methods are also implemented in GEOpS/F, 
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involving a smaller group of pre-selected individuals 

which compete with each other. A further 

optimisation parameter defines, whether only the 

offspring individuals or both the parent and the 

offspring ones are used during the selection process. 

Furthermore, it has to be recognised, that the optimal 

parameter settings are changing during the 

optimisation process. 

 

Taking these aspects into consideration a parameter 

adaptation dependent on the optimisation progress 

seems to be a promising approach to enhance the 

efficiency of evolutionary algorithms.  

3.1 Predefined adjustment 

In the case of a predefined adjustment in GEOpS/F, 

a list of parameter sets containing the above 

mentioned optimisation parameters has to be 

provided. The sets are arranged so, that the 

optimisation run can start with an extensive search 

in the global design space. Subsequently, a fast 

reduction of the objective function values is 

enforced and the last set controls a precise 

adjustment of the final solution. After a predefined 

number of generations the next parameter set is 

chosen without any relation to the optimisation 

progress. Furthermore, before starting the 

optimisation run the user has to know, what are the 

effects of the different parameter sets. This 

knowledge is necessary in order to find the right 

order in the list. 

3.2 Adaptive adjustment 

Another approach in GEOpS/F is an adaptive 

adjustment of the parameter sets. In comparison to 

the predefined method, here the exchange of the 

parameter set is done in accordance with the 

optimisation progress. After a specified number of 

generations the forecasted and the actually reached 

status are compared and then the optimisation 

program itself decides if it goes upwards or 

downwards in the parameter list in order to chose the 

next set. Only the optimisation start is an exception 

to this rule. To ensure at the beginning a wide and 

extensive search in whole the design space, the 

optimisation starts with the first parameter set. Then 

immediately a set in the middle of the list is chosen 

in order to provide enough potential for the 

parameter adjustment in all directions. To evaluate 

the optimisation progress, appropriate criteria have 

to be defined. For this purpose in GEOpS/F the 

distribution of the minimal objective function values 

related to the generation number and the 

heterogeneity of the population is used. The 

heterogeneity het(G) of the generation G involves 

the differences of all design variables xk comparing 

the individuals i and j: 
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To get an independent criterion, the sum of the 

differences is related to the number of comparisons 

(with the population size #ind including the parent 

and offspring individuals) and to the number of 

variables #var. 

 

If a composite design has to be optimised, the 

heterogeneity involves the laminate stacking 

sequence of the population members including the 

number of plies and the orientation of each ply. In 

the modified formulation of equation (4) 
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the stacking sequences of two individuals i and j are 

compared. ∆#Sij denotes the difference in the ply 

number, #Smax the maximum number of predefined 

plies and Oij the orientation of a specific ply. 

Furthermore, the plies with differing orientations are 

summed up using the variable Oijk. The number of 

orientations which can be compared is limited by the 

number of plies of the thinner laminate.  

 

Equation (5) considers only the heterogeneity of the 

laminate stacking sequences of the individuals in the 

current population. If the design space contains both 

variables defining the laminate stacking sequence as 

well as geometrical data, the equations (4) and (5) 

have to be used in combination.  

 

3.2.1 Progression of the objective function values 

To evaluate the progression of the optimisation in 

terms of the minimal objective function values 

fmin(G) of generation G a regression function is 

determined using the last exact values. Based on this 

regression freg(G,Ci) with the constant regression 

factors Ci the minimal objective function value is 
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predicted for a specified number of generations. 

Afterwards, the exact and predicted values are 

compared in order to assess the appropriateness of 

the used optimisation parameter set. 

 

As a first approach the following regression function 

is introduced: 

( )
2

1

1
2,1,, CGCiCGf

ireg
+⋅== −

.
 (6) 

This function enforces a strong reduction of the 

objective function values fmin(G) in the starting phase 

of the optimisation process. In the final phase only a 

precise adjustment is allowed. Fig. 1 shows the basic 

shape of the function and the influence of the 

parameters Ci.  

 

To start the optimisation run with an extensive 

search in the design space another approach is more 

appropriate. A sigmoid function based on the 

hyperbolic tangent is used in GEOpS/F: 
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In a similar manner to the previous approach, the 

influence of the regression parameters Ci is shown in 

Fig. 2.  

 

To determine the parameters Ci a least square error 

approach has been used to minimise the differences 

between the forecasted freg(G) and the actually 

reached objective function values fmin(G): 

( ) ( )( ) .min
1
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2
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Thereby, the objective function value fmin(Gc) of the 

current generation Gc could not be involved in the 

sum, because this value is unknown until this time. 

In addition, the regression function should contain 

the last available function value fmin(Gc-1). So we 

have a restricted quadratic optimisation problem 

with one equality constraint: 

( ) ( )( ) min
1

1

2

min →−∑
−

=

cG

G

reg GfGf    

s.t. 

       ( ) ( ) .011 min =−−− cregc GfGf                                  

(9) 

 

After a specified number of generations ∆G the 

values fmin(Gc-1) and freg(Gc-1) are compared. If  

fmin(Gc-1) > freg(Gc-1), a stagnation in the 

optimisation process is expected. Now a precise 

adjustment is necessary and the next parameter set 

from the list will be chosen. Otherwise, if we have 

the relation fmin(Gc-1) < freg(Gc-1), it is assumed, that 

this solution is far away from the optimum. Thus, a 

more extensive search in the design space using the 

previous parameter set will probably result in a 

faster progress during the following generations. 

Only if the values fmin(Gc-1) and freg(Gc-1) are the 

same, regarding a predefined tolerance, then the 

parameter set is kept up to the next check. 

 

In parallel with the previously stated comparison, 

the parameters Ci are updated for the next regression 

of the minimal objective function values using the 

information of the new evaluated design alternatives 

from the previous generations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Objective function regression, type A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Objective function regression, type B 

 

 

3.2.2 Heterogeneity of the population 

To avoid a premature stagnation in the optimisation 

process we have to keep on a specified level of 

heterogeneity of the several individuals in the 

0

1

2

3

4

5

6

7

0 10 20 30 40 50

C1 = 

0,05 

0,1 

C2= 0,5 

generation G 

re
g
re

s
s
io

n
 o

f 
th

e
 

o
b
je

c
ti
v
e
 f

u
n
c
ti
o
n
 

1,0 

approach  
type A 

approach 
type B 

 

0

1

2

3

4

5

6

7

0 10 20 30 40 50

1,0 

2C4 = 6 

0,2 

0,08 

C2=  

C3= 3,5 

C1= 13 generation G 

re
g
re

s
s
io

n
 o

f 
th

e
 

o
b
je

c
ti
v
e
 f

u
n
c
ti
o
n
 

 



Peter Kaletta 

6 

population. But in this case the approaches used for 

the regression of the minimal objective function 

values are not useful. During the whole optimisation 

run we enforce a constant value of the heterogeneity 

using the equations (4) and (5). In fact the 

comparison involves the actually reached value 

het(G) and the mean value mhet(G) computed on the 

information basis of all the previous generations: 

.)(
1

1
)(
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1
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−
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G

Gmhet                                  
(10) 

After a specified number of generations ∆G we 

compare the values mhet(G-∆G) and het(G-1). If the 

value het(G-1) is greater than mhet(G-∆G), it 

indicates that the heterogeneity is too high. Hence, 

the next parameter set from the list is chosen in 

order to enforce a precise adjustment. Otherwise, to 

avoid a strong reduction of the heterogeneity and 

finally an increasing danger of stagnation of the 

whole optimisation process, the previous set from 

the parameter list is used. In the remaining case the 

heterogeneity reaches a value that lies in a specified 

tolerance of the forecasted mean value. Thus, the 

parameter set is kept. 

3.2.3 Combined evaluation 

To determine the used parameter set considering 

several control parameters like the distribution of the 

minimal objective function values in accordance to 

the generation and the heterogeneity of the 

population we have to introduce a further evaluation 

function E(Gc). The value of this function indicates 

the number of the parameter set from the existing 

list, pset, that has to be chosen. Involving weighting 

factors wi≥0 to balance the influence of the several 

control parameters in GEOpS/F the following 

approach is used: 
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(11) 

The scalar ε≥0 denotes the predefined tolerance to 

keep the parameter set. After each ∆G generations 

the appropriateness of the current parameter set is 

checked and, if necessary, a better suited set is 

chosen. 

4 Approximate evaluation 

4.1 Initiation 

Using the information of the exact evaluated design 

configurations of a predefined number of initial 

generations, the first approximation of design 

evaluation is established. Afterwards, generation 

blocks with exact and with approximated evaluation 

alternatives are produced until a stop criterion is 

reached. Of course, if new designs with a complete 

structural analysis are available, the approximation 

is updated. 

In case of structural optimisation, the solution often 

lies on the separating surface between feasibility and 

infeasibility (Ωf and Ωinf). Thus, establishing the 

approximation in this region has to be considered 

very carefully. Commonly, the formulation 

describing the separating surface is unknown. So it 

is useful to give an approximation of this surface in 

a first approach and afterwards to approximate the 

objective function in the feasible and infeasible 

regions separately. In order to determine if a new, 

unevaluated point in the design space is feasible or 

not, a data classification approach is used. In the 

GEOpS/F implementation this is a so called support 

vector machine (SVM) [7]. 

4.2 SVM based design classification 

A function c(x): Ω →{-1,1} divides the design space 

into two disjoint sets Ωf and Ωinf:  

( ){ }1|: =∈= xx cΩΩ f      and 

( ){ }.1|: −=∈= xx cΩΩinf                          
 

(12) 

Regarding m exact evaluated design points in the 

training data set X=(x
1
,x

2
,...,x

m
), X∈R

n×m
 the 

classification of these points into Ωf and Ωinf is 

undertaken and thus the function values c(x) are 

established. Based on this information, an 

approximation of c(x) over the whole design space is 

determined. The feasible points lie on one side of a 

computed hyperplane and the infeasible ones on the 

other side. Unfortunately, it is commonly not 

possible to divide Ωf and Ωinf by a separating 

hyperplane. Thus we use a transformation of the 

original design space R
n
 into a higher dimensional 

feature space R
Ν
, such that a separating hyperplane 

exists: 

( ) .0,| * =−∈ γ*
duXxKx

Tn
R                          (13) 
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The components of the transformation matrix 

K(XA,XB):=(kij(xA
i
,xB

j
)) are functions of the two data 

sets XA=(xA
1
,...,xA

l
)

T
, XA∈R

l×n 
and XB=(xB

1
,...,xB

k
), 

XB∈R
n×k

. d denotes a diagonal matrix d=diag(c(x
i
)), 

i=1(1)m, d∈R
m×m

. To determine k: R
n×R

n→R in this 

investigation a Gaussian kernel 

  ( ) .exp:,
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with the predefined parameter µ>0 is used. 

 

The parameters (u
*
,γ*

), u
*∈R

m
, γ*∈R in equation 

(13) are the solution of the SVM approach: 

  min
2

2

22

2
→++ uy γη                     

   s.t. ( )( ) eyeduXXKd ≥+− γ,
T  

(15) 

with the vector e=(1,1,…,1)
T
, e∈R

m
. The equation of 

the hyperplane is computed in such a way, that the 

existing design points of the training data set X are 

positioned as far as possible away from this plane. 

This approach provides the best classification of new 

unevaluated points. Additionally, with η>0 a 

weighted slack variable vector y∈R
m
 permits a small 

misclassification, and that also has to be minimised. 

The aim by doing this is to get a better classification 

of the remaining training data points. 

 

Using the equation of the hyperplane, the 

classification of new unevaluated design points can 

be estimated. In case of K(x
T
,X)du

*
- γ*≥0 the new 

point x
T
 is regarded as feasible, otherwise as 

infeasible.  

4.3 Objective function approximation 

Based on the before mentioned approximate design 

space classification between feasibility and 

infeasibility, it is now possible to formulate an 

objective function approximation. In the feasible 

design space region, the objective function value is 

equal to the structural weight, which is calculated 

with negligible computational effort. A more 

complicated approach is necessary in the infeasible 

region. Here, the level of constraint violations is 

involved in the objective function. Often in case of 

structural optimisation, the constraint computation 

includes finite element calculations. To avoid such a 

high computational effort, the complete penalty term 

is approximated in the approach applied in 

GEOpS/F:  

( ) ( )( ) 1exp −⋅= xx bPappr α   ,  0>α                       (16) 

with the introduced term  

( ) ( )( ){ }
.

,,0max
**

Ω

b
T

∈∀

−−=

x

duXxKx γ                          
(17) 

Based on the SVM classification b(x) gives a 

measure of the distance from the hyperplane in the 

assumed infeasible region. Using this formulation 

only in case of assumed infeasibility we get terms 

b(x)>0 and thus also Pappr(x)>0. Otherwise in the 

feasible classified design space there are b(x)=0 and 

Pappr(x)=0. So we are able to use the following 

expression as approximated objective function  fappr 

that is defined over the whole design space:  
  ( ) .|)()( ΩPwf apprappr ∈∀+= xxxx                    (18) 

The coefficient α in (16) is determined using the 

least square error method and the information of the 

infeasible design points from which the exact 

evaluated penalty terms P(x) and the values b(x) is 

known.  

 

In [6] the approximation approach implemented in 

GEOpS/F is described in more detail.  

5 Optimisation problem 

The code GEOpS/F has been particularly developed 

for the structural optimisation of composite aircraft 

fuselage structures. Several investigations have been 

performed in cooperation between Airbus and the 

Institute of Aerospace Engineering at TU Dresden. 

As an example the results for a compressive (nx) and 

shear loaded (nxy) fuselage side panel are given (see 

Fig. 3). The load ratio is nx/nxy=0.5. It is a carbon 

fibre reinforced plastics (CFRP) design composed of 

unidirectional plies known as prepregs. The 

objective is to find a minimal weight design. The 

following geometrical ratios of the panel are given: 

length/radius=0.75 and width/radius=0.52. 

 

An overview of the considered design concepts is 

shown as Fig. 4. Stringer stiffened and sandwich 

design configurations are considered simultaneously 

in a single optimisation run. Design variables 

include geometrical parameters (core thickness or 

height and number of stiffeners), the stringer shape 

as well as the core material. Additionally, both the 

skin and stringer laminates of stiffened panels have 

variable stacking sequences. In case of sandwich 

concepts, the lay-up schemes of the skin laminates 

are additional design parameters. The feasible fibre 

angles in the stacking sequences are restricted to the 

discrete values 0, ±45 and 90 degrees. The thickness 

of a ply is kept to a constant 0.125mm, but the 
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number of plies and thus the complete thickness of a 

laminate is variable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Fuselage panel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Design concepts 

 

In order to avoid matrix cracking the maximal 

number of adjacent plies with the same orientation is 

restricted to two. A further restriction enforces the 

laminates to be symmetric and balanced. A lower 

bound of the core thickness ensures a sufficient 

impact protection. Overall, the considered design 

space encloses a variety of about 1.08⋅10
13

 different 

discrete design alternatives in combination with a 

continuous design variable, the stringer and core 

height respectively. 

 

Strength and buckling restrictions are considered. To 

avoid the predefined material strain allowables at 

ultimate load (UL) being exceeded, the following 

criterion is applied:  
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(19) 

The calculation of the strains ε and the shear 

deformation γ is based on the classical lamination 

theory. In case of stringer stiffened panels, local 

buckling of skin segments and stringer elements is 

not allowed below limit load (LL=0.67⋅UL). 

Regarding this restriction the criteria 

( )2
)(

1

),(

11

xylocyxlocloc nnn λλλ
+=  , 

67.0≥locλ
 

(20) 

is used to determine the local buckling load factor 

λloc. This equation considers the interaction of 

buckling caused by normal forces (nx, ny) and shear 

buckling (nxy). Furthermore, wrinkling of the 

sandwich skins must not appear before UL is 

reached. The critical wrinkling load factor λwr is 

determined by using the equation  

ϕϕϕϕ

ϕϕ
λ

ϕ sincos2sincos

)()(25.1
min

22

3
11

xyyx

corecore

z

wr
nnn

GED

−+

⋅
=

0.1≥wrλ                                                             (21) 

in which the in plane load distribution is analysed 

regarding different angles ϕ (ϕ=0°...180°) in the 

laminate plane [11]. 

 

In addition to the closed formulations 

described above, a numerical finite element analysis 

is performed to compute the load factor for global 

buckling λgl. Global buckling is not allowed below 

ultimate load. The finite element models of the 

stringer stiffened panels consist of 8 node layered 

shell elements, whereas the sandwich panels are 

modelled by using 8 node layered volume elements.  

6 Results 

Regarding this special optimisation problem, the 

best calculated design configurations satisfying all 

restrictions are sandwich designs. They all have a 

honeycomb core with a density of 32kg/m³ and the 

same thickness at the lower bound of 20mm. Also, 

the number of plies in the inside and the outside skin 

is equivalent in all cases. Only the stacking 

sequences show differences. A summary of the 

 
 

nx 

nxy 

x z 

y 

sandwich with foam 
core (70kg/m³) 

sandwich with honey-
comb core (32kg/m³) 

sandwich with honey-
comb core (48kg/m³) 

 

blade stringer 
stiffened panel 

double T stringer 
stiffened panel 
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OPTIMISATION OF COMPOSITE AIRCRAFT PANELS USING 

EFFICIENCY ENHANCED EVOLUTIONARY ALGORITHMS 

sequences of three obtained optimal design 

configurations is given in table 1. 

 

Design configuration A 

   outside skin: [0/90/±45]S 

   inside skin: [±45/90/0/±452/90/±452/0/±452]S 

Design configuration B 

   outside skin: [90/±45/0]S 

   inside skin:   [90/0/±454/90/±453/0]S 

Design configuration C 

   outside skin: [0/±45/90]S 

   inside skin:   [±453/90/0/±45/0/90/±453]S 

Tab. 1.   Laminate stacking sequence of the optimal 

design configurations 

 

The following comparison of several optimisation 

runs shows the effect of the efficiency enhancement. 

Results obtained by using only the standard 

operators of ES and GA without any enhancement 

are plotted in Fig. 5. They serve as basis for the 

comparison. In the following two sets of 

optimisation runs (Fig. 6 and Fig. 7) all the before 

described methods to enhance the efficiency are 

implemented. That means, (a) a combination of the 

operators of ES, GA and DE, (b) an adaptive 

adjustment of the optimisation parameters involving 

the distribution of the objective function values and 

the heterogeneity of the population members and (c) 

an approximate evaluation of design alternatives 

during intermediate generations using the SVM 

approach described in Chapter 4. The difference 

between the runs shown in Fig. 6 and Fig. 7 is the 

regression approach for the objective function 

values. In Fig. 6 the type A approach (see Fig. 1) 

and in Fig. 7 the sigmoid type B (see Fig. 2) is used. 

In all diagrams the distribution of the relative 

objective function values is plotted. That means, for 

each generation the best objective function value in 

the population is related to the best known objective 

function value of the problem.  

 

A reduction of the relative objective function below 

a value of 1.0 is only possible in combination with 

the approximation approach. At least during the 

starting phase of the optimisation, the accuracy of 

the approximation is not very high. Therefore, it is 

possible, that the infeasible design points could be 

classified incorrectly as feasible ones. Using 

additional exactly evaluated design points in the 

further optimisation progress, such configurations 

will be rejected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Optimisation runs without efficiency enhancement 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Optimisation runs with efficiency enhancement, 

objective function regression type A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Optimisation runs with efficiency enhancement, 

objective function regression type B 

 

In comparison of Fig. 5 and Fig. 6 the applied 

efficiency enhancement reduces the average number 

of exact evaluated design configurations to a fraction 

of 40%. That means a considerable reduction in the 

computational effort, particularly in the case of finite 

element analyses being involved in the calculation. 

As well, the efficiency enhancement leads to a 
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substantial increase in the reliability of single 

optimisation runs. Regarding the basic algorithm, no 

run leads to the best known objective function value 

with the minimal weight. Otherwise, using the 

efficiency enhanced approach, the optimum has been 

obtained in 4 of 5 runs. Only one run results in an 

insignificantly higher value of 0.4%. From Fig. 6 

and 7 it becomes obvious, that the sigmoid objective 

function regression tends to better results in 

comparison to the type A approach. Using the 

sigmoid approach, all the exemplary runs lead to a 

minimal weight design. Additionally, the number of 

exact configuration evaluations slightly decreases. 

For the type A approach the runs show a higher risk 

of premature stagnation because of the strongly 

enforced reduction of the objective function values 

especially in the starting phase of the optimisation. 

Otherwise, starting the optimisation with a wide 

search in the design space, the sigmoid regression 

approach leads in general to a continuous reduction 

of the objective function values over the whole 

optimisation process. 

7 Conclusion 

The design optimisation of composite fuselage 

structures is a very complex problem with combined 

discrete and continuous design variables and several 

local and global optima. Evolutionary algorithms are 

well suited to handle such kind of problems, but 

with the drawback of needing to evaluate a large 

number of design configurations. That causes an 

enormous computational effort, particularly, if finite 

element analyses are involved. In this paper several 

methods to enhance the efficiency of such 

algorithms are presented. In detail these are a 

combined application of different types of 

evolutionary operators, an adaptation of the 

optimisation parameters itself and an approximate 

evaluation of design configurations during 

intermediate generations. The implemented 

approximation is based on a support vector machine 

classification approach. By the use of these methods 

the reliability of evolutionary algorithms to get the 

optimal solution in a single run is increased 

considerably. Furthermore, the number of exact 

evaluated design configurations is reduced by 60%.  
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