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Abstract  
The phenomenon of thrust generation by a 
coupled bending and torsional motion is 
surveyed ranging from incompressible flow to 
the transonic region. 2D wing sections and 3D 
planforms are studied. The paper also touches 
on the question, whether flapping-wing thrust 
for larger airplanes is physically possible.  

1  Introduction  
While in nature the flapping wing is the ex-
clusive means for thrust generation which has 
been optimised in the course of the evolution, its 
application in aeronautics has not yet succeeded 
even after more than one hundred years of 
powered flight. The author has initiated a 
research programme Advanced Adaptive 
Airplane Technologies (A3T), a part of 
which coincides within the DLR project 
HighPerFLEX (High-Performance Flex-
ible Aircraft) lasting from 2004 to 2006. 
The incidentally observed increase in 
speed of a transport aircraft during a flutter 
test due to its oscillating wings gave the 
cause for the present investigation. The 
oscillations were induced by an exciter at 
the wing tip. 

Do exist benefits from forced oscilla-
tion of wings to technical use? The 
research may be seen within the scope of 
the fast growing field of interest Adaptive 
Wings. Fig. 1 shows the aerodynamic 
power coefficients of a coupled pitching 
and plunging motion for a 2D flat plate in 
incompressible flow. 

 The figure displays the basic mechanism of 
flapping-wing propulsion for a gliding airplane 
or animal: The power of a strong bending  
(plunging in 2D) motion is converted into thrust 
with aid of a torsional (pitching in 2D) motion. 
The highest propulsive efficiency is achieved 
for an active pitch, which, however, requires 
hardly any power. The details of the contour 
plots are explained in the course of the paper. 

These contour plots are based on the his-
toric analytical solution developed by  Küssner 
[1] and Theodorsen [2]. At the same time 
Garrick [3] published his paper on the propul-
sive mechanism. The very first solution by a 
series expansion dates back to Birnbaum’s 
explanation of the flutter problem [4], which 
simply is the inverse mechanism. 
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Fig. 1. Mechanism of propulsion, 2D thin plate.  
Ma = 0, ω* = 0.15, cxP / = 0.25. 
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Unfortunately, all of these papers favor the 
more powerful, but less efficient mode of phase 
shift for the plunging versus the pitching 
motion, in which the leading edge sweeps over 
the largest possible frontal area. This type of 
motion maximizes the ‘suction effect’, which 
also occurs in the limiting case of a pure plung-
ing motion. Though this suction force theoret-
ically is present and also has been identified in 
some experiments, its source needs carefully to 
be located and discussed [10]. The contour plots 
in Fig. 1 omit the contribution by the leading 
edge suction. The data rest on the normal force 
distribution from the pressure along the chord. 

Animal flight makes use of the opposite 
mode: Small angles of incidence turn the force 
appearing normal to the plunging chord slightly 
towards the direction of the animal’s trajectory 
as shown in Fig. 2. With a positive pitch angle 
during the upstroke the negative normal force 
decomposes into a forward component, which 
gives the thrust, and the lift component 
perpendicular to the flow, against which work 
has to be done. During the downstroke the wing 
experiences a positive normal force, which 
again, with aid of a now negative pitch angle, 
results in a thrust component. The work done is 
converted into thrust with a high efficiency.  

In Fig. 1 a specific aspect has to be pointed 
out. The contour plots show that the generation 
of thrust with a flapping wing is possible with 
driving the plunging motion only. A sufficiently 
flexible wing will start pitching automatically, 
because it is aerodynamically excited. Self-
excitation for the pitch motion (the blue area in 
the lower right contour plot) occurs in the range 
of an efficiency less than about 0.4. The range 
of high efficiency requires a small input of 
power for the pitching motion also. To the 

author’s knowledge, none of the many existing 
models for flapping flight around the world is 
optimized regarding this essential effect. In 
former times, the realization might have been a 
serious mechanical problem. The progress in 
adaptive techniques has made feasible the active 
control of the pitching motion.   

Among the numerous papers focusing on 
flapping-wing thrust the admirable work of 
DeLaurier needs to be mentioned, who devel-
oped the first full-scale piloted ornithopter [5]. 
In one of his early papers on flapping flight he 
mentions the average propulsive efficiency of 
the flying robot pterosaur, built by the National 
Air and Space Museum in Washington DC in 
the mid 1980s. The best value for efficiency is 
around 0.4 [6] and exemplifies the problem of 
active pitch control. Platzer and Jones [7] have 
investigated the both effects of thrust production 
and power extraction of the coupled flapping 
and pitching motion theoretically and in a series 
of experiments [8].         

The following investigation concentrates 
on motion parameters which are typical of the 
animal-flight conditions as just discussed. 

2 Nomenclature and Notation  
 

H0α  Amplitude of )(/)( txtz && for small angle 

0α  Amplitude pitch [-] 

0h  Amplitude plunge [m] 

λ, cλ  Amplitude ratio =
2/0

0

c
h
⋅α

, cλ =λ/2 

Lx   Centre of steady pressure distribution  
c Chord length [m] 
ω Circular frequency = fπ2 [1/s] 
x Coordinate vector =(x,y,z) 
X Degree of freedom (DOF) {g, h, α}  
ρ Density of the fluid [kg/m³] 

Xa  
Dimensionless amplitude of DOF X 

)2//(0 chah = ,  0αα =a  
D(t) Drag force [N] 

0q  Dynamic pressure = 2
02

1 u⋅⋅ ρ  [N/m²] 

0F  Force constant = Sq ⋅0  

 
Fig. 2. 2D Kinematics and normal force ∗

NF . 
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)(tFN
∗  Force normal to the wing planform [N] 

f  Frequency [Hz] of periodic motion 

0u  Kinematic x-velocity [m/s] 
L(t) Lift force [N] 
Ma Mach number = Scu /0  [-]  

)(, tc XM  Moment coefficient of DOF X 
= )/()( 0 XX acFtM ⋅⋅  

g(t)  Motion, gliding  = tu ⋅0  [m] 
x(t) Motion in x-direction  = -g(t) [m] 
z(t) Motion in z-direction  = -h(t) [m] 

)(tHα  Motion, apparent inflow angle [-]  

)(tPα  Motion, pitch  = tS ωαα cos0+  [-] 
h(t) Motion, plunge  = )cos(0 κω +th  [m]  

)(, tc XN  Normal force coefficient of DOF X 
= )/()( 0, XXN aFtF ⋅  

T Period of cyclic motion =1/f  [s] 
κ Phase shift of plunge versus pitch  [-] 
t Physical time [s] 

Px  Pitch axis, absolute position  

Pξ  Pitch axis, relative position = cxP /  
S Planform area of the wing 

)(tPX  Power at DOF X  [W] 

)(, tc XΠ  Power coefficient of DOF X   
= )/()( 2

000 α⋅⋅uFtPX  
>< Π Xc ,  Power coefficient averaged over T 

),( txcp  Pressure coefficient = 00 /)),(( qptxp −  

0p  Pressure, hydrostatic ~  [N/m²] 

p(x,t) Pressure, local ~ in the fluid [N/m²] 

Tη  Propulsive efficiency 
><+><

><−

αPP
P

h

g  

∗ω , ∗
cω  Reduced frequency 

0

2/
u
c⋅ω , ∗

cω = ∗ω2  

x, y, z Space-fixed coordinates [m] 
∗∗ zyx ,, *  Body-fixed coordinates [m] 

Sc  Speed of sound in the fluid [m/s] 

Sα  Steady angle of incidence [-] 

 

The notation of the motion follows the historic 
papers mentioned at the beginning. For t = 0 the 
pitch angle is maximum positive. Without any 
phase shift (κ = 0°), the wing starts at the 
bottom in its lowest position. Fig. 2 shows a 
phase shift of κ = 90°, for which the highest 
pitch angle and the largest plunge velocity 
during upstroke coincide. The same phase shift 
leads to the interesting features in the centre of 
each graph in Fig. 1. 

For XP > 0 power is consumed at DOF X.  
Power is required for supporting the motion.  

For XP < 0 power is released at DOF X. 
Power is gained by the motion and has to be 
consumed for maintaining the motion.    

3 The Basic Mechanism in 2D Motion  
The translational motion (x(t),z(t)) of the 2D 
wing section (profile) in Fig. 2 leads to the 
angle )(tHα of the slope 

0

0 )sin(
)(
)()(tan

u
th

tx
tztH −

+⋅⋅
==

κωω
α

&

& . (1) 

 For small angles the tangent may be linearized 
by )()(tan tt HH αα ≅ . With this assumption the 
amplitude of the angle of incidence due to the 
plunging motion can be expressed relatively to 
the pitch amplitude by the two coefficients λ 
and ∗ω :  

∗⋅=∗⋅=
⋅

=
⋅ ccu

hH ωλωλ
ω

α

α

α
00

0

0

0  (2) 

The fluid’s effect on the profile is like it would 
be turned by the angle )(tHα . Moving in the 
fluid the profile experiences periodic normal 
forces due to the both motions pitch and plunge. 
While the normal force due to plunge does not 
turn the profile geometrically, the pitch so does.   

The normal force in the body-fixed coordi-
nate system (Fig. 2) can be estimated from the 
2D lift formula for the inclined plate 

.)()()(),(2)(*
0 ttttFtF

HPN
αααπα +=⋅≈  (3) 

The force in Eqn. (3) now is transformed 
into the reference system of the averaged trans-
lational motion, the direction of 0u .    
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(4) 

For small pitch angles αα ≅sin  and 
1cos ≅α  are applied, which gives the well 

known result that an unsteady harmonic motion 
produces a harmonically varying lift force and a 
drag force with the double period. The term for 
the normal force will be replaced by the proper 
functions for unsteady motion in which the 
shedding vortices lead to delayed or advancing 
reactions of the forces relative to the kinematic 
motion (e.g. [9]).  

The corresponding powers are given by 
force times velocity  

[ ]zxP kinkintrans && ,0,−=⋅= v,vF  (5) 

and moment times angular velocity 

[ ] ( )LPNPPProt xxtFtMttMP −⋅=−⋅= ∗ )()(,)()( α& . (6) 

The force F in the preceding equations is the 
reaction force of the fluid on the moving body. 
Thus, the velocity in the formulas has to be the 
kinematic motion of the fluid relative to the 
body, which is the negative value of the body’s 
velocity in the fluid. The fluid is at rest.  

If the centre of the pressure distribution Lx  
is close to or even coincides with the centre of 
rotation Px , the power due to rotation is neg-
ligible in the quasi-steady case.  

The basic mechanism of thrust generation 
is understood after evaluating Eqn. (5). The 
translational power is split into the contributions 
from the DOFs g and h: 

zLxDPPP hgtrans && ⋅−⋅−=+=  (7) 

A straightforward calculation leads to 
)(tPg  and )(tPh . From the mean value during 

one cycle of motion  

dttPP
T

XTX ⋅=>< ∫01 )(  (8) 

the power coefficients are computed, given by 

2
000

, α⋅⋅
><=>< Π uF

Pc X
X

. (9) 

The results for the translational motions are 
shown in Fig. 3 and read 

[ ]1sin, −⋅⋅−=>< ∗
Π κλωπgc , (10) 

[ ]κλωλωπ sin, −⋅+=>< ∗∗
Π hc . (11) 

For the favorable case κ = 90° thrust is gained 
for λω∗ >1. From the definition in Eqn. (2) 
propulsion is effected by a large plunging 
motion for which the amplitude of the apparent 
inflow angle )(tHα is larger than the amplitude 
of the geometric pitch angle )(tPα . The pro-
pulsive efficiency Tη is given by 

0, ,
,,

, <><
><+><

><−
= Π

ΠΠ

Π
g

h

g
T c

cc
c

 
α

η . (12) 

 

4 The Mechanism in 2D Subsonic Flow  
The investigation in subsonic flow requires the 
normal force and moment coefficients to be 
extended into the domain of compressible flow. 
The following results rest on the solution of 
Possio’s integral equation for the plunging and 
pitching thin plate for subsonic flow. The 
numerical work has been done by Carstens [11]. 
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Fig. 3. The contours of Eqns. (10) and (11) 

for ∗ω = 0.15 (taken from [10]). 
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With kind permission of the author the set of 
solutions in Tab. 1 is available in the Internet as 
part of a flutter program for simple flutter 
analyses of the plunging and pitching plate [12]. 

The solutions are linear with respect to the 
amplitudes and the DOFs. They are represented 
by their magnitudes XYc ,  and phases XY ,φ . E.g., 
the normal force due to the pitching motion 
reads:  

0)cos(),,()(*
,,0,

αφωξω
αα

⋅+⋅∗⋅=
aNPNN

tMacFtF  (13) 

The phase αφ ,N  in Eqn. (13) depends on the 
same parameters as the magnitude α,Nc  does. 
The discussion of the basic mechanism in 
chapter 3 did not yet include the complete set of 
the 2D power coefficients for plunging and 
pitching motion. All power coefficients depend 
on the same set of parameters: 

( ) >< ∗
Π κλξω ,,,,, PX Mac . (14) 

The functions are formed by superposition 
of the respective force and moment coefficients: 

 
< cΠ,g >= 2

1 cosëS

è
õ cöN,h cos

à
þN,h + ô) +

+ cöN,ë cos þN,ë

é
 

(15) 

  
< cΠ,h >=

2
1 ωã õ

è
õ cöN,h sin þN,h +

+ cöN,ë sin(þN,ë à ô)
é

 
(16) 

< cΠ,ë >= à ωã è
õ cöM,h sin(þN,h + ô) +

+ cöM,ë sin þM,ë

é
 

(17) 

The complete set of functions including an 
additional in-plane motion may be found in [9]. 
The preceding three equations reduce to Eqns. 
(10) and (11) for small reduced frequencies. 
Depending on the pitch axis, the power coeffi-
cient is small or vanishes. 
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The four plots in Fig. 4 show that the 
influence of the Mach number alters the contour 
lines in particular for < cΠ,ë > . The influence 
approximately is the Prandtl-Glauert factor 
1/ 1àMa2

√
. Since the force and moment coef-

ficients depend all the same way on the Mach 
number, the efficiency remains almost un-
changed. The investigation has been carried for 
the parameters given in Tab. 2. The pitch axis is 
kept at quarter chord in all computations. 

  
The full set of data may be found on the 

Internet page www.aniprop.de/icas06. 
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Tab. 2: Set of parameters for database. 

Type Y ⇓  Plunging Pitching 
Normal force ),(,

∗ωMac hN  ),,(, PN Mac ξωα
∗

Moment ),,(, PhM Mac ξω∗  ),,(, PM Mac ξωα
∗

Tab. 1: Set of complex functions for 
computing the power coefficients. 
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5 Transonic 2D Euler Flow  
The effects of the coupled pitching and plunging 
motion in transonic flow are investigated for 
selected profiles and parameters. The flow 
solver [13] is an upwind-scheme using the tech-
nique of flux-vector-splitting according to van 
Leer on a structured grid. In general, the 
numerical solution in a viscous and com-
pressible fluid causes a steady drag which 
depends on two sources, the friction tangential 
to a surface element S∆ and the pressure normal 

to it (see Fig. 6). Though the viscous effect tan-
gential to the surface is not considered in an 
Euler solution, the pressure distribution implies 
numerical drag to an extent which depends on 
the particular computational scheme. The un-
steady motion triggers the physical effect which 
has to be separated from the numerical one. As 
an example, the data for the solution shown in 
Fig. 5 are given in Tab. 4. The drag coefficient 
cD  for steady flow and the power coefficient for 
gliding are comparable terms. The flapping 
motion reduces the drag compared to steady 
flow. 
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Fig. 5: Mach 
number around 
the tip section 
of a transport 
aircraft in 
transonic flow 
producing 
thrust. Parame-
ters specified in 
Fig. 7. 

Note the almost 
unaltered pat-
tern of the 
contour lines 
despite the 
large ampli-
tudes. 
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0.010394 cD  6.273E-05 < cΠ,ë >  
0.010038 < cΠ,g >  4.222E-04 < cΠ,h >  

-3.56E-04 Dc∆  4.849E-04 Sum 

Drag reduction 3.5  %, Efficiency   = 73.45 % 

Tab. 4: Data for Fig. 5.  
The power coefficients include ë2

0 . 

The difference Dc∆  shows the effect of the 
unsteady motion, which leads to a small drag 
reduction. The reduction increases for increas-
ing amplitude ratio (Fig. 7) with also improving 
efficiency, which shows a maximum value for 

cλ  = 3.9 close to 90 %. For even larger ampli-
tude ratios the section produces net thrust for 
one and the same pitch amplitude. Of course, 
net thrust may also be achieved by simply 
increasing the pitch amplitude for a fixed 
amplitude ratio. 

These values applied, the effect described 
in the introduction is roughly estimated: At a 
flight level of 10,000 m, a modern medium size 
transport aircraft having a weight of 50 tons, a 
wing area S of 100 m², a span b of 30 m, and a 
L/D ratio of 18, is assumed to experience the 
motion in Fig. 5 - for simplicity - with uniform 
data on 1/5 of its wing area in the tip region. 
Ma = 0.75 leads to a speed over ground of 
225 m/s ( 4

0 1005.1 ⋅=q N/m²) or 810 km/h. The 
bending motion may be considered the first 
symmetric bending mode (i.e. f = 3.2 Hz, based 
on c = S/b, Reynolds number 7101.2 ⋅ ). The 
acting thrust of 27.25 kN is increased by Dc∆  in  
Tab. 3 using the underlined data in row (I). The 
additional thrust of 425 N results in 1.75 m/s or 
about 3.4 knots increase in speed.  

Raising the plunge amplitude for fixed cλ  
to one chord length gives a pitch amplitude of 
about 14°. The power produced in this case is 
18.3 times higher or 7.8 kN, which is almost 
30 % of the total power required. Numerically, 
full thrust of 27.25 kN with flapping flight is 
accomplished by amplitudes being eight times 
larger than in the first case. The plunging 
amplitude at the tip is about two chord lengths, 
the pitching amplitude close to 27°, which are 
quite large values.  

The efficiency of 80 % in the second row 
of the underlined data (II) allows of 1.1 kN 

 
Fig. 6: Lift and drag caused by the fluid force f 

acting on a surface element S∆ .  

4 5 6λc

0.0

0.5

1.0

1.5

η T,
η D

ηT, Efficiency thrust

ηD, Drag reduction

Above this line: Net thrust

Ma = 0.75, ωc*= 0.3, y/c = 0.95, α0 = 3.3o

0.2 < h0/c < 0.4, κ = 90o

Efficiency of flapping-wing motion
in transonic flow

Fig. 7: Wing section transonic transport aircraft 

cλ   2
0/αDc∆    ñT  h0/c     ñD  

3.47  -0.106  0.729  0.200  0.034 
3.54  -0.169  0.825  0.204  0.054 
3.61  -0.230  0.859  0.208  0.073 
3.68  -0.291  0.877  0.212  0.092 
3.75  -0.353  0.885  0.216  0.112 
3.89  -0.479  0.888  0.224  0.153 
3.96  -0.543  0.885  0.228  0.173 

    4.06  -0.641  0.879  0.234  0.204 (I) 
4.13  -0.707  0.874  0.238  0.225 
4.34  -0.925  0.869  0.250  0.295 
4.69  -1.282  0.833  0.270  0.409 

      5.04  -1.656  0.797  0.290  0.528 (II) 
5.38  -2.036  0.762  0.310  0.649 
5.73  -2.416  0.726  0.330  0.771 
6.08  -2.791  0.690  0.350  0.890 
6.42  -3.161  0.656  0.370  1.009 

Tab. 3: Selected data in Fig. 7. 

Fig. 5 
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thrust. This value leads to an increase in speed 
of 4.3 m/s or 8.4 knots. 

 Full thrust requires h0/c = 1.4 and 0α = 
16.0°. It is striking that also for these “large 
birds” the features of flapping flight remain 
almost unchanged – at least numerically. 

In Fig. 9 the behaviour of the wing section 
of a transport aircraft is surveyed for various 
combinations of amplitude ratios and phase 
shifts. The second left graph displays the 
individual solutions which were computed. 
While for the subsonic solutions in Fig. 9 the 
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Fig. 9: Wing 
section of a  
transonic 
transport air-
craft. Power 
coefficients 
from 2D Eu-
ler solution 
compared to 
the subsonic 
solution.  

The contour 
lines of level 
zero for 
pitch and 
plunge are 
copied into 
the graph for 
thrust effi-
ciency.  

( cλ =λ/2) 
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contributions from pitch and plunge are super-
imposed, transonic flow requires the full kine-
matics to be included in each solution. 
Calculated separately, both the plunging and the 
pitching motion show strong shocks.  

The contour lines of the Euler solution 
show wiggles and appear to be less accurate 
than the subsonic plots, which is true. The 
numerical code requires a “targeted iteration” 
towards the solution for a specific parameter set 

),( λκ with fixed 0α . The iteration consists of 
several periods with values increased step-by-
step. The computational time for the overview 
in Fig. 9 was significantly reduced by stepping 
from one set to the next on a fine parameter grid 
without intermediate iterations. 

6  3D Planforms and 3D Solutions 

2D investigations are not able to include the 
spanwise effects of individual shapes for 
bending and torsional modes. Current comput-
ational efforts take aim to include the full 
kinematics of a 3D flexible wing in viscous, 
compressible flow. Results are hard to achieve 
because they require long computing times and 
depend on uncertainties modelling the physical 
properties of the flow. Contour charts like the 

one in Fig. 9 for viscous flow exceed the present 
computational capabilities. 3D Euler solutions 
for flapping-wing kinematics were carefully 
investigated by Neef [14]. 

The 3D planform model developed in-
cludes the 3D kinematics and 2D results for the 
respective forces and moments in each strip 
from the wing root to the tip. The spanwise 
deformations are given in terms of mode shapes 
and phase shifts among the contributing modes. 
The example in Fig. 10 shows that the 
coefficients may depart considerably from the 
2D contour pattern. The swept back wing 
appears to have the optimum efficiency inside 
the region of passive pitch excitation.  
 

 
Fig. 11: 3D planform for approximate 

calculations of 3D kinematics. 
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Fig. 10: Power 
coefficients for 
a 3D LANN 
wing  plan-
form.  
Quadratic 
mode shape 
functions for 
pitch and 
plunge are 
applied.  
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7  Perspectives of Technical Use 

The most tempting relation considering the 
technical use of flapping-flight thrust is wing 
loading over weight in Fig. 12. The path from a 
design far off the red line (lowest diamond: the 
Wright Brother’s Flyer III) to medium size and 
large airplanes is enlightening of the evolution 
of airplanes. The red line may be derived from a 
theoretical consideration [15] or by interpolating 
the data.  

While human beings never will become 
“normal” flyers, a modern airplane would well 
be able to generate sufficient thrust by flapping 
its wings at a normal rate, provided the 
technology of actuators exists with the 
efficiency of modern jet engines – and a wing 
material enduring thousands of wing beats at 
large deflections. The probably most useful 
aspect is the expected reduction of noise for a 
flying machine which separates the production 
of the required thrust from the generation of the 
necessary power (produced in an encapsulated 
power station), thereby integrating the both 
functions of carrying weight and producing 
thrust in the one wing - like flying in nature 
does. Closer to the near future is the search for 
potential benefits from subsidiary thrust gener-
ation, where moderate amplitudes reduce the 
drag, and the vertically moving trailing edge 
affects the shedding vortices resulting from the 
steady lift towards a premature decay. ! 

References 
[1] Küssner H G. Zusammenfassender Bericht über 

den instationären Auftrieb von Flügeln, Luftfahrt-
forschung 13, pp 410-424, 1936. 

[2] Theordorsen Th. General Theory of Aerodynamic 
Instability and the Mechanism of Flutter, N.A.C.A. 
Report No. 496,1935. 

[3] Garrick I E. Propulsion of a Flapping and Oscil-
lating Airfoil, N.A.C.A. Report No. 567, 1936. 

[4] Birnbaum W. Das ebene Problem des schlagenden 
Flügels, Zeitschrift für angewandte Mathematik 
und Mechanik (ZAMM) 4, pp 277-292, 1924. 

[5] DeLaurier J D. The Development and Testing of a 
Full-Scale Piloted Ornithopter, Canadian Aeronau-
tics and Space J.Vol. 45, No. 2, pp 72-82, 1999. 

[6] DeLaurier J D. An aerodynamic model for flap-
ping-wing flight, The Aeronautical Journal Vol. 
97, pp 125-130, April 1993. 

[7] Jones K D, Platzer M F. Numerical computation of 
Flapping-Wing Propulsion and Power Extraction, 
35th Aerospace Sciences Meeting, Jan 6-10, Reno 
NV, AIAA 97-0826, 1997.  

[8] Jones K D, Dohring C M, Platzer M F. Experimen-
tal and Computational Investigation of the Knoller-
Betz Effect, AIAA Journal Vol. 36. No. 7, pp 1240-
1246,1998.  

[9] Send W. The Mean Power of Forces and Moments 
in Unsteady Aerodynamics, Zeitschrift für ange-
wandte Mathematik und Mechanik (ZAMM) 72, pp 
113-132, 1992. 

[10] Send W. Subsidiäre Schuberzeugung mit gekop-
pelten Biege- und Torsionsschwingungen in trans-
sonischer Strömung, Deutscher Luft- und Raum-
fahrtkongress, Sep 27-30, Berlin, DGLR-JT99-
086, 1999. 

[11] Carstens V. Berechnung der instationären Druck-
verteilung an harmonisch schwingenden Gittern in 
ebener Unterschallströmung, Teil II, DFVLR IB 
253-75J02, DFVLR-AVA, Göttingen, 1975. 

[12] Send W. Harmonische Flatteranalyse im Zeitbe-
reich, Deutscher Luft- und Raumfahrtkongress, 
Nov 17-20, München, DGLR-2003-120, 2003. 
www.aniprop.de/dglr03 

[13] Carstens V. Computation of the Unsteady Tran-
sonic 2D Cascade Flow by an Euler Algorithm 
with Interactive Grid Generation, AGARD CP 507, 
Transonic Unsteady Aerodynamics and Aero-
elasticity, San Diego, USA, October 7-11, 1991. 

[14] Neef M. Analyse des Schlagfluges durch numeri-
sche Strömungsberechnung, PhD Thesis TU 
Braunschweig, 2002. www.biblio.tu-bs.de . 

[15] Send W. Der Traum vom Fliegen, Naturwissen-
schaftliche Rundschau 56, Heft 2, pp 65-73, 2003.  

 

 
Fig. 12: Wing loading over weight. 


