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Abstract

The application of time domain analyses for
aeroelastic problem in a transonic flow is con-
sidered. The methodology here proposed is to
present an investigation on the effects of non-
linearities on aeroelastic behavior for an air-
foil moving in pitch and plunge. Here struc-
tural dynamics is considered in terms of concen-
trated nonlinearities. The CFD tool employed
in the present work is based on the Euler for-
mulation. The governing equations are inte-
grated by cell-centered, finite-volume, centered
space discretization and five-stage, hybrid, ex-
plicit, Runge-Kutta time marching scheme. This
CFD tool solves flows around two-dimensional
lifting surfaces moving in pitch and plunge. The
computational domain is discretized using un-
structured grids and the movement is modeled
with dynamic mesh algorithm. To solve the
aeroelastic problem the Runge-Kutta method is
applied combined with the CFD code. The time
domain aeroelastic responses concerned particu-
larly the NACA0012 airfoil are analysed by in-
vestigating typical LCO nonlinear effects from
phase plane.

1 Introduction

In the last decades, nonlinear dynamics analysis
has been largely developed and explored, both
in the theorical and experimental point of view,
in a vast diversity of fields in science and engi-
neering. Nonlinear aeroelasticity is a mulidisci-

plinary field, that is very important in aeronautics
and aerospace engineering [10]. Most aeroelastic
analyses of flight vehicles have been performed
under the assumption of linearity. Under this as-
sumption, the characteristics of flutter and diver-
gence can be obtained. However, the influence
of nonlinearities on modern aircraft is becom-
ing increasingly important and the requirement
for more accurate predictive tools grows stronger
[16].

There are two possible consequences of any
nonlinear effect. One is that exponentially grow-
ing oscillations predicted by an unstable linear
model are attenuated due to the nonlinear effects,
finite amplitude, steady-state oscillation. Limit
cycle oscillations (LCOs) have been a persis-
tent problem on several fighter aircraft designs
and wind-tunnel models, where it can be gener-
ally encountered on external store configurations.
[7,8]. LCO may be beneficial because the nonlin-
earity reduces the amplitude of the oscillations.
Of course, structural integrity may still be an is-
sue if the LCO amplitudes are too large. The sec-
ond consequence is wholly detrimental. In this
instance, a system that may be stable to a suffi-
ciently small perturbation, can become unstable
due to a large disturbance [9].

LCO in aeroelastic systems appear to be more
prevalent in transonic flow than in subsonic flow.
Aerodynamic nonlinearity is associated with the
presence of shock waves in transonic flows. In
this situation, the unsteady forces generated by
motion of the shock wave have been shown
to destabilize single degree-of-freedom airfoil
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pitching motion and affect the bending-torsional
flutter by lowering the flutter speed at the so-
called transonic dip phenomenon. Of course,
nonlinear structural mechanisms can also lead to
LCO whether the flow is transonic or not. There
have designed to exhibit LCO due to a structural
nonlinearity, and such test results have been suc-
cessfully correlated with analysis. However, the
present undertanding of LCO induced by aero-
dynamic nonlinearities is less complete, and no
systematic quantitative correlation between the-
ory and experiment has been achieved [20].

Computational aeroelasticity is a relatively
new field emphatisizing those types of aeroelastic
problems where loads based on Computational
Fluid Dynamics (CFD), which can be both un-
steady and nonlinear, are used [10,11,18]. A sig-
nificant amount of effort devoted towards the nu-
merical solution of transonic aeroelastic phenom-
ena, not only in the prediction of transonic dip
effects [3,4], but also towards that of LCO. Eu-
ler and Navier-Stokes schemes have been cou-
pled with structural models [1,13,14,18].

The metodology here presented, which is
based on the ideas of [1,14] intend to obtain
the time domain aeroelastic responses for an air-
foil moving in pitch and plunge in the transonic
regime. The CFD tool has been achieved in co-
operation with CTA/IAE group [2,5,18,19]. This
CFD tool has been tested and developed for the
several aerodynamic and aeroelastic applications
considered in the CTA/IAE. However this CFD
tool had never used for time domain aeroelastic
analyses before.

In the CFD code the Euler equations are inte-
grated by cell-centered, finite-volume, centered
space discretization and five-stage, hybrid, ex-
plicit, Runge-Kutta time marching scheme. This
CFD tool solves flows around two-dimensional
lifting surfaces moving in pitch and plunge. The
computational domain is discretized using un-
structured grids and the movement is modeled
with dynamic mesh algorithm. To solve the
aeroelastic problem the Runge-Kutta method is
applied combined with the CFD code. The time
domain aeroelastic responses concerned particu-
larly the NACA0012 airfoil are analysed by in-

vestigating typical nonlinear effects like LCO
from phase plane.

2 Aerodynamic Simulation

In the present study, the flow was assumed
to be governed by the two-dimensional, time-
dependent Euler equations, which may be writen
in integral form for Cartesian coordinates as:

∂
∂t

∫ ∫
V

Qdxdy+
∫

S
(Edy−Fdx) = 0, (1)

whereV represents the area of the control volume
andS is its boundary,Q is the vector of conserved
quantities and the inviscid flux vectors,E andF,
are given by:

Q =


ρ
ρu
ρv
e

 , E =


ρU

ρuU + p
ρvU

(e+ p)U +xt p

 ,

F =


ρV
ρVu

ρVv+ p
(e+ p)V +yt p

 . (2)

whereρ, u, v, p ande are density, the two Carte-
sian components of the velocity, the pressure, and
the specific total energy, repectively.

The contravariant velocity components are
defined as:

U = u−xt , V = v−yt , (3)

wherext andyt represents the Cartesian velocity
components of the mesh.

Pressure is represented by the following state
equation:

p = (γ−1)[e− 1
2

ρ(u2 +v2)] (4)

whereγ is the ratio of specific heats.
The Euler equations can be rewritten for each

i-th control volume as:

∂
∂t

(ViQi)+
∫

Si

(Edy−Fdx) = 0. (5)
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The Euler equations are a set of nondissipa-
tive hyperbolic conservation laws. Hence, their
numerical solution requires the introdution of ar-
tificial dissipation terms in order to avoid oscil-
lations near shock waves and to damp high fre-
quency uncoupled error modes. The numerical
dissipation terms are formed as a careful blend
of undivided Laplacian and biharmonic operators
[19]. Hence, the artificial dissipation operator,
Di , can be written as,

Di = d2(Qi)−d4(Qi), (6)

whered2(Qi) represents the contribuition of the
undivided Laplacian operator, andd4(Qi) the
contribuition of the biharmonic operator. The
biharmonic operator is responsible for provid-
ing the background dissipation to damp high fre-
quency uncoupled error modes and the undivided
Laplacian artificial dissipation operator prevents
oscillations near shock waves [5].

Therefore, the Euler equations after be fully
discretized in space and the explicit addition of
artificial dissipation terms, can be written as:

d
dt

(ViQi)+C(Qi)−D(Qi) = 0, (7)

where C(Qi) represents convective operator,
given by:

∫
Si

(Edy−Fdx)≈C(Qi) =

3

∑
k=1

[E(Qik)(yk2−yk1)−F(Qik)(xk2−xk1)], (8)

where

Qik =
1
2
(Qi +Qk), (9)

and the(xk1,yk1) and(xk2,yk2) are vertices which
define the interface between the volumesi andk.

The unsteady Euler code is based on Ja-
menson’s finite volume and Runge-Kutta time-
marching using a second-order accurate, 5-stage,
explicit, hybrid scheme. The 2-D Euler equations
in integral form are discretized by a finite volume
procedure in an unstructured mesh [18].

2.1 Equations of motion

Consider a typical two-degrees-of-freedom
(DOF) airfoil section as shown in Fig.1. The
equations of motion of this aeroelastic system
can be written in the form [6]:

mẅ−Sαα̈+ Ḡ(w) =−L, (10)

−Sαẅ+ Iαα̈+ M̄(α) = Mea. (11)

where the right-hand-side terms represent the
aerodynamic loading terms, which are obtained
from CFD code. The left-hand-side termsm, S
andIα are the airfoil mass, airfoil static moment
and pitch axis moment of inertia about elastic
axis, repectively.Ḡ(w) = kww andM̄(α) = kαα
are the nonlinear plunge and pitch stiffness terms.

Fig. 1 Typical section model.

The constantkw is the spring constant for the
plunging motion andkα is the nonlinear spring
stiffness related to the pitching motion. Several
classes of nonlinear stiffness contribuitions have
been studied in papers treating the open-loop dy-
namics of aeroelastic system [13,14]. In this
work, kα is kept linear with respect tow, butkα is
represented as the following polynomial function
of α, that is:

kα = kα0 +kα1α+kα2α2 +kα3α3 + ... (12)

The aeroelastic system given by Eqs. (10) and
(11) are rewritten as a system of first-order differ-
ential equations by setting:

φ1 =
w
b

; φ2 =
ẇ
b

; φ3 = α; φ4 = α̇, (13)
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with

φ = [φ1 φ2 φ3 φ4], (14)

wherew andα are airfoil vertical displacement
and pitch DOF, respectively andb is airfoil semi-
chord. The system of aeroelastic equations is ex-
pressed as:

φ̇ = K (φ,CL,Cm,U∗), (15)

whereK is a nonlinear function ofφ, CL andCm

are are lift and pitch moment coefficient, andU∗

is the reduced velocity. The fourth-order Runge-
Kutta time-stepping scheme is used for the differ-
ential aeroelastic equations (Eqs. (15)).

3 Time-Marching Aeroelastic Analysis

The results were calculated by first computing a
converged steady flow solution about the airfoil
with angle 0.1 degree of pitching about the elastic
axis. The steady Euler solution was determined
using the steady portion of the original unsteady
Euler solver.

The subsequent aeroelastic response of the
model was obtained by a time marching solu-
tion of the aeroelastic equations. The coupled
computational fluid dynamic (CFD) and compu-
tational structural dynamics (CSD) method to the
two-dimensional typical section was performed.
It consists of a NACA0012 airfoil.

Time integration of the coupled fluid-
structural equations of motion (Eq. (15)) is ap-
plied and incorporated within the CFD Euler
code as follows:

1. At time leveln, perform an iteration of the
Euler equation and calculate values forCL

andCm;

2. This information is used by the equations
of motion to determine the position and ve-
locity of the airfoil;

3. The new position and velocity are taken
into account by the flow equations, and the
process is repeated.

The solutions were determined on an unstruc-
tured mesh that moved with the airfoil. To ex-
amine the effect of aerodynamic nonlinearities
about the NACA0012 airfoil the following pa-
rameter related to the linear structure (typical sec-
tion) were chosen:

xα = 1.8, r2
α = 3.48, ω̄ = 1,

µ= 60, a =−0.25.

whererα is airfoil radius of gyration about elastic
axis,xα is nondimensional distance from elastic
axis to mass center,̄ω = ωw

ωα
whereωw and ωα

are uncoupled natural frequency of bending and
torsion modes,a is location of elastic axis andµ
is airfoil-fluid mass ratio.

Different Mach numbers and values of the
reduced velocity,U∗ = U∞

bωα
, whereU∞ is the

freestream velocity,b is the airfoil half-chord and
ωα is the pitch natural frequency, were consid-
ered for simulations. At a constant Mach number
0.9, a series of time integrations was performed
at increasing reduced velocities. Figure 2 and 3
presents a simulation forU∗ = 35, where the sys-
tem approaches the stable equilibrium point. Fig-
ure 4 and 5 shows divergent response system for
U∗ = 45, opposingly to the results in Fig. 2 and 3.

In between these twoU∗ conditions, there
must be a particular point where the system is
neutrally stable. This is shown in Fig. 6 and 7,
whenU∗ = 40. However, most of the runs do
not need computations for many time periods, be-
cause system oscillations were easily identified
with diverging or converging amplitude by look-
ing at only few of them.

Time integration for Mach number 0.85 were
performed. Below a reduced velocity ofU∗ =
25, the system has presented an oscillatory mode
with low amplitude. The results are shown in the
Fig. 8 and 9, where it can be seen that the system
first stabilizes in equilibrium point (cf. Fig. 8) for
U∗ = 10 and limit cycle oscillations (cf. Fig. 9)
for U∗ = 23. For reduced velocities above 23 to
nearly 40, the system shows apparent divergent
reponse as depicted in Fig. 10 and 11 forU∗ = 30
andU∗ = 40. In Fig. 12 and 13, forU∗ = 50,
the system reaches a higher frequency oscillatory
mode with slightly increasing amplitude.
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Fig. 2 Time history (damped response),M = 0.9
andU∗ = 35.
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Fig. 3 Phase plane (damped response),M = 0.9
andU∗ = 35.
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Fig. 4 Time history (divergent response),M =
0.9 andU∗ = 45.

ForU∗ = 65 (Fig. 14 and 15) the system ini-
tially shows diverging behaviour but then reaches
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Fig. 5 Phase plane (divergent response),M = 0.9
andU∗ = 45.
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Fig. 6 Time history,M = 0.9 andU∗ = 40.
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Fig. 7 Phase plane,M = 0.9 andU∗ = 40.

a steady oscillatory mottion.
Polynomial nonlinearity given by:

kα = 0.18+18000α2−98000000α4 (16)
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was then added to the torsional spring, and
the new coupled system was integrated. In
Fig. 16 and 17 the pitch time history and phase
plane trajectory for Mach number 0.85 andU∗ =
65 are shown. Note the obvious distorted char-
acter of the phase plane, indicating the influence
of structural nonlinearities in the solution. For
U∗ = 75 the system has presented LCO behav-
ior, but with two amplitudes (cf. Fig. 18 and 19
). In all cases, forM = 0.85 with linear struc-
ture, LCO amplitudes increase with the reduced
velocity, where it seems to take the form of a su-
percritical bifurcation.

For reduced velocities above 80, the system
experiences strong divergence conditions, with
the results shown in Fig. 20. It can be noted,
in comparison with the approach to limit cycles
seen previously, that the divergence is extremely
intense.
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Fig. 8 Time history,M = 0.85 andU∗ = 10.

Simulations when structural nonlinearities
are included to the aeroelastic system were also
performed for the following parameter:

xα = 0.2, r2
α = 0.29, ω̄ = 0.34335,

µ= 60, a =−0.2.

Figures 21 to 24 illustrate the pitching re-
sponse for the NACA 0012 airfoil in transonic
flow (M=0.85) and reduced velocity of 2. Fig-
ure 21 and 22 presents the response when linear
structure is considered, while in Figure 23 and 24
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Fig. 9 Time history,M = 0.85 andU∗ = 23.
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Fig. 10 Time history,M = 0.85 andU∗ = 30.
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Fig. 11 Time history,M = 0.85 andU∗ = 40.

a polynomial nonlinearity (Eq. (16)) is assumed
to the pitching stiffness.
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Fig. 12 Time history,M = 0.85 andU∗ = 50.
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Fig. 13 Phase plane,M = 0.85 andU∗ = 50.
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Fig. 14 Time history without polynomial struc-
tural nonlinearity,M = 0.85 andU∗ = 65.

4 Conclusions

An integrated fluid-structure simulation program
has been developed for a simulation of nonlinear
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Fig. 15 Phase plane without polynomial struc-
tural nonlinearity,M = 0.85 andU∗ = 65.
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Fig. 16 Time history with polynomial structural
nonlinearity,M = 0.85 andU∗ = 65.
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Fig. 17 Phase plane with polynomial structural
nonlinearity,M = 0.85 andU∗ = 65.

aeroelastic response behavior in transonic regime
with nonlinear structural parameters. This pro-
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Fig. 18 Time history,M = 0.85 andU∗ = 75.
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Fig. 19 Phase plane,M = 0.85 andU∗ = 75.
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Fig. 20 Time history,M = 0.85 andU∗ = 80.

gram consists of an aerodynamic model given by
two-dimensional unsteady Euler solver and dy-
namic grid deformation code. To solve the aeroe-
lastic problem the Runge-Kutta method is ap-
plied combined with the CFD code. The cou-
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Fig. 21 Time history without polynomial struc-
tural nonlinearity,M = 0.85 andU∗ = 2.
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Fig. 22 Phase plane without polynomial struc-
tural nonlinearity,M = 0.85 andU∗ = 23.
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Fig. 23 Time history with polynomial structural
nonlinearity,M = 0.85 andU∗ = 2.

pled CFD and structural method provides the
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Fig. 24 Phase plane with polynomial structural
nonlinearity,M = 0.85 andU∗ = 23.

time history of bending and torsional motion for
a NACA0012 airfoil. The results has been anal-
ysed from time histories and phase planes. For
Mach number 0.85 with linear struture the re-
sults have shown different modes and amplitude
of oscillations. When reduced velocity increased
from 10 to nearly 75, where a strong divergence
condition is exceeded. Adding polynomial struc-
tural nonlinearity to a typical section model in
transonic flow has shown destabilizing effects in
the converged response and higher frequency in
the limit cycle oscillation response. These tests
cases have presented the capability of the in-
tegrate CFD and structural program to predict
LCO. Then, the preliminary results obtained en-
courage the authors to move forward to verify of
the methodology proposed.

Once validated, this metodology will provide
the required capabilities to study aeroelastic sta-
bility problems using modern CFD codes. Dur-
ing this development, Hopf bifurcation analysis
for flutter boundary on transonic flow will be con-
sidered. This work developments will provide the
basis for further advance to complete analysis of
stability and bifurcation like LCO and chaos on
transonic regime.
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