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Abstract  

In the present work the authors outline a 

procedure to evaluate uncertainity propagation 

in composite mechanical characteristics and to 

compute probability of failure of a composite 

laminate under generic static loads in 

according to the available literature. A review 

of probabilistic analysis basic concepts and 

methods is firstly introduced. A software is  

developed by authors, based on FORM and 

SORM, in order to perform analysis on a test 

case. Preliminary  results obtained for a test 

case, are presented in the paper and compared 

with Monte Carlo simulation
1
. 

 

Nomenclature 

fξ(ξ):  probability density function (pdf) of ξ 
Fξ(ξ):  cumulative distribution function (CDF) 

of ξ 
µξ:  mean value of ξ 
σξ:  standard deviation of ξ 
φ:  standard normal probability density function 

Φ:  standard normal probability density function 

:X
r

 set of independent normal random variables 

:U
r

 independent standard normal random var. 

:Y
r

 independent random variables 

G:  limit state function 

β:  reliability index 

Ef:  fibre longitudinal elastic modulus 

Em:  matrix longitudinal elastic modulus 

Gf:  fibre shear elastic modulus 

Gm:  matrix shear elastic modulus 

%Vf:  fibre volume percentage 

νf:  fibre Poisson ratio 

νm:  matrix Poisson ratio 
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θ :  ply-angle 

Stot: laminate thickness 

Q11,Q12,Q22,Q66: ply reduced stiffnesses 

A,B,D: laminate extensional, coupling and 

bending stifness matrices 

Nx,Ny,Nxy: loads per unit length 

Si,c/t: compression/tensile strength of lamina in i                                                                   

direction 

( )∇ • : gradient of the function ( )•  

( )2∇ • : Hessian of the function ( )•  

TR(M):  trace of the matrix M   

1  Introduction 

The use of safety factor in structural design 

leads to an increase of weight with a not-

quantified increase of structural reliability. 

Furthermore the amount of scatter observed in 

composite material testing tends to be high 

relative to metals; variability in composite 

material property data results from a number of 

sources, including variability in laying up the 

material, variability of raw materials, high 

sensitivity to testing environment and material 

testing methods; deterministic mechanical 

description of composite material may be too 

penalizing, leading to an increase in  structures 

weight. For aerospace structures those weight 

increases could become unacceptable. A way to 

overcome those two limits of the deterministic 

approach in design, is the development of a 

probabilistic design methodology for aerospace 

advanced composite materials; such 

methodology should take in account 

uncertainties relating to quantities involved in 

design (geometry, loads, material capabilities, 

operating environment) in order to quantify the 

structural probability of failure (pf) and the pf 

sensitivities to design variables.  
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In order to cope with such complex problem, a 

probabilistic design procedure is being 

developed by authors. In section 2 a review of 

First and Second Order Reliability Methods 

(FORM and SORM) is provided in order to 

introduce basic concepts in structural reliability 

and probabilistic analysis. As a first step in 

probabilistic design methodology development, 

in  sections 3 and 4 FORM and SORM 

approaches are investigated to evaluate the 

uncertainty propagation in material mechanical 

characteristics for a generic laminate and the 

probability of failure for the same laminate 

under static loads. In both cases sensitivity 

analysis is also performed to understand the 

relative importance of the input variable to the 

considered response. 

2  The Basic Structural Reliability Problem 

2.1 Problem Definition 

The basic structural reliability problem 

involves a single load effect S and a single 

resistance effect R, both expressed by pdfs fS 

and fR. S and R are defined in such a way that 

the considered structural element will fail if 

S>R. Under those assumptions the basic 

reliability problem can be written as: 

 ( ) ,fp P R S= ≤  (1) 

or more generally: 

 ( )( ), 0 ,
f

p P G R S= ≤  (2) 

where G is the limit state function of the 

structural element; G divides the space of the 

random variables in two zones: the failure 

domain (where G<0) and the safe domain 

(where G>0).  The probability of failure can be 

computed solving the integral (3) or the 

convolution integral (4) for independent random 

variables:         

 

 ( )
( )0

, ,
f RS

G

p f r s drds
Ω ≤

= ∫∫  (3) 

 ( ) ( ) .
f R S

p F x f x dx

∞

−∞

= ∫  (4) 

 
Fig. 1. R, S Joint Probability, Limit State Function 

and Failure Domain. 
 

Integral (3) can be finally generalized for 

any number of random variables describing  

structure behaviour: 

 ( )
( )0

... .f X

G

p f x d x
Ω ≤

= ∫ ∫ uur

r r
 (5) 

2.2 Computational Aspects – First Order 

Reliability Methods 

Due to the high number of variables 

involved in (5) for practical cases, an analytic 

solution can be rarely achieved; the usually 

adopted numerical methods to perform 

integration in structural reliability problems are 

based on repeated simulation of the structural 

behavior for random values of the input 

variables (Monte Carlo methods) or on 

transformation of the joint probability density 

function   in a multi-normal one for which some 

peculiar properties hold. Despite its simplicity 

and its robustness, direct Monte Carlo approach 

requires a great number of trials and a 

consequent high computational effort, in fact, as 

suggested by Shooman [1], the number of 

needed trials in a crude Monte Carlo simulation 

can be evaluated by: 

 
( )

1

21 p
k

Np
ε

 −
=  

 
 (6) 

where ε is the wanted precision, p is the 

expected value of the probability of failure, N in 

the number of trials and k the value of the 

standard normal random variable which the 

level of confidence corresponds to. The square 

root of N in (6) implies a slow convergence of 
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Monte Carlo methods (Fig. 2). Some variance 

reduction techniques (e.g. importance sampling) 

have been developed in order to obtain a faster 

convergence by the introduction of  a priori 

information about the problem solution. 

 

 
Fig. 2. Number of needed trials in direct Monte 

Carlo simulation 

 

In this work direct Monte Carlo 

simulations are used as benchmarks for the 

numerical results obtained with other 

probabilistic approaches.  As stated above, 

another way to compute (5) is transformation of 

the joint pdf in a multi-normal one. Let’s 

consider the basic structural reliability problem 

with independent normal R and S and a limit 

state function G=R-S. By means of the 

properties of normal moment generation 

functions, G is also a gaussian random variables 

with mean value and variance: 

 
2 2 2.

G R S

G R S

µ µ µ

σ σ σ

= −

= +
 (7) 

Equation (2), introducing the standard 

random variable ( )* ,G GG G µ σ= −  becomes: 

 ( ) ( )
0

0 G
f

G

p P G
µ

β
σ

 −
= ≤ = Φ = Φ − 

 
 (8) 

where Φ is the normal standard cumulative 

distribution function and β is the reliability 

index [2,3]; β can be considered as the distance, 

in standard deviation unit, between the mean 

value of the limit state function and the failure 

domain. Equation (8) holds for any number of 

independent normal random variables Xi and for 

any linear limit state function 

0 1 1 ... n nG a a X a X= + + +  because, under these 

assumptions and by the means of the axis-

symmetry of the multi-normal standard joint pdf 

in standard normal space, it’s always possible to 

compute integral (5) as: 

 

( ) ( )

( ) ( ) ( )

1 1 1 2 2 2...

... ... ,

f

i i i n n n

p u du u du

u du u du

β

φ φ

φ φ β

+∞ +∞

−∞ −∞

− +∞

−∞ −∞

=

= Φ −

∫ ∫

∫ ∫

 (9) 

where ( )
i ii i X Xu X µ σ= − . 

In order to extend the property expressed in 

(9) to non-normal random variables and non-

linear limit state functions, FORM methods 

were developed [4].  Non-linear limit state 

functions can be linearized by first order 

Taylor’s expansion around a point 0U
r

of G: 

 ( ) ( ) ( )
0

0 0, ,
n

i i

i i U

G
G U G U u u

u

∂
≈ + −

∂
∑

r

r r
 (10) 

mean value and variance of linearized G are: 

 
( ) ( )

( ) ( )

0

0 0,

,

n

i i

i i U

U

G
G U u u

u

f U dU G µ

∞

−∞

 ∂
 + − ⋅

∂  

⋅ =

∑∫
r

r

r r r

 (11) 

 

 

( ) ( ) ( )

( )
[ ]

0

2

2

1

U

n

i

i
U

G U G f U dU

G U
VAR u

u

µ
∞

−∞

 − =
 

∂
=

∂

∫

∑
r

r r rr

r  (12) 

Equation (12) shows that evaluation of the 

probability of failure by (9) depends on the 

choice of the expansion point 0U
r

; the most 

convenient point is the nearest one to the origin 

of axes of the space of normal standard 

variables because, among the points of G, it  

corresponds to the highest value of the joined 

pdf and hence it’s the point in which the system 

will most probably fail [4]; the point is called  

the design point or the most probable point 

(MPP) *.U
r

  If linearized G is used, then 

structural pf can be computed using (9); the 

greatest are the curvatures of the limit state 

function in the space of normal variables the 

greatest is the error on the evaluation of the pf 
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obtained by linearizing G. The CDF of a 

random variable Y can be approximated with 

normal standard pdf through the normal tail 

approximation [6]. The non-normal independent 

variables are mapped into the standard normal 

space by: 

 ( ) ( ) ( )( )1ˆ ˆ ˆ ˆ ,Y YF y u u F y−= Φ ⇒ = Φ  (13) 

where ŷ  is a possible value of Y. It’s important 

to notice that (13) doesn’t  transform the non-

normal random variables in a normal ones, but 

simply map variables in the standard space 

keeping the cumulative probability content 

constant.  A FORM direct algorithm for 

independent random variables can be 

summarized, hence,  through the following steps 

[6]: 

− mapping of all the random variables in 

standard normal random ones; 

− transformation of the limit state function 

according to the transformed variables; 

− search for the MPP and its distance β form 

the origin of the standard normal variables 

space. This represents a minimization 

problem in the form: 

 min uβ =
r

 (14) 

subject to ( ) 0G u =
r

; 

− evaluation of the pf by the means of (9) 

Another important goal to be achieved in 

probabilistic analysis is the computation of the 

sensitivity factors; they can be defined as the 

variation of the reliability index with respect to 

standard normal variables 
i

u

β∂

∂
in the 

neighborhood of the MPP [5]. The variation of 

the distance from origin of a generic point P can 

be expressed by: 

 

2 2 2

1 2

2 2 2

1 2

...

,
...

n

i i

i

n

OP
u u u

u u

u

u u u

∂ ∂
= + + + =

∂ ∂

+ + +

 (15) 

in the MPP, where *
U
r

and ( )*
G U∇

r
 are parallel, 

it becomes: 

 
( ) 1

,i
i

i i

G Uu

u u G

β
α

β

∂∂
= = − =

∂ ∂ ∇

r

 (16) 

introducing (16) in equation (12) it can be 

shown that sensitivities
i

α  can be also viewed as 

the contributions of each random variable in the 

overall variance of the limit state function. 

Ditlevsen and Madsen [3] have also defined the 

omission sensitivity factor ζ, as the relative 

error occurring when some random variables are 

replaced by fixed values: 

 ( )1 1
2

1

,..., ,
1

i i

i

q q

i

i

u

U u U u

α

β
ζ

α

−

= = =
−

∑

∑
 (17) 

or, when a variable is replaced with its mean 

value: 

 ( )1
2

1
0,..., 0 .

1
q

i

i

U Uζ
α

= = =
−∑

 (18) 

Since in FORM algorithm the MPP search is 

usually performed by gradient methods, the 

sensitivity analysis requires no additional 

computational effort. 

2.3 Second Order Reliablity Methods 

When the curvatures of the limit state 

function around the MPP are not negligible, the 

linear approximation can leads to significant 

errors in the evaluations of the pf. An 

improvement of the solution can be obtained by 

a second order approximation. Assuming that 

( )G U
r

 is twice differentiable, it can be written 

as: 

( ) ( ) ( ) ( )

( ) ( ) ( )

* * *

* 2 * *1
,

2

T

T

G U G U G U U U

U U G U U U

≈ + ∇ − +

+ − ∇ −

r r r r r

r r r r r (19) 

dividing by ( )*
G U∇

r
 and introducing 

( )
( )

2 *

*
,

G U
H

G U

∇
=

∇

r

%
r  equation (19) can be re-written 

as: 
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( )
( )

( )

( ) ( )

*

*

* *1
0

2

T

T

G U
U U

G U

U U H U U

α= − − +
∇

+ − − =

r
r r

r

r r r r
%

 (20) 

It’s more convenient to write equation (20) in a 

new space ,V
r

 where *
U
r

 is parallel to the vn 

axis; this can be achieved by an orthogonal 

matrix T whose last row is 
( )
( )

*

*
,

G U

G U

∇
−

∇

r

r  in the 

new space the linear approximation is simply  

vn-β. Equation (20) becomes: 

 

( )
( )

( ) ( )

*

* *1
0.

2

V

n

T
T

G V
v

G U

V V THT V V

β= − + +
∇

+ − − =

r

r

r r r r
%

 (21) 

Equation (21) can be finally approximated 

in a quadratic form of the first n-1 variables v: 

 
1

2

1

,
n

n i iv k vβ
−

= +∑  (22) 

where ki are the eigenvalues for the first n-1 

rows and columns of the matrix TTHT%  and 

represent the first n-1 principal curvatures of the 

limit state function at the MPP. The probability 

of failure is then: 

 ( )
1

1

0 .
n

f n i i
p P G P v k vβ

− 
= ≤ ≈ ≥ + 

 
∑  (23) 

Based on definition (23), many authors 

have developed analytical solutions, introducing 

different assumptions; the first one was 

Breitung [7], his solution’s based on asymptotic 

analysis as β → ∞ : 

 ( ) ( )
1 1

21 .
n

f i

i

p kβ β
−

−
≈ Φ − +∏  (24) 

Hohenbicher & Rackwitz [8] proposed the 

following improvement of the estimate of pf by 

importance sampling analysis:  

 ( )
( )
( )

1

1 2

1

1 ,
n

f i
p k

φ β
β

β

−
−  

≈ Φ − +  Φ − 
∏  (25) 

the estimate (25) reduces to (24) for β → ∞ and 

it’s more accurate for lower values of β . 

Tvedt [9] developed a three terms 

approximation by a second order power series 

expansion of integral (5) written for the 

quadratic safe set (22); the approximation is: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

1 1

2
1

1

2

11 11

22

1 1

3

11 11
2

2

1 1

1 2 3

1 ;

1 1 1 ;

1

1 Re 1 1 ;

.

n

i

i

n n

i i

i i

n n

i i

i i

f

T k

T

k k

T

k k

p T T T

β β

β β β

β β

β β β β

β β

−
−

=

− −
−−

= =

− − −
−

= =

= Φ − +

= Φ − − Φ ⋅  

 
+ − + +   

 

= + Φ − − Φ ⋅  

  + − + − +   

= + +

∏

∏ ∏

∏ ∏

(26) 

The above SORM corrections are defined 

only for 1
i

kβ ≥ −  and don’t give good results for 

negative curvatures [10]. 

Adhikari [11] proposed an asymptotic 

solution (27) for n → ∞ : 

 
( )

( )2

TR
,

1 2TR
f

A
p

A

β
 

+ = Φ −
  +
 

 (27) 

  

where A is the matrix containing the first n-1 

rows and columns of 
1

2

T
THT% . 

Tvedt [12] provided also an exact solution 

the quadratic form (19):  

 

( ) ( )
( )( )

( )

2

1 2

0

1 1

2

1

exp 2
Re 2

1 .

f

t

n

i

i

t
p i

t

tk dt

β
φ β π

∞

=

−
−

=

 +
= ⋅



 
−  

  

∫

∏

(28) 

  

The main computational effort for pf SORM 

estimates is the evaluation of the additional 

( )1 2n n +  elements of the Hessian matrix in 

the MPP. If the limit state function involves 

time consuming analysis or the problem has an 

high number of random variables, a direct 

Hessian computation may become impractical 



G. Romeo, G. Frulla, F. Borello 

6 

and different approximation methods are 

required [13].  

3 CDF Evaluation and Sensitivity Analysis of 

Composite Mechanical Characteristics 

Statistical description of composite 

laminate mechanical characteristics can’t be 

directly evaluated through experimental testing 

for every possible lay-up configuration. One of 

the task of a composite probabilistic analysis 

should be to understand how the uncertainty in 

constituent materials, geometry and ply 

configuration affects laminate mechanical 

behaviour. That means probabilistic analysis 

must provide CDF of the random variables 

representing the mechanical characteristics and 

their sensitivities to input variables. FORM and 

SORM concepts can be used to evaluate the 

CDF of a function W of random variables, 

defining a limit state function G’=W-W’ where 

W’ is a possible value of W. For such a limit 

state function, in fact, the probability of failure 

has the meaning of CDF value in W’.  Direct 

FORM application is, however, not convenient. 

In fact, since the function W isn’t statistically 

described, it’s not possible to make an efficient 

choice of the range of W’ values; it’s more 

effective to choose directly the values of the 

CDF (i.e. setting a series of distances β between 

MPP and the origin of the standard normal 

variables space), and then search for the 

constant W’ corresponding to the limit state 

function whose MPP is distant β  from the 

origin. Based on this approach, a computer 

software has been developed in order to perform 

statistical description of composite laminates 

and to evaluate pf for static loading. At the 

moment, for simplicity, the laminate mechanical 

model is based on the rule of mixtures and the 

classic laminate theory [14].  The environmental 

loads are not taken into account. Further 

development is in progress in order to include 

more accurate laminate models. 

In the software fibre and matrix elastic moduli 

and Poisson coefficients, fibre volume ratio, 

thickness and orientations are chosen as the 

basic independent random variables. For 

example, in this work, the input random 

variables are assumed to be described by the 

pdfs showed in Table 1. 

 
Material 

Poperty 
Distribution 

Mean 

Value 

Standard 

Deviation 
M.U. 

Ef Weibull 1.93e+05 1.57e+04 MPa 

Em Normal 1.00e+05 1.00e+04 MPa 

Gf Lognormal 4.93e+03 4.95e+02 MPa 

Gm Lognormal 4.93e+03 4.95e+02 MPa 

%Vf Normal 0.5 0.05 - 

νf Normal 0.3 0.03 - 

νm Normal 0.3 0.03 - 

θ Normal [0/±45/90]s[10/±4.5/9]s ° 

Stot Normal 8 0.2828 mm 

Table 1 

 

For what concerns the FORM inverse 

application, the software relies on an algorithm 

proposed by Xiaoping Du and Wei Chen [15]; 

the algorithm defines a set of hyper-spheres of 

radius βi and then iteratively tries to shift the 

function Q on the spheres until Q∇ (that’s the 

same as G′∇ ) becomes parallel to the position 

vector of the intersection between the sphere 

and the Q function. The SORM corrections are 

performed by the means of (24), (25), (26), (27) 

and (28) equations. 

The single ply mechanical behavior is 

described by the CDFs of reduced stiffness Q11, 

Q12, Q22 and Q66; CDFs obtained by the 

developed software are reported below and 

compared with the ones evaluated by Monte 

Carlo simulation (10
6
 cycles).  A [0/-45/45/90]s 

laminate is then analyzed in order to compute 

the CDFs of the A, B, D matrix elements; those 

of A are reported below. In Fig. 5a,b B and D 

elements CDFs are summarized. Generally 

FORM CDFs show a good agreement with the 

ones obtained by Monte Carlo Simulation; for 

some of the function (e.g. for A22, Fig 4c) 

FORM approximation can lead to significant 

errors and a SORM correction may be needed. 

In Fig. 6  SORM corrections are reported for the 

three cases in which FORM CDF and Monte 

Carlo Simulation showed worst agreement, at 

the moment the software isn’t able to 

automatically evaluate the necessity to apply a 

SORM corrections without computing the 

Hessian matrix, but this feature has to be 



 

7  

PROBABILISTIC  DESIGN OF ADVANCED COMPOSITE MATERIALS  

FOR AEROSPACE STRUCTURES

implemented in order to keep computational 

cost of SORM effective with respect to Monte 

Carlo Simulation. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3 a,b,c,d. CDFs of single ply mechanical properties 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 a,b,c. CDFs of A matrix elements 

 

A very important information that can be 

achieved by probabilistic ananlysis is sensitivity 

of the random variable function to its input 

variables. Through evaluation of sensitivities as 

defined in (16), it’s possible to compute 

omission factors by equation (18); an index 

defined as the difference between the omission 

sensitivity factor obtained by replacing the same 

physical quantity in all layers and the unity (i.e 

the factor obtained by not replacing any random 

variable) is used to understand wich random 

variable could be treated as a constant in 

probabilistic analysis. As shown in Fig. 7a and 

7b, for all the A,B and D matrix elements, fibre 
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and matrix shear moduli and Poisson 

coefficients can be replaced by their mean value 

without any significant effect on the value of the 

CDF. 
  

 
(d) 

 
(e) 

 
(f) 

Fig. 4 d,e,f. CDFs of A matrix elements 

 

4 Evaluation of Probability of Failure for a 

Composite Structure: a Test Case 

As a very simple example to test pf computation 

procedure , let consider the first ply failure of 

the laminate defined in section 3 under static 

loads Nx, Ny and Nxy. In order to verify if a ply 

failure occurs, the Tsai-Wu criterion [16] is 

considered: 

1 2

1 1 2 2

2 2 2

1 2 122

1 1 2 2 12

1 2

1 1 2 2

1 1 1 1

1 1 1

1
1 ,

t c t c

t c t c

t c t c

S S S S

S S S S S

TW failure
S S S S

σ σ

σ σ τ

σ σ

   
− + − +   

   

+ + + +

− = = ⇒

 (29) 

 

and consequently the limit state function 

describing the single ply behavior can be 

promptly obtained: 

 1 0.
P

G TW= − =  (30) 

 

 
(a) 

 
(b) 

Fig. 5 a,b. FROM CDFs of B and D matrices elements: 

black lines correspond to Monte Carlo Simulations 

 

In addition to the variables showed in 

Table 1, GP is also function of static loads and 

strengths that appear in (29); pdfs and  first two 

moments for these variables are summarized in 

Table 2. Moreover, in order to reduce the 

problem dimension, Gf, Gm, νf and νm are now 

considered deterministic variables and their 

values are fixed to their respective means. Since 

the first ply failure is considered, the laminate 

can be described as a series system in which the 

failure of a single element implies the failure of 
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the system itself. The overall probability of 

failure can hence be expressed as: 

 
( ) ( ) ( )
( )

1 2 1

3 1 2 ...

SP F P F P F F

P F F F

= ∪ ∩ ∪

∩ ∩ ∪
 (31) 

where Fx denotes the event “failure of the 

element x” and 
x

F  its negation; ( )1 2P F F∩  can  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6 a,b,c. SORM corrections for A22 and D66 CDFs 

 

be written as ( ) ( )2 2 1P F P F F− ∩  as well 

as all the other intersection terms of (31), that 

becomes: 

( ) ( ) ( )

( )

1

1 2 1

11

3 2 1

...

n n i

S i i j

i i j

jn i

i j k

i j k

P F P F P F F

P F F F

−

= = =

−−

= = =

= − ∩ +

+ ∩ ∩ −

∑ ∑∑

∑∑∑
(32) 

  

 

 
(a) 

 

 
(b) 

Fig.  7 a,b. Omissivity indexes at 0.001 level probaility (a) 

and 0.999 level probability (b) 

 

Variable Distribution 
Mean 

Value 

Standard 

Deviation 
M.U. 

S1t Weibull 2279 199 MPa 

S1c Weibull 61 7 MPa 

S2t Weibull 1455 148 MPa 

S2c Weibull 209 34 MPa 

S12 Weibull 96 7 MPa 

Nx Normal 2000 400 N/mm 

Ny Normal 2000 400 N/mm 

Nxy Normal 500 100 N/mm 

Table 2. 

 

Computing the system probability of failure 

means being able to compute the probability 

content of each intersection that appears in (32) 

i.e. evaluating integral (5) over overlapping 

areas of two or more failure domains. Since this 

can rarely be achieved, usually P(FS) is 
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expressed in terms of upper and lower bounds.  

The bounds used for this example are the ones 

suggested by Ditlevsen [17] for which only the 

two terms intersections have to be evaluated: 

 

( ) ( )

( ) ( )

1

1

2 1

max ;0

S

n i

i i j

i j

P F P F

P F P F F
−

= =

≥ +

 
+ − ∩ 

 
∑ ∑

 (33) 

 

( ) ( ) ( ){ }
1 2,

max ;
n n

S i i j

i i j i

P F P F P F F
= = <

≤ − ∩∑ ∑  (34) 

 

the terms ( )i j
P F F∩  can be finally bounded 

considering the intersection between the 

respective linearized failure domains already 

defined in FORM; if βi and βj are the reliability 

index associated with the P(Fi) and P(Fj), it can 

be written [17]: 

 

 
( )

( ) ( )
( ) ( )

|

|

if 0

,
0 min ;

ij

i j i

i j

j i j

P F F

ρ

β β

β β

≤

 Φ − Φ − 
≤ ∩ ≤  

Φ − Φ −  

(35) 

 
( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( )

|

|

| |

if 0;

,
max

,

ij

i j i

i j

j i j

i j i j i j

P F F

ρ

β β

β β

β β β β

≥

 Φ − Φ − 
≤ ∩ 

Φ − Φ −  

≤ Φ − Φ − + Φ − Φ −

 (36) 

where: 

 | |
2 2

,
1 1

i ij j j ij i

i j j i

ij ij

β ρ β β ρ β
β β

ρ ρ

− −
= =

− −
 (37) 

and ρij is correlation coefficient between the two 

linearized function that, only for the linear case, 

is equal to the scalar product of the director 

cosines at  MPP [5]. Bounds (33), (34), (35) and 

(36)  must be combined in order to obtain an 

interval as wide as possible. It’s also important 

to notice that obtained bounds depend on the 

way the failures are ordered; as reported in [5] it 

seems convenient, for obtaining narrower 

bounds, to order the failure modes according to 

decreasing values of probability P(Fi). 

The “real” system probability of failure is 

considered to be 2.04E-04; this value is 

predicted by Monte Carlo simulation with 10
6
 

trials. FORM probabilities of failure for each 

ply and probabilities of simultaneous failures 

occurance evaluated by the means of (33)÷(36) 

are reported in Table 3 and Table 4 respectively. 

 
Ply Pf ββββ    Ply Pf ββββ    
1 4.48E-05 3.92 5 6.71E-05 3.82 

2 7.25E-11 6.41 6 1.44E-05 4.18 

3 1.44E-05 4.18 7 7.25E-11 6.41 

4 6.71E-05 3.82 8 4.48E-05 3.92 

Table 3. 

 
Bounds of  P(Fi∩∩∩∩Fj) 

i,j Lower  Upper i,j Lower  Upper 

1,2 1.79E-11 2.48E-11 3,5 1.68E-07 3.21E-07 

1,3 7.69E-08 1.49E-07 3,6 3.27E-06 6.53E-06 

1,4 0.00E+00 8.21E-21 3,7 1.10E-12 1.85E-12 

1,5 0.00E+00 3.72E-22 3,8 1.19E-07 2.30E-07 

1,6 1.19E-07 2.30E-07 4,5 1.02E-05 2.04E-05 

1,7 1.30E-11 1.86E-11 4,6 1.68E-07 3.21E-07 

1,8 1.18E-05 2.36E-05 4,7 0.00E+00 7.35E-16 

2,3 4.75E-13 8.27E-13 4,8 0.00E+00 3.72E-22 

2,4 0.00E+00 5.75E-17 5,6 1.60E-07 3.05E-07 

2,5 0.00E+00 7.35E-16 5,7 0.00E+00 5.75E-17 

2,6 1.10E-12 1.85E-12 5,8 0.00E+00 8.21E-21 

2,7 2.94E-12 5.87E-12 6,7 4.75E-13 8.27E-13 

2,8 1.30E-11 1.86E-11 6,8 7.69E-08 1.49E-07 

3,4 1.60E-07 3.05E-07 7,8 6.19E-07 1.24E-06 

Table 4. 

 

These probabilities, rearranged accordingly to 

decreasing order of the value in Table 3, give 

the following bounds for the overall probability 

of failure (Table 5).  

 
System Probability of Failure Bounds 

Lower Upper 

2.03E-04 2.29E-04 

Table 5 

 

For the single ply pf the sensitivities are 

also evaluated accordingly with (16); the results 

for the first four plies are reported in Fig. 8 

a,b,c,d. 

5 Conclusion 

In this paper the preliminary developing 

phase of a probabilistic analysis program is 

presented. Based on the probabilistic design 
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concepts available in the open literature, FORM 

and SORM approaches are implemented. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig 8 a,b,c,d. Sensitivities to the input random variables 

of the single ply probability of failure. 

 

The presented procedure is requested to cope 

with the variability and scatter observed in 

composite materials and manufacturing 

procedures. A simple application to the stiffness 

evaluation of a composite laminate with 

assumed properties is presented and compared 

to the Monte Carlo simulation. A good 

correlation is obtained confirming the well 

behaved  program. Sensitivity analysis 

concludes this first part of the procedure giving 

some interesting design indications about some 

of the main involved variables. A simple test 

case is also presented. The analysis of a simple 

laminate according to Tsai-Wu criterion is 

considered. First ply failure is assumed as 

reference failure condition. The obtained results 

confirm the expected Monte Carlo result. The 

activity is under development for a complete 

assessment of the program and in order to 

define a more complex applications to real 

composite structures coupling the software with 

FEM analysis.   
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