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Abstract

The design of gas turbine engines is a com-
plex and time consuming engineering task in-
volving numerous iterative processes. Among
all the devices composing an engine, the com-
bustion chamber benefits from recent progress in
High Performance Computing for Computational
Fluid Dynamics (CFD) which is intensively used.
Although CFD offers substantial improvements
in flexibility and costs when compared to exper-
imental approaches, the number of CFD compu-
tations still remains large and engineering inten-
sive. A strategy to alleviate the CFD specialist in-
volvement in reaching an optimal solution is de-
sired to fully capitalize on the method. One solu-
tion aims at automating the optimization process
performed with CFD computations.

From the optimization point of view, the ex-
pensive step is the CFD run necessary to evalu-
ate the objective function value representing the
performance of a set of control parameters. The
promising method developed in this work con-
sists in performing optimization with classical
techniques based on an inexpensive metamodel-
ing [1] of the objective function. The idea is to
reduce the number of CFD computations while
proposing a rigorous framework to converge ro-
bustly to an optimal design.

Implementation issues such as efficiency, nu-
merical stability of the model, techniques to ac-
celerate the optimization process, exploration /
exploitation conflict and the different levels of
parallelism involved in CFD optimization are ad-
dressed in this paper. Practicality of the optimiza-
tion tool is here inherited from the powerful cou-

pling device PALM [2].
Illustration of the approach when applied to a

simple engine cooling system is presented: Val-
idations steps and comparisons of the proposed
surrogate approach with the very well known op-
timization method Simplex [3] are shown.

1 Introduction

Due to drastic norms on pollution, aeronauti-
cal engine manufacturers need to propose new
technological solutions for the next generation of
aero-engine devices. Indeed, ambitious NOx re-
duction targets of 80% are set for2020. These
strict objectives yield many research projects
aiming at the definitions and studies of innova-
tive combustion systems. Among all the initia-
tives from the European research community, the
project No. FP6-502961 INTEgrated Lean Low
Emission CombusTor Design Methodology (IN-
TELLECT D.M.) investigates new design rules
and methodologies for the definition and valida-
tion of low emission combustors. The specificity
of the retained technology for NOx reduction is
that the combustion chambers will more likely
operate with an excess of air; the primary reason
being to reduce significantly the flame tempera-
ture and thereof the NOx production. With this
approach, up to70%of the total air flow through
the chamber is premixed with the fuel before en-
tering the reaction zone. As a consequence, the
design of the pre-diffuser and cooling systems
become crucial as they are key elements to pro-
vide good air distribution throughout the cham-
ber and to avoid high temperature peaks. Another
characteristic of this technology is the narrowing
of the operating range of the new burners. In-
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deed, combustion instabilities arise rapidly even
with small deviations from the initially defined
operating point.

This work, initiated by TURBOMECA
(SAFRAN Group), focuses on the first issue
and analyzes the suitability of optimization tech-
niques for the design of an areo-engine cooling
system. The main idea is to assess and con-
struct an automatic optimizer based on a Com-
putational Fluid Dynamics (CFD) solver so as to
obtain design solutions satisfying given chamber
outlet temperature profiles. Nowadays, optimiza-
tion takes a very large place in the scientific com-
munity and real world offers numerous examples
where one can use optimization. However, op-
timization methods and performances depend on
the type of problem to be treated. The coupling
of an optimizer with a CFD solver imposes ob-
vious restrictions such as computer power, time
and memory... Among existing methods, the
most performant optimization processes are the
gradient-based techniques. They are nonetheless
not accessible with standard CFD codes and ad-
joint solvers [4] are often mandatory to obtain
good evaluations of the gradients. More recent
methods, such as evolutionary algorithms (i.e.
genetic algorithms [5]), are very often used in
CFD optimization. They give good results and
coincide with the philosophy of our problem-
atic, that is they allow several computations of
differents design points at the same time. The
number of objective function computations (CFD
runs) remains important with this approach and
the overall response-time of the process is large.
An original approach to avoid such problems and
adopted in this work, consists in using a low or-
der model, or surrogate model [6] [7], to substi-
tute high fidelity CFD runs.

The optimization tool developed at CER-
FACS is based on the powerful coupling device
PALM. This software is written byClimate Mod-
elling and Global Changeteam - CERFACS - for
the operational oceanography project MERCA-
TOR 1.

The paper is organized as follow: First,

1http://www.mercator-ocean.fr/

the optimization tool is presented, giving its
main characteristics, insisting on the optimiza-
tion strategy and on the chosen surrogate model.
At this occasion, issues of shape parameteriza-
tion, automatic mesh generation / deformation
are discussed. Then, a simple optimization prob-
lem is given and numerical results are shown. Fi-
nally, we propose some perspectives to our work.

2 MIPTO: Management of an Integrated
Plateform for auTomatic Optimization

2.1 Overview of MIPTO

An overview of the optimization tool is presented
on Fig. 1. Each rectangular box with thick lines
runs independently on different processors. They
coincide with the first level of parallelism taken
into account by PALM. The second level corre-
sponds to the capacity of handling parallel codes
as underlined in the description of PALM. MPI
communications necessary for the exchange of
data between processes (i.e. meshes and fields)
are depicted by arrows.

The surrogate assisted optimization algo-
rithm is briefly detailed on the flowchart of Fig. 2.
The corresponding unit, named “Optimization al-
gorithm" exchanges the optimization parameters
and the associated objective function value with
the rest of the application. This unit automati-
cally asks for the real objective function value or
its estimation when necessary.

An interface manages and launches the CFD
computations in a “multi-run" way: It aims at au-
tomatically distribute the tasks depending on the
available ressources.

Dealing exclusively with the CFD computa-
tions, the optimization parameters are first trans-
formed by the so-called “Pre-processing" unit:
It handles the mesh as far as design optimiza-
tion is concerned as well as the boundary condi-
tions when controlling the operating point. Note
that automatic mesh generation usually infers au-
tomatic quality assessment of the grid directly
parameterized by the optimization parameters.
Such tasks remain a central problem for proper
operation of the optimization device. Two meth-
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ods are conceivable:

• Given an initial shape and mesh, a new
mesh is produced based on the new de-
sign parameters and by deforming the pre-
vious grid. Several techniques exit and
one can cite Laplacian, Spring and ex-
plicit methods. These approaches have the
advantage of conserving the total number
of nodes and mesh connectivity garran-
tying homogeneous MPI communications
between units during the optimization pro-
cess. Mesh deformation is however limited
to small geometrical changes to avoid neg-
ative cell volumes or poor quality meshes,

• The second method consists in implement-
ing a fully automatic mesh generator in the
loop. The main difficulties concern the in-
terface between the shape modeller and the
mesher as well as the prohibitive compu-
tational time issued by the generation of a
new mesh.

In the context of this study, both methods are
used to construct2D meshes. In particular, the
remeshing approach includesIpol andDelaundo,
the1D-shape and the2D-domain meshers devel-
oped by Müller [8]. It is important to note that
moving nodes and remeshing techniques often
need smoothing steps to enhance cell quality.

The CFD solver used in the study is N3S-
Natur, a parallel Reynolds Average Navier Stokes
(RANS) code dealing with two phase reactive
flows on unstructured meshes. N3S-Natur is dis-
tributed by INCKA.

Finally, at the end of each CFD computations,
flow solutions are post-treated in order to evalu-
ate the performance of the optimization variables
through an objective function. At the moment,
only single objective function problems are pos-
sible but extension to multi-objective calculations
can be done by summing the corresponding fit-
ness or by implementing a Pareto approach in the
optimization strategy.

In this paper, the surrogate assisted algo-
rithm is compared to the Simplex optimization
approach. The flexibility of PALM allows quick

modifications in the application, as the use of an-
other optimization algorithm or CFD code. In the
case of the Simplex PALM application, the Sim-
plex unit exchanges optimization parameters and
objective function values directly with the CFD
branch.

2.2 PALM software, a powerful interface for
MIPTO

CERFACS has an important experience in
code coupling and is in charge of the PALM
project [2]. The universality of this software and
its capacities have lead us to use it in develop-
ment of MIPTO.

The PALM project aims at implementing a
general tool to easily integrate high performance
computing applications in a flexible and evolutive
way. It is originally designed for oceanographic
data assimilation algorithms, but its domain of
application extends to every kind of scientific ap-
plication. In the framework of PALM, applica-
tions are split into independant elementary com-
ponents,ie. the optimization algorithm, the CFD
code, the pre- and post-treatement of the CFD re-
sults, that can exchange data. Its main features
are:

• The dynamic launching of the coupled
components due to MPI2,

• The full independence of the components
from the application algorithm,

• The parallel data exchanges with redistri-
bution,

• The separation of the physics from the al-
gebraic manipulations (performed by the
PALM algebra toolbox).

To generate a PALM application, the first
necessary step requires the existing codes to be
compatible with PALM. Modifications concern-
ing parallelism management are rapidly achieved
and some PALM instructions such asPutandGet
which will allow to exchange data from one code
to another must be inserted in the source codes.
An interface or ID card of the code describing
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Fig. 1 Overview of the optimization tool MIPTO

the exchanged data have to be written. Once all
the components of the application are available,
PrePALM, the PALM graphical pre-processor, is
used to develop the structure of the algorithm:
Order the launch of the components either con-
currently or successively, in loops or condition-
ally.

PALM is able to handle many parallel codes
as well as several instances of the same code.
This particularity is very usefull in the context
of optimization with CFD codes. Indeed, most
of the codes we use are parallel, and the possi-
bility to make different computations at the same
time will compress the whole clock time needed
to complete the set of simulations prescribed by
an optimization application. Finally, PALM au-
tomatically manages the processors distribution
for an application between the different units and
based on a user-defined priority fashion.

2.3 Optimization strategy

The algorithm to be used is detailed on Fig. 2.
Prior to the optimization loop, one requires the
use of the Design Of Experiments (DOE) ap-
proach to initialize the surrogate databaseD. To
extract as much information as possible from a
limited set of computer experiments on the whole
decision space, the user can choose between three
methods for space filling: Latin Hypercube Sam-
pling [9], Halton sequence and Hammersley se-

quence [10]. The databaseD can also be the re-
sult of previous optimization processes preserv-
ing the computing effort through a hot start of
the method. In this context, the surrogate model
stands for a global approximation of the fitness
function over the entire domain of optimization
parameters. Thus, its construction requires all the
sample points.

The optimization loop itself consists in find-
ing new interesting samples to enhance the sur-
rogate database hence improving the response
function approximation. The loop continues for
a pre-defined number of iterations or when the
maximum allowed CFD computations is reached.
At a given iteration, the new sample points are
determined from the found potential optimums
on the metamodel. This optimization of the
model is obtained from a "Low memory Broyden
Fletcher Goldfard Shanno Bounded" (LBFGS-
B) which corresponds to the quasi-Newton algo-
rithm proposed by Byrdet al. [11]. One itera-
tion of the surrogate-based method performs sev-
eral LBFGS-B runs with different starting points
spread over the decison domain. The resulting
optimums are then evaluated with the CFD code
if there are far enougth from existing points in
the surrogate database or in the so call “avoid
database". The “avoid database" contains the op-
erating conditions that have lead to ill-posed CFD
solutions. The radius of the hypersphere sur-
rounding the database points where no new sam-
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Fig. 2 Flowchart of the surrogate assisted optimization algorithm

ple point is authorized is automatically adjusted
during the process.

As the total number of processors of the ap-
plication is constant during the optimization pro-
cedure, if the number of operating points pro-
vided by the LBFGS-B step is not proportional to
the number of simultaneously allowed CFD runs,
other points are added by “crossing" the best
sample with other ones. Such a crossing tech-
nique is inspired by evolutionnary methods [12].

Using a gradient-based optimization algo-
rithm coupled with a surrogate approach yields
good exploitation of the available data which is
essential for fast convergence. The multi-start as-
pect of the gradient optimizer enforced by the use
of a merite function instead of the approximate
fitness function allows a great exploration of the
decision domain. The crossing operation and the
notion of hypersphere also take part in the ex-
ploration. The notion of exploration is needed
in the case of multimodal function in order to
find a global extremum. The merite function is a
weighted sum of the fitness function approxima-
tion and the estimation of the density of pointsρ
at a given place:fM = fob j−αρ, α > 0. Gaussian
processes naturally include the notion of density
through the variance of the estimationσ2

t̂ which
is high where the prediction̂t is probably not
accurate. So the optimization is performed on
fM = t̂−ασt̂ .

It is important to underline that a surrogate-
based optimization algorithm not only gives a
candidate for an optimum but also a general trend
of the fitness through the parameters over the de-
cision space. Hence, the user can extract inter-
resting regions and perform local searches to en-
hance the optimal solution.

2.4 Gaussian processes to approach an ex-
pensive objective function

A wide variety of surrogate models are used in
the literature to approximate expensive fitness
functions in the context of optimization. The
most prominent methods among all approaches
are polynomial models [13], artificial neural net-
works [14], radial basis function networks [15]
and Gaussian processes (GPs) [7]. Among the
previous empirical models, Gaussian processes
appear to be the most promising for fitness func-
tion approximation. Indeed, a GP combines the
following decisive properties:

• The implentation of GPs is independent of
the number of decision variables,

• GPs can approximate accurately arbitrary
functions including multimodality and dis-
continuities,

• GP contains meaningful hyper-parameters
that can be obtained theoretically with an
optimization procedure,

• GP yields an uncertainty measure of the
predicted value in the form of a standard
deviation.

To briefly expose the theorical framework
of GP, the notations of MacKay [1] is adopted.
Given some noisy data setD = {xn, tn}N

n=1 con-
sisting ofN pairs ofL-dimensional input vectors
xn and scalar outputstn, the aim of the process is
to find a predictiontN+1 at a new pointxN+1 /∈D.
Let’s denote the set of input vectors byXN =
{x1,x2, ...,xN} and the set of corresponding func-
tion values by the vectortN = {t1, t2, ..., tN}.
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The GP theory gives a univariate Gaussian
density for tN+1 through the following expres-
sion:

p(tN+1|XN+1, tN) =
1
Zexp

(
−1

2
(tN+1−t̂N+1)2

σ2
t̂N+1

)
.

(1)

where the mean̂tN+1 and varianceσ2
t̂N+1

can be
expressed as:

t̂N+1 = kTC−1
N tN, (2)

σ2
t̂N+1

= κ−kTC−1
N k. (3)

wherek is the covariance vector,CN the covari-
ance matrix andκ the variance of the GP. There
are many ways to impose the covariance matrix
CN with the only constraint that it must generate a
none-negative definite covariance matrix for any
set of pointsXN. In this study, we choose the sta-
tionary covariance function of the Gaussian dis-
tribution with zero mean. It reads for the two data
pointsxp andxq:

C(xp,xq,Θ) =

θ1exp
(
−1

2 ∑L
l=1

(xp,l−xq,l )2

r2
l

)
+θ2 +δpqθ3

(4)

l represents thel th component of theL-
dimensional vectorsxp while xq and Θ =
(θ1,θ2,θ3, r l ) are the hyper-parameters of the co-
variance function. r l corresponds to a length
scale characterising the directionl . A large
length scale means that the ouput valuet̂N+1 is
expected to be essentially a constant function of
that input (smoothing effect). The ratioθ2/θ1 al-
lows to take into account the mean value of the
sample points as a constant regression function.
If this ratio is set to zero, then the regression func-
tion will be zero, otherwise it tends to the mean
value of the sample points as the ratio increases.
Finally, θ3 represents a white input-independant
noise applied only on to the diagonal terms of the
covariance matrix.θ3 allows the interpolation not
to reach the sample points considering a certain
level of noise in the function evaluationstN.

The covariance matrixCN, the covariance
vector k and the varianceκ of Eq. 2 and 3 are
expressed in terms of the covariance function as:

CNi j = C(xi ,x j ,Θ), (xi ,x j) ∈ D2 (5)

ki = C(xi ,xN+1,Θ), xi ∈ D (6)

κ = C(xN+1,xN+1,Θ) = θ1 +θ2 +θ3 (7)

The hyper-parameters can either be set by the
user or retrieved from the data. As the values of
the hyper-parameters have a large influence on
the result of the GP, an optimal GP is obtained
such that the log-likelihood of the given function
valuestN under multivariate Gaussian with zero
mean and covarianceCN =C(XN,Θ) is maximal.
The expression of the log-likelihood is:

λ =−1
2

(
log detCN + tT

NC−1
N tN +N log(2π)

)

(8)
Even if it is straightforward to find the deriva-

tives ∂λ/∂Θ, MacKay [1] shows thatλ is often
multimodal. For this reason, the evolutionary al-
gorithm proposed by Michalewicz [16] is used to
find the optimal hyper-parameters.

As GP is an analytical model, it is possible to
access the gradient oft̂N+1 andσ2

t̂N+1
. One can

note that the vectork is the only part of the ex-
pressions which is function ofxN+1. The gradient
matrix ofk is:

(Grad(k))pl = ∂kp
∂xl

=

θ1
xp,l−xN+1,l

r2
l

exp
(
−1

2 ∑L
l=1

(xp,l−xN+1,l )2

r2
l

) (9)

Giving (Grad(k)), it is possible to compute the
gradient of̂tN+1:

Grad(t̂N+1) = (Grad(k))T C−1
N tN (10)

the gradient ofσ2
t̂N+1

:

Grad(σ2
t̂N+1

) =
−(Grad(k))T C−1

N k−kTC−1
N (Grad(k))

(11)
and finally, the gradient ofσt̂N+1

:

Grad(σt̂N+1
) =

Grad(σ2
t̂N+1

)

2σt̂N+1

(12)

To conclude on GP, most of the CPU time re-
quested by the method is due to the inversion of
the covariance matrixCN. To reduce the potential
impact of this drawback, numerical tricks as LU
decomposition can be used.
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3 Numerical results

3.1 Presentation of the test case

The studied configuration consists in a 2D chan-
nel (0.03m× 0.25m) in which hot gases flow
(Th = 1500K) while two dilution injectors aim at
cooling (Th = 300K) the hot stream before it exits
the pipe (Fig. 3). This configuration has the par-
ticularity of being representative of a cooling pro-
cess found in the dilution region of a combustion
chamber. The attempt of the presented computa-
tions is to find the optimal locations of the two
cooling injectors to reach a given output temper-
ature profile. From the test case, it is expected
that for large values of the dilution injector posi-
tions, notedLcu andLcl, the cooling will be less
efficient due to poor mixing of the hot gas with
the cold one. Note thatLcu 6= Lcl for the upper
and lower injector positions should lead to assy-
metric exit temperature profile if the inflows are
the same. Likewise if the flow rate of the upper
and lower injectors are not the same, a none sym-
metric repartition of the cooling flow should be
observed in the main pipe.

The objective function value associated to a
set of injector positions is extracted from CFD
computations by comparing the obtained exit
temperature profiles with a target one through the
following expression:

fob j =
1

Dh

Z (
Tt(y)−Tc(y)

Tt(y)

)2

dy (13)

whereDh is the diameter of the channel,Tt is
the target temperature andTc is the computed
exit temperature. The expression of the objec-
tive function is a root mean square between tar-
get and computed temperature profiles. It is
non-dimensionalized by the target temperature to
yield relative importance to the standard RMS
(indeed, the temperature goes from approxima-
tively 300K to1500K in the channel). Tests prove
this objective function to yield better results than
standard RMS, in terms of solution quality and
convergence rapidity for this particular configu-
ration. The target temperature profile is presented
on figure 5-c.

Since the shape deformations are important
in this optimization study, remeshing techniques
are adopted. The generated meshes have a mean
of 9000nodes and17500cells. Each CFD calcu-
lation takes about15 minutes on5 processors of
a DEC ALPHA.

3.2 Optimization results

The initial databaseD is designed to contain
20 objective function evaluations using the CFD
code. Then, the improvement of the model is
done thougth6 iterations requiring a total of71
additional CFD computations.

Figure 4 illustrates the impact of improving
the model by comparinĝt and fM = t̂−ρσt̂ after
initialization and6 iterations of the algorithm.

We first note the important reduction of−ρσt̂
within the search domain. Indeed, from the in-
tialization to the end of the process,t̂ tends to
fM.

Then, the choice ofρ has lead to a quite
homogeneous repartition of the sample points
across the domain with higher densities in the re-
gions where optimums are detected. With a lower
value ofρ, exploration would have been less priv-
ileged giving a more heterogeneous repartition
with less sample points. Many points are com-
puted on the bounds of the variables. This is due
to the fact that the model often gives poor pre-
dictions at these locations because their exists no
information about the function outside the search
domain

As expected, the method is able to find sev-
eral attraction regions linked to local optimums.
Temperature fields of the global minimum (Lcu =
0.111m,Lcl = 0.079m) and a local minimum
(Lcu = 0.117m,Lcl = 0.055m) are presented on
figure 5-a and figure 5-b respectively. For com-
parison, the obtained and desired exit tempera-
ture profile are shown on figure 5-c.

Finally, the surrogate assited optimizer gives
important informations for designer concerning
the tendency of the objective function over the
decision space. For the case considered, we see a
general orientation of the major attraction region
along the lineLcu−Lcl = k, meaning that the ob-
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jective corresponds to a fixed separation distance
between injectors. A direct consequence of this
observation is the possible reduction of the search
space of the optimization by replacing the inital
parameters by the constraintLcu−Lcl = k while
keeping for exampleLcu as a variable.

To conclude on numerical results, we com-
pare the surrogate assisted method with the Sim-
plex method. Figure 6 shows the obtained meta-
model after6 iterations on which5 Simplex con-
vergence histories are plotted. A mean of35
CFD runs were necessary to reach a satisfatory
convergence of the Simplex algorithm. Depend-
ing on the initial guess, Simplex optimizations
tend to converge to several distinct optimums that
have been found by the surroagte approach. Dif-
ferent drawbacks issued by the Simplex method
are clearly evidenced by this application: the lo-
cal convergence, the importance of the initializa-
tions (two very nearby initial guesses may not
yield the same result), the chaotic behaviour of
the approach (when fronted with a drastic valley,
the method leads to well known convergence dis-
eases). The exit temperature profile of the best
solution found by the Simplex runs is shown on
figure 5-c (Lcu = 0.106m,Lcl = 0.086m).

Finally, the surrogate method gives much
more informations and a better optimum than the
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gence histories of5 Simplex runs initialized on
larger black circles

Simplex with less CFD computations and clock
time.

4 Conclusion and perspectives

We have presented an effective global optimiza-
tion method dealing with expensive fitness func-
tions. The proposed algorithm allows to reduce
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the total CPU time of an optimization process by
using an adaptive approximation of the real ob-
jective function issued from a Gaussian process.

Comparison between this method and the very
popular Simplex algorithm leads to encouraging
results and validates the tool prior to further de-
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velopments and uses in an industrial context.
Actual developments concern the adaptation

of MIPTO to undertake complex3D reactive
flows. The main difficulties are the control of
3D shapes and the corresponding meshes either
by using moving mesh techniques or re-meshing
strategies. A key aspect when dealing with de-
sign optimization is the way to manage the shape
of the geometry. CAD based approaches seem
promising but quite difficult to implement in a
fully automatic loop.
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