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Abstract  
The aim of this article is to give an advisable 
engineering method applicable to the 
calculation forces and moments arriving from 
the rotor side and arisen from the aerodynamic 
and dynamic effects over the rotor blades. 
Aerodynamic forces and moments can be 
estimated by the using of the integrated blade 
and impulse theory while the unsteady effects 
and compressibility of the flow can be 
considered in the blade element theory. 

1  Introduction 
Forces and moments on the control surfaces or 
on the rotor blades cause loads appearing on the 
different parts of the control system. They give 
the ultimate and the fatigue loads on the 
concerned control system elements, furthermore 
the required power and the other parameters of 
the occurrent additional hydraulic or electrical 
system are affected by them. 

The aim of this article is how to investigate 
the control forces and moments from the rotor 
side determined by the rotor blade 
aerodynamics and dynamics. Aerodynamic 
forces and moments can be estimated 
traditionally by the integrated blade element and 
impulse theory (BEMT). Blade element theory 
is in which the unsteady effects computed by 
the using of the shed vortices and the 
compressibility can be taken into account as 
well. 

The investigation referred to an articulated 
rotor head includes the rigid flapping, lagging 
and feathering of the rotor blade. In the 
operation process the elastic deformations of the 
rotor blades should be also considered. 

The units of this complex rotor model are 
conventional, but the load estimation requires a 
lot of unsteady and steady flight regime 
investigations. Method reviewed in this article 
can be recommended for such a computations 
because of its relatively small time demands and 
acceptable accuracy. 

2  Mechanical Model of the Rotor 
For the most helicopter rotors the rotor blades 
are usually connected through the hinges or 
quasi-hinges to the rotor hub. So that the rotor 
blades have possibility for flapping, lagging, 
feathering motions and elastic deformation. This 
rigid and elastic motions can superpose. 

2.1 Rigid Blade Model 
The motion of the rigid blades can be described 
by the applying blade-fixed non-inertial 
coordinate system. The basic equation of this 
motion:  
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where � – the inertial tensor; 

t
δ
δ
�

 – the angular acceleration; 

M0 – the resulting external moments 
acting to the blade; 

s�  – the blade center of mass; 
a0 – the acceleration of the origin; 
m – the rotor blade mass. 

 
Equation (1) is a vector-differential equation, 

in general it can be solved numerically. That is 
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why the each element of this equation is 
generated by the computer. In the elements 
calculation the conventional coordinate 
transformations can be successfully used. For  
instance the angular acceleration is: 

( )lr rb b lr MR lt
δ
δ

= + +� A A � A � �� � �  (2) 

where 
lrA  - the transformation between the 

rotating and blade systems; 

lrA� - the time derivate of this matrix; 

b� - the helicopter angular velocity; 

MR� - the main rotor angular velocity; 

l��  - the angular acceleration of the 
rotor blade. 

2.2 Elastic Blade Model 
The flapwise bending deformation is an 
important form of the rotor blade motions. This 
type of motion can be investigated by the using 
of normal modes. In the calculation the first 
normal mode describes the rigid blade motion, 
the second and third normal modes are used to 
determine the real elastic deformation. 
 The latest normal modes should be 
estimated by the method of “assumed modes”. 
For the bending deflections calculation the next 
two modal equations can be written as: 
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where 
iϕ  - the ith  generalised coordinate; 
Ωi�  - the ith natural frequency; 

( ) ( )
0

;
L

i b iQ p x S x dx= �  

bp  - the external load along the rotor 
blade. 

The local deformation velocity is a part of 
the perpendicular velocity component (Vz) and 
has influence to the local angle of attack. The 
modal equation (3) should be integrated 
together with the basic differential equation (1).  

The complete set of the equations involves 
the aerodynamic model as well. In the 
developed model the rigid rotor blades have 
four degrees of freedom; namely they are the 

flapping and the lagging motions and two elastic 
deformations. Since the flapwise torsion is 
treated as a mechanical constrained motion, it 
gives the possibility to determinate the blade 
torsional moment. 

3 Aerodynamic Model 

The aerodynamic model is based on the BEMT 
theory and combined with the effect of the shed 
vortices. The calculation can be executed in the 
local wind fixed coordinate system. That is why 
in the calculations we can use the lift, drag and 
the moment coefficients and we don’t need the 
normal and tangential force coefficients. The 
resultant air flow velocity at a blade section has 
three components: Vx, Vy, Vz. The local angle of 
attack and the resultant velocity in y-z plane 
(Vres) should be calculated by the using of the 
tangential (Vy) and perpendicular (Vz) velocity 
components. The local sweep angle of the flow 
is determined by the length velocity component 
(Vx) and the resultant velocity (Vres). The section 
lift, drag and the moment coefficients for the 
steady state are functions of the effective angle 
of attack, the local sweep angle and Mach 
number: 
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where 
eα – the effective angle of attack; 
� – the local sweep angle; 
M – the local Mach number. 

3.1 Investigation of the unsteady effects 

The unsteady component of the lift and moment 
coefficients can be treated into inertial and 
circulatory part.  

The inertial part is estimated by the well 
known method of coupled masses, there the 
circulatory part is determined by the shed 
vortices:  
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where ( )si jtΓ  - the shed vortex intensity at 

the ith place and the jth time, 
and 1, 2....j n= − − − ; 
c  - the local chord length; 

( )i li jV c t  - the resultant air velocity 

and the local lift coefficient. 
The bound vortex around the blade section 

element is interpreted at the 0th time.  
As the lift coefficient represents the effect 

of bound vortex, therefore the circulatory part of 
the lift can be calculated by the using of the 
shed vortices. 

Applying equation (4) we can get the 
sequence of the shed vortices remaining the 
trailing edge of the rotor blades. It opens the 
way how to calculate the relative position of the 
shed vortices regard to the rotor blades. 
Denoting the length of the ith shed vortex by the 

lix∆  and using the Biot-Savart law the induced 
velocity field of the shed vortices can be found 
out. Finally to have the induced velocities we 
can estimate the circulatory part of the lift and 
moment coefficients. 

3.2 Dynamic Stall 
As the flow around a rotor blade is generally 
unsteady it occurs the dynamic stall appearing  
at a higher angle off attack. The accurate 
investigation of it is quite difficult task. 
However at the normal operating range of 
helicopter rotors the dynamic stall is only partial 
problem. Because of it we can use quite simple 
approximation for the determination of the 
critical angle of attack change: 

( )sgn
2stall

res

c
V
αα γ α∆ =
�

�  
 

(6) 

where 
stallα∆ – the change of the critical 

angle of attack; 
0.6

1.76 ln
M

γ � �= � 	

 �

 – empirical function 

included the Mach number; 
α� – change in angle of attack for unit 
time. 

Due to the dynamic stall  and sweep effect 
the critical profile angle of attack will change, 
its value  can be or too high or too low. In order 
to get physically real values we should set 
bounds on the allowable lift coefficient. 

3.3 Rotor blade tip loss calculation 

Since the rotor blades are finite wings we 
should to take into account the tip losses as 
well. Our new method how to determine the tip-
loss factor is 
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where 
sc – the tip loss factor; 

lx – the coordinate along the blade; 

rψ  – the blade azimut angle; 
L – the blade length; 

1 2q and q  – constants; 
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lic - lift coefficient of the i-th section; 

lix∆ - length of the i-th blade section. 
This method takes into account the sweep 

and the lift coefficient effect to the tip losses. 

4 Practical Example 
As the results of the numerical model can’t 

be received in closed form solution we have got 
them in discreet form. To get consequences we 
have to build up numerical experiment.  

To realize the numerical experiment we 
should develop computer program. The 
computer code generates the values of the lift, 
drag and the moment coefficients including the 
effect of unsteadiness, compressibility and 
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sweep. The actual terms of the equations (1) and 
(3) are created by this program too. The results 
of the numerical integration of (1) and (3) are 
the changing in the flapping and lagging angle, 
in the bending deformation and in the flapwise 
torsional moment as a function of the azimut 
angle. 

In this numerical example the rotor  
diameter is 10.5 meters. The rotor has classical 
articulated rotor head with flapping, lagging and 
feathering hinges. The flapping hinge offset is 
0.155 meter.  

The flapping motion leads to the well 
known changing in the blade incidence. 
Therefore we have an aerodynamic damping of 
the flapping motion. The additional damper 
damps the lagging motion. 

For the numerical presentation of the results 
the flight velocity is 30 m/s, the angle of attack 
of the main rotor is –4.3 degrees. In steady 
horizontal flight the helicopter path angle is 
zero,  therefore  the  helicopter  pitch  angle is  
-4.3 degrees as well. 

Collective and cyclic control of the rotor 
blades can be presented as: 

( ) ( )
( )

0 1 0

2 0

cos

sin
r r r

r r

p p p

p

ψ ψ ψ
ψ ψ

= + −

+ −
 (7) 

where 
0p  - the collective control parameter; 

1p  - the cyclic control parameter 
refers to the elevator motion; 

2p  - the cyclic control parameter 
refers to the aileron motion; 

0rψ  - control angle due to delay of the 
rotor blade motions. 

4.1 Initial conditions 

The rotor model described above does not 
include the effect of the other helicopter parts 
(e.g. fuselage, tail boom, horizontal and vertical 
dampers and tail rotor). This calculation give 
the results for the steady or quasi steady cases. 
It means that the magnitude of the flight 
velocity and the angular velocity components of 
the fuselage are constants.  

The initial conditions of the rotor blade 
motions are unknown  so we should assume that 

at the beginning the flapping angle and flapping 
velocity, the lagging angle and lagging velocity 
the elastic deflections and elastic deformation 
velocities are equal to zero.  

So we can state that the rotor blades should 
do some rotations to reach its path. In this 
practical example it does about 10 to 20 
rotations. The angular velocity of the main shaft 
is 38.1 [1/s], this number of rotations takes 
some seconds. This relatively short period 
provides us to assume that during this time the 
flight is steady or quasi steady. 

4.2 Generalised equilibrium of rotor blades  
Because of the initial conditions described 
above, the rotor blades move asymptotically to 
their generalised equilibrium, so that it can be 
stated that they have a Poincare-stability. 

Figure 1. shows the generalised equilibrium 
state of the rotor blade flapping motion. Well 
seen that the set of curves is a limited chaotic 
attractor. It means that  the flapping motion of 
the rotor blade occurs in a well defined finite 
region, actually in a narrow one. We can 
assume, that in practice only one path in the 
phase plane approximates the motion. Therefore 
tip path and also tip path plane can be ordered to 
the rotor blade motion.  
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Fig. 1. Phase diagram of the flapping 

Of course all the other types of rotor blade 
motions have a similar generalised equilibrium 
state. 

4.3 Control forces and moments 

In this article we show only some typical results 
such a horizontal flight with constant velocity of 
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30 m/s, steady turn with the same velocity and  
bank angle of 30 degrees and nose up 
manoeuvre with the nose up angular velocity of 
0.1 1/s. The numerical model is suitable to take 
into account the control and the flight 
parameters. 

Using the flapwise torsional moment the 
force acting to the control rod can be calculated. 
Figure 2. shows the mean value of the torsional 
moment in horizontal flight as a function of the 
azimut angle. 

-50

-40

-30

-20

-10

0

10

20

30

40

-60 0 60 120 180 240 300 360

Azimut angle [deg]

To
rs

io
na

l m
om

en
t [

N
m

]

Fig. 2. Control moment 
 

There the thin line presents the control 
moment acting to the rigid blade and the thick 
line demonstrates the behaviour of the elastic 
blade. Because of the limited chaotic attractor of 
the blade motion the control moment has also 
chaotic attractor. The figure shows only the 
mean value of control moment as a function of 
the azimut angle. 
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Fig. 3. Control moment in turn 

 
In Figure 3. beside thick line taken out from 

Figure 2. we present the control moment 
requires to the left turn. The results show that 

the difference between this two curves is quite 
small and have a good congruence with the 
measurements and practical experience. 

Control moments in horizontal flight and in 
nose up manoeuvre are presented in Figure 4. 
The difference between these two curves is 
small again.  

The force acting to the control rod can be 
determined by a simple dividing because the 
change in the blade pitch angle is moderate. The 
rod force is demonstrated in Figure 5. In this  
phase diagram the rod force varies with the 
flapping angular velocity. 
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Fig. 4. Control moment in nose up manoeuvre 
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Fig. 5. Phase diagram of the rod force 
 

In this case the equilibrium state is similar 
to shown in Figure 1. Well seen when the 
flapping velocity is small the variation in the 
rod force is also small and it is about 5 – 10 
Newtons. 

But between the lowest and highest blade 
position, at the maximum flapping velocities – 
close to the rear and forward blade position – 
the rod force variation is notably higher. 

The frequency in the variation of the rod 
force is relatively low.  
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5 Conclusions 

The results of the work reviewed in this article 
show that in general the control forces and 
moments are arisen from the rotor side while the 
normal manoeuvres have no significant effect to 
them. 

Complete investigation and result analyzing 
prove that the rotor blades motion, forces and 
moments on them can be characterized by a 
limited chaotic attractor and only low frequency 
change was expired. 
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