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Abstract  

This paper presents the application of 
‘Detection Indices’ (DI) to monitor the health 
and usage aspects of air vehicles.  The two DI 
described in this paper utilise ‘Autocorrelation’ 
and ‘Cross-Correlation’ algorithms.  The 
primary function of the autocorrelation process 
in this context is to precondition the raw data 
segments obtained from the monitored data 
stream into a format that allows accurate 
comparison between two consecutive data 
segments.  The second type of DI is the cross-
correlation.  The main emphasis of the cross-
correlation analysis is to verify if differences 
exist between the two compared autocorrelated 
data sets, thus indicating whether changes have 
occurred in the characteristics of the vehicle 
being monitored.    The described DI will 
eventually be imbedded in a miniaturised 
HUMS unit, called SmartHUMS, currently 
under development by the Defence Science and 
Technology Organisation (DSTO) in-
cooperation with GPS Online Pty Ltd. 

A number of experimental results obtained 
by the preproduction SmartHUMS unit are 
presented in this paper.  The experimental test 
setups used for the experiments consist of a 
bench top electric motor driven test rig and a 
two-stroke model helicopter engine driven 
experimental test rig.  During the bench top 
electric motor and model helicopter engine 
experiments, artificial disturbance was 
introduced to demonstrate the DI algorithm’s 
ability to detect the disturbance.  This paper 
presents the result for each of these experiments 

and show that the proposed DI can be used to 
create a low-cost HUMS solution.  

1  Introduction 
The concept of ‘Health and Usage Monitoring 
Systems’ (HUMS) is relatively new in the field 
of aerospace engineering.  It is quite common 
for many aerospace engineers to misunderstand 
or to have not even heard of the terminology 
‘HUMS’, especially in the field of fixed-wing 
aircraft.  The application of HUMS technologies 
is generally agreed to have started with the 
rotorcraft community because helicopters have a 
higher rate of mechanical failure accidents, and 
are much more vulnerable to catastrophic 
mechanical failures than public transport or 
fixed wing aircraft [1].  The higher helicopter 
accident rate is simply because of the higher 
number of single load path critical parts within 
the rotor and transmission systems and the 
reduced redundancy within the helicopter design 
[2].  In order to decrease the failure instance 
rate, equipment capable of detailed monitoring 
of different critical helicopter functions is 
routinely fitted to medium and larger sized 
helicopters used by civil and military operators.  
The combination of this equipment forms a 
system that is generally referred to as ‘Health 
and Usage Monitoring System’.  

Currently, health (vibration) monitoring 
systems have been made mandatory in UK on 
large helicopters certified or validated since 
certification requirements were tightened by the 
CAA following the HARP report [3].  An 
additional airworthiness directive in 1999 also 
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made health monitoring systems mandatory in 
the UK on older types of helicopter carrying 
more than 9 passengers [3].  The main reason 
for only large helicopters being fitted with 
HUMS is mainly due to the cost issue.  Larger 
helicopter generally cost more and show more 
scope for financial benefits of improved 
reliability.  Most helicopter operators will only 
consider to installing HUMS in their fleet only 
if the system would provide significant 
economic benefits that would outweigh the 
costs in the short term.  Also majority of 
benefits for HUMS implementation is 
distributed over the remaining life of the 
aircraft, which is why older helicopters are less 
likely to be considered for HUMS installation  
than helicopters that are about to enter service. 

The physical size and cost are other 
reasons why HUMS is rarely considered for 
small helicopters and small fixed-wing aircrafts.  
In a small aircraft the payload dimension and 
weight are critical factors.  Unfortunately 
HUMS generally have noticeable size and 
weight, as well as being generally too expensive 
to be justified to fit into small aircraft, which 
might cost less or equivalent to the cost of the 
HUMS itself.  Take a medium or small UAV as 
an example, to install HUMS in these types of 
UAV is quite often physically impossible and 
financially impractical.  As a result, the main 
emphasis of this paper is to investigate a novel 
approach that will allow the realisation of 
HUMS benefits with significantly lower cost 
and physical dimensions. 

To achieve the research aims, this paper 
demonstrates the application of utilising 
SmartHUMS unit (miniaturised HUMS system) 
and DI algorithms for size and cost 
consideration.  Although the experimental result 
discussions are based on test rig systems that 
were designed to mimic a small UAV 
propulsion system, it does not necessary mean 
the final SmartHUMS system cannot be applied 
to other mechanical systems or platforms.  The 
main reason why small UAV designs were 
targeted is because the successful application of 
SmartHUMS unit in a small UAV will help the 
realisation of the practicality of HUMS 
technology in smaller and less expensive fields 

of mechanical systems.  Additionally because 
UAVs are pilot-less, HUMS technologies are a 
way to ensure the continuous safety of a UAV 
over a populated area. 

The discussion of this paper will be 
focusing on the DI aspects of the research.  The 
SmartHUMS hardware design and development 
are mainly performed by the GPS Online under 
the guidance of DSTO.  A preproduction 
SmartHUMS hardware unit has been produced.  
This preproduction unit is currently being 
utilised to help the investigation of the intended 
DI algorithms.  

As mentioned in [4], HUMS data are 
collected with the purpose of recording all 
important events and activities for future 
analysis.  However, review and analysis of these 
data are typically ad hoc, relatively infrequent 
and require significant human involvement.  As 
a result, data may accumulate much faster than 
they can be processed.  As large portions of the 
HUMS data are of little significance, the 
proposed DI algorithms need to be able to 
isolate the vital data during the monitoring 
process. 

The major difference between the 
proposed DI algorithms and the algorithms used 
by the conventional HUMS unit is the diagnosis 
methodology.  While conventional HUMS use 
algorithms that specifically look for individual 
faults (or faults in individual gears, bearings, 
etc.), the DI techniques described in this paper 
will look for faults in terms of changes in 
transfer functions.  Which means, for example, 
a conventional HUMS will only detect a 
structural crack if an algorithm to detect that 
crack is included, while the SmartHUMS, with 
the imbedded DI, would detect the crack as long 
as it affected the transfer of any significant 
signal.  The development of the SmartHUMS 
unit is not intended to replace any existing 
HUMS system.  In the contrary the 
SmartHUMS research is aiming to extend or 
assist current HUMS technology, in order to 
introduce HUMS benefits into disciplines which 
are previously thought to be financially 
impossible or physically impractical to be 
applied.   
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2  DI Background 
The two DI algorithms been investigated in this 
paper are: Autocorrelation (sometimes called 
serial correlation), and Cross-Correlation.   

2.1 Autocorrelation 
According to [5], time series data sometimes 
show repetitive behaviour or other properties 
where current values have some relation to the 
earlier values.  Autocorrelation is a statistic that 
measures the degree of this affiliation.  The 
ability of autocorrelation to determine changes 
to otherwise regular patterns sets an excellent 
backdrop for the DI application.  If, during the 
monitoring of a mechanical vehicle, a difference 
is detected between the behaviour of the current 
data from that relating to the previous period, 
the raw data during both period is stored and 
compressed for further analysis.  The 
autocorrelation technique has two most 
significant parameters, which are the time series 
data length and the lag amount.  Essentially the 
lag amount is the parameter that allows the 
comparison of the time series to itself.  If the lag 
amount is equal to 1, the time series data is 
being compared to itself shifted by one data 
point at a time. 

The other advantage of using 
autocorrelation as a DI is that it has the capacity 
of detecting periodic patterns even in the 
presence of random data (noise).  If the time 
series contain large amount of noise, the 
autocorrelation process will still be able to 
present the periodic patterns by filtering out 
most of the noise. 

The general mathematical expression for 
autocorrelation function is commonly described 
as [6, 7]: 

dttxtx
T

R
T

T
x )()(1lim)(

0
ττ += ∫∞→

 (1) 

where T is the record length, Rx(τ) represents 
the value of the autocorrelation function at the 
time delay τ, x(t) represents the value of the 
signal x at time t, and x(t+τ) is the value of the 
signal x at delayed time t+τ.  In terms of 
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where N (sample size) is the approximation of 
N-m (the difference between N-m and N is in 
fact negligible in most cases), and m is the delay 
value called lag.  Introducing x⎯   (mean of entire 
time series) into Eq. 2 gives: 
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Autocovariance is one of the two major 
components in the formulation of the 
autocorrelation coefficient function for a given 
lag value.  According to [5], autocovariance 
literally means, “How something varies with 
itself”, where a time series gets compared to 
itself and the main tool in the system is the lag.  
It is a quick way of evaluating deviations 
between the one unaltered time series and one 
that is lagged, as shown in Figure 1.  When 
generating autocovariance there are two rules of 
thumb [8].  The first rule is that the data set 
should contain more than 50 values.  The 
second rule is the largest lag for the 
autocovariance calculation is equal to one 
quarter of the total number of values in the data 
set. 

 
Fig. 1 Time Series (solid), lags (dashed)[5] 

 The second ingredient for the 
autocorrelation coefficient for a given lag is 
called variance and it is obtained by 
standardising Eq. 3 the autocovariance equation, 
therefore it can then be compared directly to 
other standardised autocovariances [5].  The 
equation for variance is basically the sum of the 
square term (xt-x⎯  )2 for each observation in the 
original time series, divided by N: 
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 With the equation for both components 
known, the description for the autocorrelation 
coefficient for a given lag is basically the 
autocovariance divided by the variance as 
presented in Eq. 5: 
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Eq. 5 is one of the many forms that describe the 
autocorrelation coefficient approximation, also 
called the lag autocorrelation coefficient or the 
lag serial correlation coefficient.  The 
autocorrelation coefficient values range between 
+1 to –1, with  +1 meaning the time series 
compared are exact duplicates of each other, 
which also means the lag value is equal to zero, 
and  –1 meaning the time series compared are 
mirror images of each other.  Zero means the 
compared time series have no relation to each 
other, which basically means they are random. 
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Fig. 2 Uncorrelated correlogram (random time series) 

A common way of analysing the 
autocorrelation coefficients and their respective 
lag values is by plotting the autocorrelation 
coefficient against the lags.  The plot is called a 
correlogram and is a comprehensive way to 
indicate the relationship between time series 
data.  In the case where the time series have no 
relationship to each other, the correlogram will 
present an irregular pattern with amplitude close 

to zero, except when the lag is equal to zero, as 
shown in Figure 2.  In contrast, when the time 
series have a strong relationship, the 
correlogram will show high coefficient values 
and a regular pattern as shown in Figure 3. 
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Fig. 3 Correlated correlogram 

2.2 Cross-Correlation 
The cross correlation algorithm is a measure of 
the similarities and shared properties between 
data series.  The arithmetic aspect of cross 
correlation is very similar to that of the 
autocorrelation.  The only difference is the 
variable composition.  In autocorrelation there is 
only one series to deal with, but in cross 
correlation there are usually two data series.  
The two data series can be any type of series for 
example related, non-related, or even identical 
(in such a case, it becomes an autocorrelation 
analysis).  Once the cross correlation has been 
performed the association between the two data 
series will be revealed.  Similar to the 
autocorrelation, the cross correlation results are 
often being described as a non-dimensional 
format.  With the non-dimensional property, it is 
easier to compare the cross correlated results to 
other results obtained from different data 
sources.  The non-dimensional cross correlation 
result is also known as the cross correlation 
coefficient.  Like autocorrelation coefficients, 
the cross correlation coefficient values always 
lie between -1 and +1.  +1 means 100% 
correlation in the same sense as autocorrelation 
analysis, -1 means 100% correlation in the 
reverse order (anti-phase), and 0 signifies zero 
correlation (means the series are completely 
independent of each other) or two completely 
randomised series. 
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Cross correlation method is the second DI 
technique investigated in this paper also in this 
research.  The application of this DI is to assess 
the amount of the similarities between two 
autocorrelated data series, and use these 
information to decide whether a characteristic 
change has occurred for the platform in 
question. 

Cross correlation is also a type of 
statistical analysis.  The common mathematical 
expression for the continuous time cross 
correlation function is generally defined as [9, 
10]:  

∫
−∞→

τ+=τ
T
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As cross correlation is used to examine 
the common properties between two sequences 
of data series, it is required to move the 
sequences past one another entirely.  This 
prerequisite is different from that of the 
autocorrelation, where the calculation only 
compute positive lags from 0 to +T to obtain all 
possible comparisons between the time series 
and itself.  In the case of cross correlation if two 
different series are being considered as shown in 
Eq. 6, the negative lags of the correlation must 
be considered as well (i.e. incorporated all data 
from –T to +T).  This process will ensure the 
entire length of one series to move pass the 
other series, hence all possible match positions 
are being scrutinised.  From Eq. 6, Rxy(τ) 
represents the value of the cross correlation 
function at the time delay (or lag) τ, x(t) 
represents the value of the series x at time t, and 
y(t+ τ) is the value of the series y at lagged time 
t+ τ. 

During the cross correlation analysis, if 
two data series are identical, the analysis 
procedure actually becomes very similar to that 
of autocorrelation analysis. The corresponding 
results in a cross correlation plot (i.e. cross 
correlogram) will be a mirror image of itself 
around lag 0, and with the highest amplitude 
(i.e. value of 1) at this point.  The interpretation 
of the result in this situation should not be 
treated as the same as in the autocorrelation.  
Because in cross correlation one sequence is 
being ‘moved past’ the other rather than being 
lagged behind from a position of initial 

equivalence, it is therefore common to describe 
the successive comparisons as matched 
positions rather than lags. 

Since the data series examined by the 
cross correlation are usually in discrete time 
domain, it is therefore much more convenient to 
describe Eq. 6 in discrete time as well.  The 
discrete time domain expression for Eq. 6 is 
very similar to the discrete time domain of the 
autocorrelation function.  The expression is 
shown in Eq. 7.  
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N is the series size which is also the 
approximation of N-m (the difference between 
N-m and N is in fact small and can be ignore), 
and m similar to the application of lag value in 
autocorrelation analysis, but in cross correlation, 
it is referred to as match position.  In the 
summation term, the variable i is the 
representation of the time limit –T and +T, as 
mentioned in order to compare all possible 
position of the two series, cross correlation 
computation will started with the negative lags 
(the match positions that are less than zero or in 
the negative region) during the analysis. 
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In order to allow the cross correlation 
solutions to be able to evaluate with other cross 
correlation results, cross correlation function in 
Eq. 7 needs to be normalised.  The 
normalisation of Eq. 7 produced the cross 
correlation coefficient equation which is as 
shown in Eq. 8.  Different to the autocorrelation 
standardisation procedure, in cross correlation 
the standardisation is done using the standard 
deviation (S1, S2) from both compared 
autocorrelated data sources as shown in Eq. 8.  
Also different to the autocorrelation 
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standardisation procedure, the cross correlation 
mean values (x⎯  , ȳ ) of both data sources are 
included in the equation to minimise the data 
calibration requirement for the comparison 
purposes.    
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Similar to the autocorrelation DI the 
easiest way to understand the characteristics of 
cross correlation coefficients is to plot them.  
The cross correlation coefficient plot is usually 
referred to as ‘Cross Correlogram’, which has 
the same amplitude range between +1 and -1 as 
the correlogram from autocorrelation.  
However, with the cross correlogram the 
horizontal axis contain parameters which are 
match positions rather than lag values.  If the 
majority of the match positions shown high 
amplitude of coefficient and the cross 
correlogram shows high degree of organised 
cyclic patterns, which basically means the two 
compared autocorrelated data series have high 
correlation to each other.   

Fig. 4 Highly correlated cross correlogram 
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analysis actually means both series shared large 
numbers of common properties and 
characteristics.  If the maximum cross 
coefficient amplitude of 1 (in an ideal case) is 
achieved at the match position 0, and couple 
with both cross correlogram from – and + 
region are mirror image of each other.  The two 
autocorrelated series in this case are very likely 
to be identical.  In real life, however, cases of 
minor discrepancies for the properties 
mentioned are always to be expected.  Figure 4 
contains a cross correlogram representing the 
cross correlation analysis of two identical (ideal 
case) autocorrelated data series.  Figure 5 
presents the superimposed plot of – region and 
+ region of the cross correlogram of Figure 4.  
As the plot shown in Figure 5, the – and + 
region of the plot is exactly identical, which 
means they are mirror image of one another. 

 Fig. 5 Superimposed plot of Figure 4 
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Fig. 6 Uncorrelated cross correlogram 

3  Experiments    
To verify the HUMS capability of the proposed 
DI, two bench top experiments were conducted.  
Each experiment setup is driven by different 
types of motor.  The first experiment setup was 
driven by an electric motor and the second 
experiment setup was driven by a two-stroke 
model plane engine (similar to many used by 
small size UAVs) as shown in Figure 7.  In 
order to simulate a fault generation an off-
balance CPU fan was attached right on top of 
SmartHUMS housing.  At the 10th second of the

In the case where two autocorrelated data 
series have no relation or shared properties (i.e. 
random) with each other, the corresponding 
cross correlogram plot is presented in Figure 6, 
where the amplitudes of the plot are almost 
equal to zero.  Most importantly, the maximum 
amplitude does not occur at match position 0.   
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Fig. 7 Electric motor (left) and two-stroke motor (right) test setup  

experiment this fan was turned on, the vibration 
caused by the fan creates an independent 
vibration signal to the experiment setup.  If the 
proposed DI algorithms are proficient enough 
they should pick up the disturbances caused by 
the fan, provided that the fan vibration is strong 
enough to interfere with transfer function of the 
test setup. 

3.1 Electric Motor Experiment Setup 
During the experiment, the test setup was 
running at a constant rotating speed of 600 
RPM.  10 seconds into the experiment the off-
balance CPU fan was turned on for about eight 
seconds.  As the only disturbance for the entire 
experiment was the fan, the DI should only pick 
up two events, which are fan start up at around 
10th second and fan shut down at about 18th 
second of the experiment.    

7 

Figure 8 presents the overlap of Z-axis 
(data source obtained from Z-axis vibration 
signal) autocorrelation correlogram plots for the 
first 10 seconds of the experiment.  The first 9 
seconds of correlograms are plotted in blue 
colour and the 10th second correlogram is 
plotted in red colour.  Obviously the red 
correlogram is very different to the first 9 
seconds of blue correlograms.  This actually 
indicates that the fan was turned on during the 
10th second.  Figure 9 is the cross correlogram 
plot between the 10th and 9th seconds of the 
autocorrelated data sets.  From the figure, the 
maximum amplitude at match position 0 is 
almost equal to 0, and from the Figure 10 zoom 
in overlap plot, it can be seen that the Figure 9 
cross correlogram does not have a mirror image 
property about the vertical axis at match 
position 0.  To conclude the finding, both DI 
have identified a characteristic change (start up 

of off-balance CPU fan) at 10th second of the 
experiment.   
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Fig. 8 First 10 seconds of Z-axis autocorrelation 
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Fig. 9 Cross correlogram for 10th and 9th second  
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Fig. 10 Zoom in overlap plot for – and + regions of 
Figure 9 
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Figure 11 presents the overlap of Z-axis 
autocorrelation correlogram plots for the 18, 19, 
20, and 21 second of the experiment.  The 
correlogram for 18th second is plotted in red 
colour and the rest of the correlograms is in blue 
colour.  Obviously the correlogram representing 
18th second is different to the rest of the 
correlograms.  18th second is actually the time 
when fan was shut down.  
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Fig. 11 Correlated correlogram 
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Fig. 12 Cross correlogram for 19th and 18th second 

Overlap of - and + region 

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 50 100 150
  

Fig. 13 Overlap plot for – and + regions of Figure 12 

Figure 12 presents the cross correlogram 
between 19th and 18th second autocorrelated data 
set.  In this correlogram the evidence of fan 

disruption is even much clearer, where the 
maximum coefficient amplitude do not happen 
at match position 0.  The superimposed plot of 
Figure 13 shows the cross correlogram 
definitely not mirror image of itself at the 
vertical axis of match position 0.  Therefore, DI 
algorithms have detected the second event 
which was the shutting down of the fan.   

3.2 Two-Stroke Motor Experiment Setup 
In the case of two-stroke motor 

experiment, the experimental procedures were 
similar to the electric motor driven experiment.  
During the experiment the total data log time is 
28 second, where the off-balance CPU fan was 
turn on around 10th second of the experiment 
and shut off after around 8 seconds.  As in the 
case of the electric motor, it is expected that two 
events will be detected by the DI.  The first 
event is the starting up of the fan, and the 
second event is the shutting down of the fan. 

It is important to note that during the two-
stroke motor experiment there were number of 
issues arose which caused significant impact to 
the vibration signals generated by the test setup.  
As the engine was designed for a radio-control 
helicopter, by stripping the engine from the 
helicopter and incorporated into the test setup 
the loads experienced by the engine are 
completely different.  As a result, there was 
great difficulty in starting the engine, and once 
the engine was running, there were problems 
with fuel tank pressurisation and carburettor 
tuning due to different load requirements.  All 
these issues caused the two-stroke motor to run 
in an inconsistent manner.  In fact, the two 
stroke motor was running at gradually changing 
speed during the 28 seconds of data logging.  At 
the time of this publication a significant amount 
of effort was still dedicated to calibration of the 
engine in order to achieve constant rotation for 
the experiment. 

In order to make sense of the data logged, 
which definitely contain certain amount of 
inconsistent rotations, shorter comparison 
intervals had been used.  For example, to detect 
the fan starting, the experiment results from 9th 
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second to 11th second were presented and 
compared, instead of analysing all 11 seconds of 
results which most likely included a number of 
data variations caused by the fluctuation of 
engine rotation.   
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Fig. 14 Autocorrelation correlogram for 9th (red) and 
10th (blue) second 
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Fig. 15 Autocorrelation correlogram for 10th (red) and 
11th (blue) second 
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Fig. 16 Cross correlogram for 11th and 10th second 

Figure 14 represents the overlap 
comparison between 9th (red) second and 10th 
(blue) second Z-axis experimental data in terms 

of autocorrelation correlogram.  Generally, the 
phase plot between 9th and 10th second matched 
well except the amplitude variations.  As the 
two-stroke motor experiment was a real life 
experiment, some random phenomena would be 
expected during the test. There were also some 
variations due to the carburettor calibration 
problems.  As a result, the comparison in Figure 
14 was treated as similar, which means that no 
variation was detected.  Figure 15 shows the 
comparison between 10th and 11th second of Z-
axis experiment data.  In this plot, the phase 
misalignment is visible, additionally the 
amplitude differences are also observed.  These 
characteristics described so far indicated 
discrepancies between 10th and 11th second data.  
To prove 10th and 11th second experimental data 
are different the cross correlogram plot is 
presented in Figure 16.      

The cross correlogram in Figure 16 shows 
low amplitudes, which basically means low 
correlation between 11th and 10th second data.  
Also the maximum coefficient amplitude did 
not occur at match position zero and the – and + 
regions of correlogram plot are not symmetric to 
each other.  Thus the conclusion can be drawn 
that an event had occurred between 10th and 11th 
second of the experiment, caused by the fan 
start up procedure.  

Figure 17 represents the comparison of 
autocorrelation correlogram between 16th and 
17th second data.  In this figure the amplitude 
differences are visible, which suggested random 
interruptions, but from around lag value 100 
onwards the phases started to get misaligned.  
To further verify the comparison between 16th 
and 17th second a cross correlogram is produced 
in Figure 18, where maximum amplitude did not 
occur at match position 0 and the cross 
correlogram plot did not have a mirror image 
about the vertical axis with respect to match 
position 0, as a result an event had been 
detected between 16th and 17th second.  Figure 
19 is the autocorrelation correlogram 
comparison for 17th and 18th second 
experimental data, where the two correlograms 
overlapped relatively well except some minor 
amplitude variations.  Therefore, the CPU fan 
was shutting down at 16th second of the 
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experiment, which basically means the fan was 
not turn on for full 8 seconds as expected. 
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 Fig. 17 Autocorrelation correlogram for 16th (red) and 

17th (blue) second 

Cross Correlation 
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Fig. 18 Cross correlogram for 17th and 16th second 
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Fig. 19 Autocorrelation correlogram for 17th (red) and 

18th (blue) second 

4  Conclusion  

Two experimental test setup results have 
been demonstrated in this paper.  In each case 
the DI algorithms were able to detect the off 
balance fan starting up and shutting down 
process.  The ability to detect fan operation 
demonstrated the DI fundamental concept, 
where any event that causes significant impact 
to the system transfer function will be flagged 

by the DI algorithms.  By only analysing these 
flagged data, significant diagnostic time can be 
reduced hence the whole system can be put back 
to operation sooner.  As a result, the availability 
and reliability is increased, therefore, the 
operational cost will be reduced in certain 
degree and indirectly the safety aspects will also 
increased.  The improvements mentioned are 
some of the typical HUMS benefits regularly 
seen from a HUMS implementation.  Therefore, 
by applying SmartHUMS technology in the 
field such as UAV will likely to see these 
benefits being introduced as well. 
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