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Abstract  

In this paper, a non-orthogonal coordinate 
transformation method presented in reference 
[1] has been used to develop a computation 
method for the prediction of confined coaxial 
turbulent swirling jets with imposed adverse 
pressure gradient. A computer code has been 
developed. In the program, the standard k-ε 
model has been used. For the finite-difference 
approximation to the convection terms, a 
combination of the HYBRID scheme and the 
second-order upwind scheme has been used. 
For the swirling conditions, a modified k-ε 
model has been adopted. Then, the program has 
been applied to predictions of the experimental 
condition under which non-swirling flow with 
imposed adverse pressure gradient has been 
observed [2]. The comparison of the 
computation results with the experimental 
results shows rather fine agreement. Later, 
numerical predictions have been made for a 
case of contra-swirling turbulent jet with 
imposed adverse pressure gradient, and a case 
of contra-swirling turbulent jet with sudden 
expanding confinement. It is observed that for 
fixed grids, numerical predictions are 
influenced considerably by the inlet turbulent 
conditions. Therefore, inlet turbulent quantities 
must be specified realistically if quantitatively 
correct results are desired. 

1 Introduction 
In the design process of a combustion 

chamber, there are many ingredients involved. It 
is hardly possible for effects of these ingredients 
to be expressed by a simple experiential 
equation. In general, the design is largely 

dependent on various experiments. It is self-
evident that numerical prediction by 
establishing calculating models of combustion 
chambers has obvious advantage over pure 
experiments. For many years, researching 
workers have done jobs with confined jets on 
the inert condition and the exothermic condition. 
Now that most of the real configurations of 
combustion chambers are of varying sections, 
on these conditions (with imposed adverse 
pressure gradient), investigating to predict the 
field development of coaxial confined jets using 
numerical calculation, so as to grasp the loss 
rule of the airflow will be undoubtedly of great 
importance for the improvement of the chamber 
design and the combustion efficiency. 

Because of the abnormity of the problem 
domain being investigated, there rises difficulty 
in the numerical solution. In order to solve this 
problem, J. F. Thompson ([3], [4]) etc. applies 
the boundary-fitted transformation to 
computational fluid dynamics, so as to make the 
boundary conditions easier to be treated and 
promote the calculating precision. 

The primary aspect of the boundary-fitted 
coordinate system is how to form the grids. And 
the differences in mesh producing will directly 
affect the complexity of the controlling 
equations and the calculating. In 1984, the 
methodology of forming grids with algebraic 
non-orthogonal coordinate transformation was 
put forward in reference [1]. The main merit of 
this method is to avoid the numerical solution of 
elliptic equations, and the controlling equations 
are also straightforward. 

In point of engineering numerical 
calculation, the most frequently used turbulent 
solving method is the Reynolds time-average 
method. 
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When the time-average method is used, the 
pulsant correlation terms will exist, so it is 
necessary to establish a turbulent model. There 
are a wide variety of turbulent models. The 
variety adopted in this paper is based on the 
concept of vortex viscosity presented in 1877 by 
Boussinesq, that is 

- 'u'u ji =νt(u, i
j +u, j

i )-
3
2 δijK 

Therefore, the primary task of this model is to 
put forth an estimation method of the vortex 
viscosity coefficient νt. According to the number 
of partial differential equations included in the 
extra relations introduced during the estimation 
of vortex viscosity coefficient, there will be the 
null-equation model, the one-equation model 
and the two-equation model, and so on. In 
consideration of the universality of the current 
engineering use and the convenience of 
computation, it is feasible to adopt the k-ε two-
equation model. 

In this paper, on the basis of the former 
work of others, by using the thought of non-
orthogonal transformation in the Cartesian 
coordinate system put forth in reference [1], 
combined with the turbulent flow controlling 
equations in the cylindrical coordinate system 
and the k-ε two-equation model, a computation 
methodology of coaxial confined turbulent 
swirling jets has been developed, which could 
be used either to constant-section case or to 
variable-section case. Compared with [1], apart 
from the difference of the coordinate system, 
the other characteristic of this paper is that the 
velocity component solved on the computational 
plane is the very velocity on the physical plane, 
which is more obvious and more convenient. 
Because on the swirling condition, the 
hypothesis of vortex viscosity – isotropy is not 
satisfied, a bad accuracy is gained if one uses 
the standard k-ε model. Therefore, on the 
swirling (co-swirling or contra-swirling) 
condition, this paper adopts the modified k-ε 
model constants presented in reference [5]. In 
the non-swirling case, however, the standard k-ε 
model constants are still used. By applying the 
procedure of this paper to the experimental data 
presented in reference [2] for a non-swirling 

coaxial confined jet with imposed adverse 
pressure gradient, a numerical prediction has 
been made. The comparison of the computation 
results with the experimental results shows 
rather fine agreement. 

2 Theoretic Analysis and Numerical 
Calculation 

2.1 Controlling Equations on the Physical 
Plane 

In the axisymmetrical case, the physical 
plane is the r-z plane (meridian plane), as shown 
in Fig. 2.1. The basic controlling equations in 
the cylindrical coordinate system are as follows. 
1) The continuity equation 

z
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3) k equation 
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where  Sk=G-ρε 
4) ε equation 

z∂
∂ (ρuε)+

r
1

r∂
∂ (ρrvε)=

z∂
∂ (

εσ

μeff

z∂
∂ε)+

r
1

r∂
∂ (

εσ

μeff r
r∂

∂ε)+Sε 

where  Sε=
k
ε(C1G-C2ρε) 

In 3) and 4), G is the generated term: 

G=µeff{2[(
z
u
∂
∂ )2+(

r
v
∂
∂ )2+(

r
v )2]+(

r
u
∂
∂ +

z
v
∂
∂ )2+[(

z
w
∂
∂ )2+(

r
w
∂
∂ -

r
w )2]} 

The term µeff  in 2), 3) and 4) is the effective 
viscosity:  

µeff=µ+µt,     µt=Cµρ
ε

2k  

 
Fig. 2.1 

Constants in table 2.1 are the standard k-ε 
model constants, for the swirling jet conditions, 
the study in reference [5] proved that a more 
realistic flow field profile could be attained if 
the modified k-ε model constants shown in table 
2.2 were adopted. 

Table 2.1 The Standard k-ε Model Constants 
Cµ C1 C2 σk σε 

0.09 1.44 1.92 1.00 1.30 
Table 2.2 The Modified k-ε Model Constants for 

Swirling Flow 
Cµ C1 C2 σk σε 

0.125 1.44 1.5942 1.00 1.1949 
 

The above basic controlling equations can 
take the following more general form: 

z∂
∂ (ρuФ)+

r
1

r∂
∂ (ρrvФ)=

z∂
∂ (ΓФ z∂

Φ∂ )+
r
1

r∂
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r
r∂
Φ∂ )+SФ          (A) 

When Ф takes 1, v, u, w, k, ε, ΓФ takes 0, µeff, µeff. 

µeff, 
k

eff

σ

μ
, 

εσ

μeff , and SФ takes 0, Sv, Su, Sw, Sk, Sε, 

we can get the continuity equation, the radial 
momentum equation (v equation), the axial 
momentum equation (u equation), the 
circumferential momentum equation (w 
equation), the k equation and the ε equation. 

2.2 Controlling Equations on the 
Computational Plane 

For the irregular domain in the Cartesian 
coordinate system where one wall lies along the 
axis, it was put forth in reference [1] that using 
algebraic non-orthogonal coordinate trans-

formation: ξ=
)y(w

x , η=y, we could transform 

the flow field from an irregular domain on the 
physical plane into a regular domain on the 
computational plane: the boundaries of the 
computational domain coincide with the ξ and η 
axes, as shown in Fig. 2.2. 

 
Fig. 2.2 

Because the transform is algebraic, no 
elliptic equation about body-fitted coordinates is 
added, and the computation is reduced 
remarkably. At the same time, as no numerical 
approximation element has been introduced into 
the transform plane equations and the body-
fitted coordinates, the body-fitted effects can be 
eliminated completely, and the transform plane 
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equations can be coupled completely with the 
original physical problems.  

In this paper, making use of that 
transformation thought, the following trans-
forms are introduced: 

ξ=ξ(r, z)=
）（zw

r

r

,   η=η(r, z)=z 

to transform the flow field from an irregular 
domain on the r-z physical plane into a regular 
domain on the ξ-η computational plane, with the 
boundaries of the computation domain 
coinciding with the ξ and η axes, as shown in 
Fig. 2.3. In the mean time, the equations on the 
physical plane will change into the equations on 
the computational plane. 

 
Fig. 2.3 

After transformation, the universal variable 
form of the controlling differential equations on 
the computational plane is as follows. 
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   u =urξ-vzξ,  v =vzη-urη 
u ( v ) is the velocity in the η (ξ) direction on the 
computational plane. 

For the continuity equation, the universal 
variable form is: 

   
η
η

∂

∂J
+

ξ
ξ

∂

∂J
=JξSΦ’(ξ,η) 

   where      SΦ’(ξ,η)=-
ξ

ρ η

J
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Refer to the appendix for the specific ΓФ and SΦ’ 
expressions of the remaining equations. 

2.3 The domain discretization and the finite-
difference forms of the controlling equations 

In order to deduce the finite-difference 
forms of the controlling equations, this paper 
adopts the finite-volume method: at first, divide 
the calculation domain into many control 
volumes which do not overlap each other, and 
make each grid point surrounded by a control 
volume. Then integrate the differential 
equations over each control volume, calculate 
the required integral using the subsection-
distributing relation expressing the Ф variation 
between grid points. The advantage of using the 
finite-volume method is that the attained results 
of the mass, the momentums and other variables 
will precisely meet the integral conservation 
over any set of control volumes, and naturally 
over the entire calculating domain. For any 
number of grid points, this character will exist, 
and the precise integral balance could be 
attained even for the solution of coarse grids. 

If during the discretization, we integrate 
the quantities such as velocities, pressure, 
turbulent kinetic energy and its diffusive rate 
over the same set of grids, the velocity field and 
the pressure field of numerical solution may be 
unrealistic and fluctuant [6]. The appropriate 
way to solve this problem is adopting staggered 
grids, to solve velocity u, velocity v and 
pressure p etc over three different sets of grids, 
as shown in Fig. 2.4. 

Integrating differential equation (B) over a 
control volume – typically the main control 
volume (control volume of pressure p, turbulent 
kinetic energy k, diffusive rate ε and 
circumferential velocity w) enclosing grid point 
P in Fig. 2.4, with the control volume 
dV =ξPdηdξ, we get 
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Fig. 2.4 

∫∫ ∂

∂
v,c

J
η
η dηdξ+ ∫∫ ∂

∂
v,c

J
ξ
ξ dηdξ= ∫∫ ′

v,c
SJ( Φξ  

+D)dηdξ 

where  D=-
η∂
∂ (

J
ξΦΓ q2 ξΦ )-

ξ∂
∂ (

J
ξΦΓ q2 ηΦ ) 

Therefore,   [(Jη)e-(Jη)w]∆ξ+[(Jξ)n-(Jξ)s]∆η 
=(JξSΦ’+D)P∆η∆ξ      (1) 

Let Ф=1,  we can get the continuity equation 

(now  SΦ’(ξ ,η)=-
ξ

ρ η

J
ur

) 

Fe-Fw+Fn-Fs=(-ρurη) P ∆η∆ξ             (2) 
In the above, 

Fe=(ρξu )e∆ξ,      Fw=(ρξu )w∆ξ, 
Fn=(ρξ v )n∆η,       Fs=(ρξ v )s∆η 

Let                      Je=(Jη)e∆ξ,      Jw=(Jη)w∆ξ, 
J n =(Jξ)n∆η,      Js=(Jξ)s∆η, 

by  (1)-(2)×ΦP, we get 
(Je-FeФP)-(Jw-FwФP)+(Jn-FnФP)-(J s -

FsФP)=(JξSΦ’+D+ρurηФ) P ∆η∆ξ       (3) 
By using the common discretization formula 
recommended in reference [6] 

J-FФi=A(Фi-Фi+1) 
we can get 

Je-FeФP=aE(ФP-ФE),  Jw-FwФP=aW(ФW-ФP), 
Jn-FnФP=aN(ФP-ФN),     Js-FsФP=aS(ФS-ФP) 

Let bP=(JξSΦ’+D+ρurηФ)P∆η∆ξ, then equation 
(3) will change to 

aP
’ФP=aEФE+aWФW+aNФN+aSФS+bP  (4) 

where 
aP

’=aE+aW+aN+aS, 

aE=DeA(
e

e

D
F

)+[|-Fe,0|], 

aW=DwA(
w

w

D
F

)+[|Fw,0|], 

aN=DnA(
n

n

D
F )+[|-Fn,0|], 

aS=DsA(
s

s

D
F

)+[|Fs,0|], 

De,Dw,Dn,Ds: diffusive coefficients on interfaces 
of the control volume 

Fe,Fw,Fn,Fs: mass fluxes on interfaces of the 
control volume 

The denotation [|ω1,ω2|] indicates the larger 
between ω1 and ω2. 

In order to linearize source term bP, let 
(JξSΦ’+D+ρurηФ)P=SC+SPФP 

By substituting this into equation (4) and 
making rearrangement, we get 

aPФP=aEФE+aWФW+aNФN+aSФS+b    (5) 
Equation (5) is the discretized form of 
controlling equations on the computational 
plane, where 

aP=ap
’-SP∆η∆ξ,          b=SC∆η∆ξ 

According to the different finite-difference 
approximating method of the convection terms, 

function A(
D
F ) has different expressions. Let 

P=
D
F , the expressions of function A(|P|) 

corresponding to the different finite-difference 
formats are listed in table 2.3. 

Thus, we get the discretized forms of 
controlling differential equations on the 
computational plane. 

 
Table 2.3 Function A(|P|) Corresponding to the 

Different Difference Formats 
Formats A(|P|) 

Central Difference 1-0.5|P| 
Upwind 1 

HYBRID [|0,1-0.5|P||] 
Power Law [|0,(1-0.1|P|)5|] 

A(|Pe|)=1+0.5[|-Pe,0|] Second-order 
Upwind A(|Pw|)=1+0.5[|Pw,0|] 

2.4 The pressure correction equation and 
velocity correction formulae 

We have got the discretized form of each 
controlling equation in the above section, but 
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we can not yet solve the flow field because the 
pressure remains unknown in the u and v 
momentum equations. These years, in solving 
this problem the SIMPLE (the semi-implicit 
couple of pressure and velocity) procedure 
proposed by S. V. Patanker etc [6] has found 
extensive application. The key of this procedure 
is to deduce the pressure correction equation 
and velocity correction formulae. At first, the 
pressure field is guessed to gain the 
corresponding velocity field. Generally, this 
velocity field does not satisfy the continuity 
equation. Therefore, the pressure correction 
equation is solved to get the correction pressure. 
Then the correction pressure and velocity 
correction formulae are used to modify the 
pressure and velocity fields, and this procedure 
is repeated until the convergence is attained. 

Applying the SIMPLE procedure to the 
discretized common equation (4), we can obtain 
velocity correction formulae on the 
computational plane as follows. 

u = u *+rξCupη’∆η∆ξ                      (6) 
v = v *+(Bv-rηBu)pξ’∆η∆ξ               (7) 

While the pressure correction equation is 
aPpP

’=aEpE
’+aWpW

’+aNpN
’+aSpS

’+b    (8) 
where 

aE=(ρξ)eL1e∆ξ2, 
aW=(ρξ)wL1w∆ξ2, 
aN=(ρξ)nL2n∆η2, 
aS=(ρξ)sL2s∆η2, 

aP=aE+aW+aN+aS, 
b=-[(ρξ u *)e∆ξ-(ρξ u *)w∆ξ+(ρξ v *)n∆η-

(ρξ v *)s∆η]-(ρrη)P∆η∆ξuP
* 

L1=-rξCu,       L2=-Bv+rηBu 
Let   p’=Φ’, we can get 
        aPΦP

’=aEΦE
’+aWΦW

’+aNΦN
’+aSΦS

’+b    (9) 
Thus we have obtained the pressure correction 
equation (8) or equation (9). 

2.5 Some problems concerning the 
convergence and stability 

For the convective terms, a finite-
difference method of HYBRID combined with 
the second-order upwind format is used on the 
basis of the high convergence precision of 
HYBRID and the good stability of second-order 

upwind. In the preliminary iterations HYBRID 
format is adopted, then the second-order upwind. 

In order to advance the convergence rate, a 
strengthened SIMPLE procedure, i.e. the 
SIMPLEC procedure was put forth in reference 
[7]. The analysis in reference [7] showed that 
after adopting the SIMPLEC procedure, no 
under-relaxation would be needed for pressure, 
which meant that in the formula p=p*+αpp’, αp 
could be 1.0 to speed up convergence. The 
conclusion of reference [7] was aimed at the 
regular domain in the physical coordinates. In 
the transformation coordinates, the computation 
practice indicates that under-relaxation is still 
required for the pressure correction. Either for 
recirculation flow or for non-recirculation flow, 
it is generally appropriate to take αp=0.8. 

2.6 Boundary conditions and near-wall 
treatment 

Currently, there are mainly two methods of 
turbulent treatment near the wall. The first 
method is to adopt a near-wall turbulent model: 
to lay very fine grids near the wall and solve the 
flow field from the rich turbulence area to the 
wall points, we can take kw=εw=0. The second 
method is to utilize the existing experimental 
results and experiential expressions, plus certain 
theoretical analysis, to give the changing rule of 
each parameter. This method is called the wall 
function method. Because of its saving 
computation time and its relative reliability, this 
method has found extensive application. This 
paper adopts the wall function method presented 
in reference [8]. 

The boundary condition of each equation is 
prescribed as follows. 

For u equation, inlet given, outlet 
η∂
∂u =0, 

symmetrical boundary 
ξ∂
∂u =0, wall u=0. For v 

equation, inlet given, outlet
η∂
∂v =0, symmetrical 

boundary v=0, wall v=0. For w equation, inlet 

given, outlet 
η∂
∂w =0, symmetrical boundary 
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w=0, wall w=0. For k equation, inlet given to the 
following formulae: the main jet k=CkUim

2, the 
annular jet k=CkUom

2 (according to the inlet 
turbulence quantity, we can take Ck=0.001-

0.06), outlet
η∂
∂k =0, symmetrical 

boundary
ξ∂
∂k =0, wall

ξ∂
∂k =0. For ε equation, 

inlet given to the following formulae: the main 

jet ε= 2
3

k /(0.005Rin), the annular jet 

ε= 2
3

k /[0.005(R1-Rin)], outlet
η
ε
∂
∂ =0,  

symmetrical boundary
ξ
ε
∂
∂ =0, wall

ξ
ε
∂
∂ =0. For 

p’ equation, on all boundaries 
n
p
∂
′∂ =0. (n is the 

normal of that boundary.) 

3 Comparison analysis of computational 
results with experimental data 

A numerical prediction has been made with 
the experimental conditions of confined coaxial 
jets with imposed pressure gradient. The inlet 
axial velocity u is given the real values probed 
in the experiment. As the velocity on each point 
of the nozzle exit plane is axial, the radial 
velocity of the confinement inlet v=0. Because 
of non-swirling, on each point of the 
confinement inlet w=0. According to the 
experimental conditions and real measuring 
results, the flow on the nozzle exit plane is 
dominated by the molecular viscous force. 
Therefore, the inlet turbulent kinetic energy and 
its diffusive rate are all approximately zero, and 
the k and ε values are prescribed as k=0, ε=0. 
The inner nozzle lip is so thin that its thickness 
can be taken as zero. In accordance with the 
inlet conditions as well as the geometrical 
configuration of the confinement, computation 
has been made using the calculating code of this 
paper. The comparison of the computation and 
experimentation results is shown in Fig. 3.1 and 
Fig. 3.2. In each figure, the continuous curve 
indicates the computation and the scattered 
points indicate the experimentation results. Fig. 

3.1 shows the wall static pressure. The abscissa 
'X/D' indicates the normalized value of the axial 
distance with the confinement inlet diameter 
serving as the normalizing unit. The ordinate 'P' 

indicates the normalized pressure (pw-pj)/( 2
1 ρuj

2) 

(pw is wall static pressure, pj and uj are static 
pressure and axial velocity at the symmetrical  
axis point of the nozzle outlet plane). There is 
rather fine agreement of the computation results 
with the experimentation results. The difference 
is that the computation curve lags slightly 
behind the experimental data points. 

 
Fig. 3.1 Wall Static Pressure 

 
Fig. 3.2 Profile of Axial Velocity 

Fig. 3.3 Profile of Radial Velocity 

Fig. 3.4 Profile of Turbulent Kinetic Energy 

 
Fig. 3.5 Profile of Static Pressure 
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Fig. 3.6 Contours of Axial Velocity 

 
Fig. 3.7 Velocity Vector Profile 

on the Meridian Plane 

4 The numerical prediction of a contra-
swirling jet with imposed pressure gradient  

A numerical prediction of a contra-swirling 
jet with imposed pressure gradient has been 
made, with the geometrical configuration of 
inlet radius R1=0.25m, outlet radius R2=0.35m, 
confinement length L=1.5m and inner nozzle 
radius Rin=0.1m. Axial velocities of the inner 
and annular nozzles are given uniform profiles, 
with the inner nozzle ui=30m/s and the annular 
nozzle uo=20m/s. The inlet velocities on the 
meridian plane are axial, so the radial velocity 
v=0. Circumferential velocities are given by the 
following formulae: the main jet w=3.6u(r/Rin), 
the annular jet w=-3.6u[r/(R-Rin)]. The inlet 
turbulent kinetic energy k and its diffusive rate ε 
are still given the same as in section 1.6, with 
Ck=0.03. According to the above inlet condition, 
computation has been made using the 
calculating code of this paper. The results are 
shown in Fig. 4.1-4.7. 

 
Fig. 4.1 Profile of Axial Velocity 

 

Fig. 4.2 Profile of Radial Velocity 

 
Fig. 4.3 Profile of Circumferential Velocity 

 
Fig. 4.4 Profile of Turbulent Kinetic Energy 

 
Fig. 4.5 Profile of Static Pressure 

 
Fig. 4.6 Contours of Axial Velocity 

 
Fig. 4.7 Velocity Vector Profile 

on the Meridian Plane 

5 The numerical prediction of a contra-
swirling jet with sudden expanding 
confinement of constant section 

A numerical prediction of a contra-swirling 
jet with sudden expanding confinement of 
constant section has been made, with the 
geometrical configuration of inlet radius 
R1=0.1m, inner nozzle radius Rin=0.0195m, duct 
radius R2=0.2m and confinement length L=1.5m. 
Inlet axial and circumferential velocity profiles 
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have been given, with the inlet axial velocity 
profile shown in Fig. 5.1 and the circumferential 
in Fig. 5.3. The inlet velocities on the meridian 
plane are axial, so the radial velocity v=0. The 
inlet turbulent kinetic energy k and its diffusive 
rate ε are still given the same as in section 1.6, 
with Ck=0.03. According to the above inlet 
condition, computation has been made using the 
calculating code of this paper. The results are 
shown in Fig. 5.1-5.7. 

 
Fig. 5.1 Profile of Axial Velocity 

 
Fig. 5.2 Profile of Radial Velocity 

 
Fig. 5.3 Profile of Circumferential Velocity 

 
Fig. 5.4 Profile of Turbulent Kinetic Energy 

 
Fig. 5.5 Profile of Static Pressure 

 
Fig. 5.6 Contours of Axial Velocity 

 
Fig. 5.7 Velocity Vector Profile 

on the Meridian Plane 

6 Conclusions 

1) In this paper, by applying the non-
orthogonal coordinate transformation procedure 
in the Cartesian coordinate system put forth in 
reference [1] to the meridian plane in the 
cylindrical coordinate system, any axi-
symmetrical domain could be transformed from 
being irregular into regular. The other 
characteristic of this paper is that the velocity 
component solved on the computational plane is 
the very velocity on the original physical plane. 

2) A numerical prediction has been made by 
applying the procedure of this paper to the 
experimental data presented in reference [2] for 
a non-swirling coaxial confined jet with 
imposed adverse pressure gradient. The 
comparison of the computation results with the 
experimentation results shows a rather fine 
agreement. It shows the calculation procedure of 
this paper is practicable. Of course, for the 
prediction precision of the swirling case, further 
experimental verification is still required. 

3) The computation shows that it is difficult 
to make numerical predictions of coaxial 
confined swirling (especially contra-swirling) 
jets with sudden expanding confinement. There 
is a rather narrow convergence limit to the 
relaxation factor. 

4) The computation shows that the magnitude 
and profile of inlet turbulent parameters have 
remarkable influence upon the precision of 
numerical predictions. Therefore, realistic inlet 
turbulent parameters must be specified if 
quantitatively correct results are desired. 

Appendix ΓΦ and SΦ’ expressions on the 
computational plane 

Φ=v:                                                         ΓΦ=µeff 
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Φ=u:                                                         ΓΦ=µeff 
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1
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Φ=k:                                                      ΓΦ=
k

eff

σ
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SΦ’=Sk’=G-ρε-
ξ

ρ η

J
ukr

+
k

2
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Jξσ
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η∂
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Φ=ε:                                                      ΓΦ=
εσ

μeff
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J
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In both cases (Φ=k and Φ=ε): 

G=µeff{2[(
η∂
∂u -

J
rη

ξ∂
∂u )2+(

J
1
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∂v )2+(
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